1
|
Renauld S, Cortes S, Bersch B, Henry X, De Waard M, Schaack B. Functional reconstitution of cell-free synthesized purified Kv channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2373-2380. [DOI: 10.1016/j.bbamem.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
|
2
|
Volokhina I, Gusev Y, Mazilov S, Moiseeva Y, Chumakov M. Computer evaluation of VirE2 protein complexes for ssDNA transfer ability. Comput Biol Chem 2017; 68:64-70. [DOI: 10.1016/j.compbiolchem.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/16/2022]
|
3
|
Verkhovskaya M. Preparation of Everted Membrane Vesicles from Escherichia coli Cells. Bio Protoc 2017; 7:e2254. [PMID: 34541243 DOI: 10.21769/bioprotoc.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/07/2017] [Accepted: 03/22/2017] [Indexed: 11/02/2022] Open
Abstract
The protocol for obtaining electrically sealed membrane vesicles from E. coli cells is presented. Proton pumps such as Complex I, quinol oxidase, and ATPase are active in the obtained vesicles. Quality of the preparation was tested by monitoring the electric potential generated by these pumps.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
5
|
Lu M, Zhang Y, Tang S, Pan J, Yu Y, Han J, Li Y, Du X, Nan Z, Sun Q. AtCNGC2 is involved in jasmonic acid-induced calcium mobilization. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:809-19. [PMID: 26608645 DOI: 10.1093/jxb/erv500] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Calcium (Ca(2+)) mobilization is a central theme in various plant signal transduction pathways. We demonstrate that Arabidopsis thaliana cyclic nucleotide-gated channel 2 (AtCNGC2) is involved in jasmonic acid (JA)-induced apoplastic Ca(2+) influx in Arabidopsis epidermal cells. Ca(2+) imaging results showed that JA can induce an elevation in the cytosolic cAMP concentration ([cAMP]cyt), reaching a maximum within 3 min. Dibutyryl cAMP (db-cAMP), a cell membrane-permeable analogue of cAMP, induced an increase in the cytosolic Ca(2+) concentration ([Ca(2+)]cyt), with a peak at 4 min. This [Ca(2+)]cyt increase was triggered by the JA-induced increase in [cAMP]cyt. W-7[N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin, positively modulated the JA-induced increase in [Ca(2+)]cyt, while W-5[N-(6-aminohexyl)-1-naphthalenesulfonamide], an inactive antagonist of calmodulin, had no apparent effect. db-cAMP and JA positively induced the expression of primary (i.e. JAZ1 and MYC2) and secondary (i.e. VSP1) response genes in the JA signalling pathway in wild-type Arabidopsis thaliana, whereas they had no significant effect in the AtCNGC2 mutant 'defense, no death (dnd1) plants. These data provide evidence that JA first induces the elevation of cAMP, and cAMP, as an activating ligand, activates the AtCNGC2 channel, resulting in apoplastic Ca(2+) influx through AtCNGC2.
Collapse
Affiliation(s)
- Min Lu
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yanyan Zhang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shikun Tang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jinbao Pan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yongkun Yu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Jun Han
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yangyang Li
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- School of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhangjie Nan
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Qingpeng Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
6
|
Taochy C, Gaillard I, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier JB, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer JC. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:466-79. [PMID: 26058834 DOI: 10.1111/tpj.12901] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 05/20/2023]
Abstract
In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.
