1
|
Fei F, Wang X, Wang Y, Chen Z. Dissecting the role of subiculum in epilepsy: Research update and translational potential. Prog Neurobiol 2021; 201:102029. [PMID: 33636224 DOI: 10.1016/j.pneurobio.2021.102029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/12/2021] [Accepted: 02/21/2021] [Indexed: 11/25/2022]
Abstract
The subiculum serves as the strategic core output of the hippocampus, through which neural activity exits the hippocampal proper and targets the entorhinal cortex and other more distant subcortical and cortical areas. The past decade has witnessed a growing interest in the subiculum, owing to discoveries revealing its critical role in regulating many physiological and pathophysiological processes. Notably, accumulating evidence from both clinical and experimental studies suggests that the subiculum plays a vital role in seizure initiation and propagation, in epilepsy. In this review, we briefly describe the structure and connectivity of the subiculum and then summarize the molecular and cellular mechanisms in the subiculum underlying the epileptic brain, in both epilepsy patients and animal models. Next, we review some translational approaches targeting the malfunctioned subiculum to treat epilepsy. Finally, we pose open questions for future research in the subiculum and their clinical translation challenges.
Collapse
Affiliation(s)
- Fan Fei
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xia Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
GABA withdrawal syndrome: GABAA receptor, synapse, neurobiological implications and analogies with other abstinences. Neuroscience 2015; 313:57-72. [PMID: 26592722 DOI: 10.1016/j.neuroscience.2015.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 11/07/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
Abstract
The sudden interruption of the increase of the concentration of the gamma-aminobutyric acid (GABA), determines an increase in neuronal activity. GABA withdrawal (GW) is a heuristic analogy, with withdrawal symptoms developed by other GABA receptor-agonists such as alcohol, benzodiazepines, and neurosteroids. GW comprises a model of neuronal excitability validated by electroencephalogram (EEG) in which high-frequency and high-amplitude spike-wave complexes appear. In brain slices, GW was identified by increased firing synchronization of pyramidal neurons and by changes in the active properties of the neuronal membrane. GW induces pre- and postsynaptic changes: a decrease in GABA synthesis/release, and the decrease in the expression and composition of GABAA receptors associated with increased calcium entry into the cell. GW is an excellent bioassay for studying partial epilepsy, epilepsy refractory to drug treatment, and a model to reverse or prevent the generation of abstinences from different drugs.
Collapse
|
3
|
Duménieu M, Fourcaud-Trocmé N, Garcia S, Kuczewski N. Afterhyperpolarization (AHP) regulates the frequency and timing of action potentials in the mitral cells of the olfactory bulb: role of olfactory experience. Physiol Rep 2015; 3:3/5/e12344. [PMID: 26019289 PMCID: PMC4463813 DOI: 10.14814/phy2.12344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Afterhyperpolarization (AHP) is a principal feedback mechanism in the control of the frequency and patterning of neuronal firing. In principal projection neurons of the olfactory bulb, the mitral cells (MCs), the AHP is produced by three separate components: classical potassium-mediated hyperpolarization, and the excitatory and inhibitory components, which are generated by the recurrent dendrodendritic synaptic transmission. Precise spike timing is involved in olfactory coding and learning, as well as in the appearance of population oscillatory activity. However, the contribution of the AHP and its components to these processes remains unknown. In this study, we demonstrate that the AHP is developed with the MC firing frequency and is dominated by the potassium component. We also show that recurrent synaptic transmission significantly modifies MC AHP and that the strength of the hyperpolarization produced by the AHP in the few milliseconds preceding the action potential (AP) emission determines MC firing frequency and AP timing. Moreover, we show that the AHP area is larger in younger animals, possibly owing to increased Ca2+ influx during MC firing. Finally, we show that olfactory experience selectively reduces the early component of the MC AHP (under 25 msec), thus producing a modification of the AP timing limited to the higher firing frequency. On the basis of these results, we propose that the AHP, and its susceptibility to be selectively modulated by the recurrent synaptic transmission and olfactory experience, participate in odor coding and learning by modifying the frequency and pattern of MC firing.