Collapse
Affiliation(s)
- Christelle Taochy
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Emilie Ipotesi
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Ronald Oomen
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Nathalie Leonhardt
- Laboratoire de Biologie du Développement des Plantes, Institut de Biologie Environnementale et Biotechnologie, Laboratoire des Echanges Membranaires et Signalisation, UMR 7265 CNRS/CEA/Université Aix-Marseille II, F-13108, St Paul lez Durance, France
| | - Sabine Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Benoît Peltier
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Wojciech Szponarski
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Thierry Simonneau
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Institut de Biologie Intégrative des Plantes, UMR 0759 INRA/Montpellier SupAgro, F-34060, Montpellier, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Rémy Gibrat
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| | - Jean-Christophe Boyer
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS, UMR 0386 INRA/Montpellier SupAgro/Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
7
|
Klapperstück T, Glanz D, Hanitsch S, Klapperstück M, Markwardt F, Wohlrab J. Calibration procedures for the quantitative determination of membrane potential in human cells using anionic dyes. Cytometry A 2013; 83:612-26. [PMID: 23650268 DOI: 10.1002/cyto.a.22300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/18/2013] [Accepted: 04/02/2013] [Indexed: 12/15/2022]
Abstract
Quantitative determinations of the cell membrane potential of lymphocytes (Wilson et al., J Cell Physiol 1985;125:72-81) and thymocytes (Krasznai et al., J Photochem Photobiol B 1995;28:93-99) using the anionic dye DiBAC4 (3) proved that dye depletion in the extracellular medium as a result of cellular uptake can be negligible over a wide range of cell densities. In contrast, most flow cytometric studies have not verified this condition but rather assumed it from the start. Consequently, the initially prepared extracellular dye concentration has usually been used for the calculation of the Nernst potential of the dye. In this study, however, external dye depletion could be observed in both large IGR-1 and small LCL-HO cells under experimental conditions, which have often been applied routinely in spectrofluorimetry and flow cytometry. The maximum cell density at which dye depletion could be virtually avoided was dependent on cell size and membrane potential and definitely needed to be taken into account to ensure reliable results. In addition, accepted calibration procedures based on the partition of sodium and potassium (Goldman-Hodgkin-Katz equation) or potassium alone (Nernst equation) were performed by flow cytometry on cell suspensions with an appropriately low cell density. The observed extensive lack of concordance between the correspondingly calculated membrane potential and the equilibrium potential of DiBAC4 (3) revealed that these methods require the additional measurement of cation parameters (membrane permeability and/or intracellular concentration). In contrast, due to the linear relation between fluorescence and low DiBAC4 (3) concentrations, the Nernst potential of the dye for totally depolarized cells can be reliably used for calibration with an essentially lower effort and expense.
Collapse
Affiliation(s)
- Thomas Klapperstück
- Department of Dermatology and Venereology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Volokhina I, Gusev Y, Mazilov S, Chumakov M. VirE2-dependent pores for ssDNA transfer across artificial and cell membranes. J Bioinform Comput Biol 2012; 10:1241009. [PMID: 22809344 DOI: 10.1142/s0219720012410090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transfer of single-stranded (ss) T-DNA from soil bacteria of the genus Agrobacterium with the help of the VirE2 protein, which possibly mediates the delivery of ss-T-DNA across the cell membrane, was demonstrated earlier, but how VirE2 participates in ssDNA transfer across artificial and natural membranes is not known. Using computational methods, we reconstructed model structures composed of two and four VirE2 proteins and showed by the MOLE program the formation of pores with channel diameters of 1.2-1.6 and 1.4-4.6 nm in a model structure formed from two and four VirE2 molecules, respectively. Using light scattering, we recorded the size distribution for recombinant VirE2-dependent complexes in aqueous solutions and found that VirE2 in a buffer solution is present as a complex made up of two or more proteins. We revealed single, long-lived jumps in voltage-dependent membrane conductance during coincubation of planar black membranes with the VirE2 protein. On the addition of VirE2 and FAM-labeled oligonucleotides to HeLa cells, the fluorescence intensity for the cells increased by 56% as compared to that for cells incubated only with oligonucleotides.
Collapse
Affiliation(s)
- Irina Volokhina
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | | | | | | |
Collapse
|
9
|
Electrogenic plasma membrane H+-ATPase activity using voltage sensitive dyes. J Bioenerg Biomembr 2010; 42:387-93. [PMID: 20734224 DOI: 10.1007/s10863-010-9306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Fast responding voltage sensitive dyes, RH421 and di-4-ASPBS, were used to study the electrogenic properties of plant plasma membrane proton pumps on sealed plasma membrane vesicles extracted by two-phase partitioning from Beta vulgaris and Avena sativa cv Swan root material. Fluorescence spectroscopy in the presence of the dye RH421 (10.8 nM) was sufficiently sensitive to detect electrogenic activity of the extracted plant vesicles. The dye detection system could detect inhibition of electrogenic activity of vesicles by vanadate (75 μM) and stimulation by nigericin (0.5 μM). The newly developed dye di-4-ASPBS was less sensitive to detecting the electrogenic proton pump activity. This study represents an important innovation in plant biophysics as this class of fast responding voltage sensitive dyes have never to our knowledge been used to study electrogenic proton pump activity derived from plant membranes and represents a novel approach for carrying out such studies.
Collapse
|
10
|
Segonzac C, Boyer JC, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter. THE PLANT CELL 2007; 19:3760-77. [PMID: 17993627 PMCID: PMC2174868 DOI: 10.1105/tpc.106.048173] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 10/05/2007] [Accepted: 10/15/2007] [Indexed: 05/18/2023]
Abstract
Root NO(3)(-) efflux to the outer medium is a component of NO(3)(-) net uptake and can even overcome influx upon various stresses. Its role and molecular basis are unknown. Following a functional biochemical approach, NAXT1 (for NITRATE EXCRETION TRANSPORTER1) was identified by mass spectrometry in the plasma membrane (PM) of Arabidopsis thaliana suspension cells, a localization confirmed using a NAXT1-Green Fluorescent Protein fusion protein. NAXT1 belongs to a subclass of seven NAXT members from the large NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER family and is mainly expressed in the cortex of mature roots. The passive NO(3)(-) transport activity (K(m) = 5 mM) in isolated root PM, electrically coupled to the ATP-dependant H(+)-pumping activity, is inhibited by anti-NAXT antibodies. In standard culture conditions, NO(3)(-) contents were altered in plants expressing NAXT-interfering RNAs but not in naxt1 mutant plants. Upon acid load, unidirectional root NO(3)(-) efflux markedly increased in wild-type plants, leading to a prolonged NO(3)(-) excretion regime concomitant with a decrease in root NO(3)(-) content. In vivo and in vitro mutant phenotypes revealed that this response is mediated by NAXT1, whose expression is upregulated at the posttranscriptional level. Strong medium acidification generated a similar response. In vitro, the passive efflux of NO(3)(-) (but not of Cl(-)) was strongly impaired in naxt1 mutant PM. This identification of NO(3)(-) efflux transporters at the PM of plant cells opens the way to molecular studies of the physiological role of NO(3)(-) efflux in stressed or unstressed plants.
Collapse
Affiliation(s)
- Cécile Segonzac
- Biochimie et Physiologie Moléculaire des Plantes, Agro-M/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Université Montpellier 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sivaguru M, Yamamoto Y, Rengel Z, Ahn SJ, Matsumoto H. Early events responsible for aluminum toxicity symptoms in suspension-cultured tobacco cells. THE NEW PHYTOLOGIST 2005; 165:99-109. [PMID: 15720625 DOI: 10.1111/j.1469-8137.2004.01219.