Collapse
Affiliation(s)
- Maël Duménieu
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028/CNRS UMR5292, Université Lyon1, Lyon, France
| | - Nicolas Fourcaud-Trocmé
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028/CNRS UMR5292, Université Lyon1, Lyon, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028/CNRS UMR5292, Université Lyon1, Lyon, France
| | - Nicola Kuczewski
- Centre de Recherche en Neurosciences de Lyon, INSERM U1028/CNRS UMR5292, Université Lyon1, Lyon, France
| |
Collapse
|
4
|
Leo A, Citraro R, Constanti A, De Sarro G, Russo E. Are big potassium-type Ca2+-activated potassium channels a viable target for the treatment of epilepsy? Expert Opin Ther Targets 2015; 19:911-26. [DOI: 10.1517/14728222.2015.1026258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Chung S, Spruston N, Koh S. Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. PLoS One 2015; 10:e0119411. [PMID: 25775210 PMCID: PMC4361192 DOI: 10.1371/journal.pone.0119411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 01/30/2015] [Indexed: 12/03/2022] Open
Abstract
Kainic acid-induced status epilepticus (KA-SE) in mature rats results in the development of spontaneous recurrent seizures and a pattern of cell death resembling hippocampal sclerosis in patients with temporal lobe epilepsy. In contrast, KA-SE in young animals before postnatal day (P) 18 is less likely to cause cell death or epilepsy. To investigate whether changes in neuronal excitability occur in the subiculum after KA-SE, we examined the age-dependent effects of SE on the bursting neurons of subiculum, the major output region of the hippocampus. Patch-clamp recordings were used to monitor bursting in pyramidal neurons in the subiculum of rat hippocampal slices. Neurons were studied either one or 2-3 weeks following injection of KA or saline (control) in immature (P15) or more mature (P30) rats, which differ in their sensitivity to KA as well as the long-term sequelae of the KA-SE. A significantly greater proportion of subicular pyramidal neurons from P15 rats were strong-bursting neurons and showed increased frequency-dependent bursting compared to P30 animals. Frequency-dependent burst firing was enhanced in P30, but not in P15 rats following KA-SE. The enhancement of bursting induced by KA-SE in more mature rats suggests that the frequency-dependent limitation of repetitive burst firing, which normally occurs in the subiculum, is compromised following SE. These changes could facilitate the initiation of spontaneous recurrent seizures or their spread from the hippocampus to other parts of the brain.
Collapse
Affiliation(s)
- Sungkwon Chung
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Nelson Spruston
- Scientific Program, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - Sookyong Koh
- Neurobiology Program, Stanley Manne Children’s Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
N'Gouemo P. BKCa channel dysfunction in neurological diseases. Front Physiol 2014; 5:373. [PMID: 25324781 PMCID: PMC4179377 DOI: 10.3389/fphys.2014.00373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022] Open
Abstract
The large conductance, Ca2+-activated K+ channels (BKCa, KCa1.1) are expressed in various brain neurons where they play important roles in regulating action potential duration, firing frequency and neurotransmitter release. Membrane potential depolarization and rising levels of intracellular Ca2+ gated BKCa channels, which in turn results in an outward K+ flux that re/hyperpolarizes the membrane. The sensitivity of BKCa channels to Ca2+ provides an important negative-feedback system for Ca2+ entry into brain neurons and suppresses repetitive firing. Thus, BKCa channel loss-of-function gives rise to neuronal hyperexcitability, which can lead to seizures. Evidence also indicates that BKCa channels can facilitate high-frequency firing (gain-of-function) in some brain neurons. Interestingly, both gain-of-function and loss-of-function mutations of genes encoding for various BKCa channel subunits have been associated with the development of neuronal excitability disorders, such as seizure disorders. The role of BKCa channels in the etiology of some neurological diseases raises the possibility that these channels can be used as molecular targets to prevent and suppress disease phenotypes.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center Washington, DC, USA
| |
Collapse
|
7
|
Morales JC, Alvarez-Ferradas C, Roncagliolo M, Fuenzalida M, Wellmann M, Nualart FJ, Bonansco C. A new rapid kindling variant for induction of cortical epileptogenesis in freely moving rats. Front Cell Neurosci 2014; 8:200. [PMID: 25100948 PMCID: PMC4107828 DOI: 10.3389/fncel.2014.00200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022] Open
Abstract
Kindling, one of the most used models of experimental epilepsy is based on daily electrical stimulation in several brain structures. Unlike the classic or slow kindling protocols (SK), the rapid kindling types (RK) described until now require continuous stimulation at suprathreshold intensities applied directly to the same brain structure used for subsequent electrophysiological and immunohistochemical studies, usually the hippocampus. However, the cellular changes observed in these rapid protocols, such as astrogliosis and neuronal loss, could be due to experimental manipulation more than to epileptogenesis-related alterations. Here, we developed a new RK protocol in order to generate an improved model of temporal lobe epilepsy (TLE) which allows gradual progression of the epilepsy as well as obtaining an epileptic hippocampus, thus avoiding direct surgical manipulation and electric stimulation over this structure. This new protocol consists of basolateral amygdala (BLA) stimulation with 10 trains of biphasic pulses (10 s; 50 Hz) per day with 20 min-intervals, during 3 consecutive days, using a subconvulsive and subthreshold intensity, which guarantees tissue integrity. The progression of epileptic activity was evaluated in freely moving rats through electroencephalographic (EEG) recordings from cortex and amygdala, accompanied with synchronized video recordings. Moreover, we assessed the effectiveness of RK protocol and the establishment of epilepsy by evaluating cellular alterations of hippocampal slices from kindled rats. RK protocol induced convulsive states similar to SK protocols but in 3 days, with persistently lowered threshold to seizure induction and epileptogenic-dependent cellular changes in amygdala projection areas. We concluded that this novel RK protocol introduces a new variant of the chronic epileptogenesis models in freely moving rats, which is faster, highly reproducible and causes minimum cell damage with respect to that observed in other experimental models of epilepsy.