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We investigated the aluminum (Al)-induced alterations in zeta potential, plasma membrane (PM) potential and intracellular calcium levels to elucidate their interaction with callose production induced by Al toxicity. A noninvasive confocal laser microscopy has been used to analyse the live tobacco (Nicotiana tabacum) cell events by means of fluorescent probes Fluo-3 acetoxymethyl ester (intracellular calcium) and DiBAC4 (PM potential) as well as to monitor callose accumulation. Log-phase cells showed no detectable changes in the PM potential during the first 30 min of Al treatment, but sustained large depolarization from 60 min onwards. Measurement of zeta potential confirmed the depolarization effect of Al, but the kinetics were different. The Al-treated cells showed a moderate increase in intracellular Ca2+ levels and callose production in 1 h, which coincided with the time course of PM depolarization. Compared with the Al treatment, cyclopiazonic acid, an inhibitor of endoplasmic reticulum Ca(2+)-ATPase, facilitated a higher increase in intracellular Ca2+ levels, but resulted in accumulation of only moderate levels of callose. Calcium channel modulators and Al induced similar levels of callose in the initial 1 h of treatment. Callose production induced by Al toxicity is dependent on both depolarization of the PM and an increase in intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Mayandi Sivaguru
- Molecular Cytology Core Facility, 120, Life Sciences Center, University of Missouri-Columbia, Missouri 65211-7400, USA
| | | | | | | | | |
Collapse
|
12
|
Duckely M, Hohn B. The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer. FEMS Microbiol Lett 2003; 223:1-6. [PMID: 12798992 DOI: 10.1016/s0378-1097(03)00246-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Agrobacterium tumefaciens has evolved a unique mechanism to solve the problem of transferring DNA across five bilayers; the inner and outer membranes of the bacterium, the plasma membrane of the plant cell and the double membrane formed by the nuclear envelope. The two first and two last seem to be mediated by, respectively, the type IV secretion system in Agrobacterium and the nuclear pore complex in the plant cell, but the mechanism by which the transferred DNA (T-DNA) crosses the plant membrane still remains a mystery. New biophysical experiments suggest that, in addition to its established role as a single-stranded DNA (ssDNA)-binding protein, the VirE2 protein forms a channel in the plant membrane allowing the passage of the T-DNA into the cell. Such a role would be reminiscent of translocator molecules secreted by the type III secretion system of pathogenic bacteria and inserting into the host eukaryotic plasma membrane. The implications for the structure of the protein, its regulation and role in vivo are discussed.
Collapse
Affiliation(s)
- Myriam Duckely
- M.E. Mueller Institute for Microscopy, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056, Basel, Switzerland.
| | | |
Collapse
|
13
|
Holoubek A, Vecer J, Opekarová M, Sigler K. Ratiometric fluorescence measurements of membrane potential generated by yeast plasma membrane H(+)-ATPase reconstituted into vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1609:71-9. [PMID: 12507760 DOI: 10.1016/s0005-2736(02)00656-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Delta(psi)) generated by the Schizosaccharomyces pombe plasma membrane H(+)-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Delta(psi) because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Delta(psi) at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H(+)-ATPase generates Delta(psi) of about 160 mV on the vesicle membrane. The generated Delta(psi) was stable at least over tens of minutes. An influence of the H(+) membrane permeability on the Delta(psi) buildup was demonstrated by manipulating the H(+) permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H(+)-ATPase-mediated Delta(psi) buildup.
Collapse
Affiliation(s)
- A Holoubek
- Institute of Physics, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
14
|
Gibrat R, Grignon C. Liposomes with Multiple Fluorophores for Measurement of Ionic Fluxes, Selectivity, and Membrane Potential. Methods Enzymol 2003; 372:166-86. [PMID: 14610813 DOI: 10.1016/s0076-6879(03)72010-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rémy Gibrat
- Agro-M/CNRS/ONRA/UMII, ENSA-INRA, Montpellier, 34060, France
| | | |
Collapse
|
15
|
Venema K, Quintero FJ, Pardo JM, Donaire JP. The arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 2002; 277:2413-8. [PMID: 11707435 DOI: 10.1074/jbc.m105043200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation.
Collapse
Affiliation(s)
- Kees Venema
- Departamento de Bioquimica, Biologia Celular y Molecular de Plantas, Estación Experimental del Zaidin, CSIC, Apartado 419, 18080 Granada, Spain
| | | | | | | |
Collapse
|
16
|
Borrelly G, Boyer JC, Touraine B, Szponarski W, Rambier M, Gibrat R. The yeast mutant vps5Delta affected in the recycling of Golgi membrane proteins displays an enhanced vacuolar Mg2+/H+ exchange activity. Proc Natl Acad Sci U S A 2001; 98:9660-5. [PMID: 11493679 PMCID: PMC55508 DOI: 10.1073/pnas.161215198] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth of the yeast vacuolar protein-sorting mutant vps5Delta affected in the endosome-to-Golgi retromer complex was more sensitive to Mg2+-limiting conditions than was the growth of the wild-type (WT) strain. This sensitivity was enhanced at acidic pH. The vps5Delta strain was also sensitive to Al3+, known to inhibit Mg2+ uptake in yeast cells. In contrast, it was found to be resistant to Ni2+ and Co2+, two cytotoxic analogs of Mg2+. Resistance to Ni2+ did not seem to result from the alteration of plasma-membrane transport properties because mutant and WT cells displayed similar Ni2+ uptake. After plasma-membrane permeabilization, intracellular Ni2+ uptake in vps5Delta cells was 3-fold higher than in WT cells, which is consistent with the implication of the vacuole in the observed phenotypes. In reconstituted vacuolar vesicles prepared from vps5Delta, the rates of H+ exchange with Ni2+, Co2+, and Mg2+ were increased (relative to WT) by 170%, 130%, and 50%, respectively. The rates of H+ exchange with Ca2+, Cd2+, and K+ were similar in both strains, as were alpha-mannosidase and H+-ATPase activities, and SDS/PAGE patterns of vacuolar proteins. Among 14 other vacuolar protein-sorting mutants tested, only the 8 mutants affected in the recycling of trans-Golgi network membrane proteins shared the same Ni2+ resistance phenotype as vps5Delta. It is proposed that a trans-Golgi network Mg2+/H+ exchanger, mislocalized to vps5Delta vacuole, could be responsible for the phenotypes observed in vivo and in vitro.
Collapse
Affiliation(s)
- G Borrelly
- Biochimie et Physiologie Moléculaire des Plantes, Ecole Nationale Supérieure d'Agronomie de Montpellier (Agro-M)/Institut National de la Recherche Agronomique, France
| | | | | | | | | | | |
Collapse
|
17
|
An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 2001. [PMID: 11149937 PMCID: PMC14613 DOI: 10.1073/pnas.011477898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transferred DNA (T-DNA) transfer from Agrobacterium tumefaciens into eukaryotic cells is the only known example of interkingdom DNA transfer. T-DNA is a single-stranded segment of Agrobacterium's tumor-inducing plasmid that enters the plant cell as a complex with the bacterial virulence proteins VirD2 and VirE2. The VirE2 protein is highly induced on contact of A. tumefaciens with a plant host and has been reported to act in late steps of transfer. One of its previously demonstrated functions is binding to the single-stranded (ss) T-DNA and protecting it from degradation. Recent experiments suggest other functions of the protein. A combination of planar lipid bilayer experiments, vesicle swelling assays, and DNA transport experiments demonstrated that VirE2 can insert itself into artificial membranes and form channels. These channels are voltage gated, anion selective, and single-stranded DNA-specific and can facilitate the efficient transport of single-stranded DNA through membranes. These experiments demonstrate a VirE2 function as a transmembrane DNA transporter, which could have applications in gene delivery systems.
Collapse
|
18
|
Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B. An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proc Natl Acad Sci U S A 2001; 98:485-90. [PMID: 11149937 PMCID: PMC14613 DOI: 10.1073/pnas.98.2.485] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transferred DNA (T-DNA) transfer from Agrobacterium tumefaciens into eukaryotic cells is the only known example of interkingdom DNA transfer. T-DNA is a single-stranded segment of Agrobacterium's tumor-inducing plasmid that enters the plant cell as a complex with the bacterial virulence proteins VirD2 and VirE2. The VirE2 protein is highly induced on contact of A. tumefaciens with a plant host and has been reported to act in late steps of transfer. One of its previously demonstrated functions is binding to the single-stranded (ss) T-DNA and protecting it from degradation. Recent experiments suggest other functions of the protein. A combination of planar lipid bilayer experiments, vesicle swelling assays, and DNA transport experiments demonstrated that VirE2 can insert itself into artificial membranes and form channels. These channels are voltage gated, anion selective, and single-stranded DNA-specific and can facilitate the efficient transport of single-stranded DNA through membranes. These experiments demonstrate a VirE2 function as a transmembrane DNA transporter, which could have applications in gene delivery systems.
Collapse
Affiliation(s)
- F Dumas
- Department of Structural Biology, Biozentrum, Klingelbergstrasse 50, CH-4056 Basel, Switzerland; and Friedrich Miescher Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
19
|
Pouliquin P, Boyer JC, Grouzis JP, Gibrat R. Passive nitrate transport by root plasma membrane vesicles exhibits an acidic optimal pH like the H(+)-ATPase. PLANT PHYSIOLOGY 2000; 122:265-274. [PMID: 10631270 PMCID: PMC58865 DOI: 10.1104/pp.122.1.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/1999] [Accepted: 09/24/1999] [Indexed: 05/23/2023]
Abstract
The net initial passive flux (J(Ni)) in reconstituted plasma membrane (PM) vesicles from maize (Zea mays) root cells was measured as recently described (P. Pouliquin, J.-P. Grouzis, R. Gibrat ¿1999 Biophys J 76: 360-373). J(Ni) in control liposomes responded to membrane potential or to NO(3)(-) as expected from the Goldman-Hodgkin-Katz diffusion theory. J(Ni) in reconstituted PM vesicles exhibited an additional component (J(Nif)), which was saturable (K(m) for NO(3)(-) approximately 3 mM, with J(Nifmax) corresponding to 60 x 10(-9) mol m(-2) s(-1) at the native PM level) and selective (NO(3)(-) = ClO(3)(-) > Br(-) > Cl(-) = NO(2)(-); relative fluxes at 5 mM: 1:0.34:0.19). J(Nif) was totally inhibited by La(3+) and the arginine reagent phenylglyoxal. J(Nif) was voltage dependent, with an optimum voltage at 105 mV at pH 6.5. The activation energy of J(Nif) was high (129 kJ mol(-1)), close to that of the H(+)-ATPase (155 kJ mol(-1)), and J(Nif) displayed the same acidic optimal pH (pH 6.5) as that of the H(+) pump. This is the first example, to our knowledge, of a secondary transport at the plant PM with such a feature. Several properties of the NO(3)(-) uniport seem poorly compatible with that reported for plant anion channels and to be attributable instead to a classical carrier. The physiological relevance of these findings is suggested.
Collapse
Affiliation(s)
- P Pouliquin
- Biochimie et Physiologie Mol¿eculaire des Plantes, Agro-M/CNRS (Unit¿e Mixte de Recherche 5004)/Institut National de la Recherche Agronomique/Universit¿e de Montpellier 11, 2, Place Viala, F-34060 Montpellier, France
| | | | | | | |
Collapse
|
20
|
Szponarski W, Guibal O, Espuna M, Doumas P, Rossignol M, Gibrat R. Reconstitution of an electrogenic auxin transport activity mediated by Arabidopsis thaliana plasma membrane proteins. FEBS Lett 1999; 446:153-6. [PMID: 10100633 DOI: 10.1016/s0014-5793(99)00200-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasma membrane proteins from Arabidopsis thaliana leaves were reconstituted into proteoliposomes and a K+ diffusion potential was generated. The resulting ionic fluxes, determined in the presence of the plant hormone auxin (indole-3 acetic acid), showed an additional electrogenic and saturable component, with a K(M) of 6 microM. This flux was neither detected in liposomes in the presence of indole-3 acetic acid, nor in proteoliposomes in the presence of an inactive auxin analog and was completely inhibited by 3 microM naphtylphthalamic acid, a specific inhibitor of the auxin efflux carrier. The efficiency of the reconstituted carrier and the mechanism of its regulation by naphtylphthalamic acid are discussed.
Collapse
Affiliation(s)
- W Szponarski
- Biochimie et Physiologie Moléculaire des Plantes, INRA/ENSA-M/CNRS URA 2133, Montpellier, France.
| | | | | | | | | | | |
Collapse
|