Collapse
Affiliation(s)
- Juan Carlos Morales
- Centro de Neurobiología y Plasticidad Cerebral, Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso Valparaíso, Chile
| | - Carla Alvarez-Ferradas
- Centro de Neurobiología y Plasticidad Cerebral, Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso Valparaíso, Chile
| | - Manuel Roncagliolo
- Centro de Neurobiología y Plasticidad Cerebral, Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso Valparaíso, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral, Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso Valparaíso, Chile
| | - Mario Wellmann
- Centro de Neurobiología y Plasticidad Cerebral, Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso Valparaíso, Chile
| | - Francisco Javier Nualart
- Laboratorio de Neurobiología y Células Madre, Departamento de Biología Celular, Universidad de Concepción Concepción, Chile
| | - Christian Bonansco
- Centro de Neurobiología y Plasticidad Cerebral, Facultad de Ciencias, Instituto de Fisiología, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
8
|
Brehme H, Kirschstein T, Schulz R, Köhling R. In vivo treatment with the casein kinase 2 inhibitor 4,5,6,7-tetrabromotriazole augments the slow afterhyperpolarizing potential and prevents acute epileptiform activity. Epilepsia 2013; 55:175-83. [DOI: 10.1111/epi.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hannes Brehme
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| | - Robert Schulz
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology; University of Rostock; Rostock Germany
| |
Collapse
|
9
|
Abstract
The sodium-potassium ATPase (i.e., the "sodium pump") plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 "place cell" as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this "place cell train" generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons.
Collapse
|
10
|
Maslarova A, Salar S, Lapilover E, Friedman A, Veh RW, Heinemann U. Increased susceptibility to acetylcholine in the entorhinal cortex of pilocarpine-treated rats involves alterations in KCNQ channels. Neurobiol Dis 2013; 56:14-24. [DOI: 10.1016/j.nbd.2013.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 02/03/2023] Open
|
11
|
Sah N, Sikdar SK. Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition. Eur J Neurosci 2013; 38:2542-56. [DOI: 10.1111/ejn.12262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Nirnath Sah
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore; India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore; India
| |
Collapse
|
12
|
Kernig K, Kirschstein T, Würdemann T, Rohde M, Köhling R. The afterhyperpolarizing potential following a train of action potentials is suppressed in an acute epilepsy model in the rat Cornu Ammonis 1 area. Neuroscience 2012; 201:288-96. [PMID: 22100272 DOI: 10.1016/j.neuroscience.2011.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 10/11/2011] [Accepted: 11/02/2011] [Indexed: 11/18/2022]
Abstract
In hippocampal Cornu Ammonis 1 (CA1) neurons, a prolonged depolarization evokes a train of action potentials followed by a prominent afterhyperpolarizing potential (AHP), which critically dampens neuronal excitability. Because it is not known whether epileptiform activity alters the AHP and whether any alteration of the AHP is independent of inhibition, we acutely induced epileptiform activity by bath application of the GABA(A) receptor blocker gabazine (5 μM) in the rat hippocampal slice preparation and studied its impact on the AHP using intracellular recordings. Following 10 min of gabazine wash-in, slices started to develop spontaneous epileptiform discharges. This disinhibition was accompanied by a significant shift of the resting membrane potential of CA1 neurons to more depolarized values. Prolonged depolarizations (600 ms) elicited a train of action potentials, the number of which was not different between baseline and gabazine treatment. However, the AHP following the train of action potentials was significantly reduced after 20 min of gabazine treatment. When the induction of epileptiform activity was prevented by co-application of 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX, 10 μM) and D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5, 50 μM) to block α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) and N-methyl-d-aspartate (NMDA) receptors, respectively, the AHP was preserved despite of GABA(A) receptor inhibition suggesting that the epileptiform activity was required to suppress the AHP. Moreover, the AHP was also preserved when the slices were treated with the protein kinase blockers H-9 (100 μM) and H-89 (1 μM). These results demonstrate that the AHP following a train of action potentials is rapidly suppressed by acutely induced epileptiform activity due to a phosphorylation process-presumably involving protein kinase A.
Collapse
Affiliation(s)
- K Kernig
- Oscar Langendorff Institute of Physiology, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
13
|
Schulz R, Kirschstein T, Brehme H, Porath K, Mikkat U, Köhling R. Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents. Neurobiol Dis 2012; 45:337-47. [DOI: 10.1016/j.nbd.2011.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 08/13/2011] [Accepted: 08/18/2011] [Indexed: 11/29/2022] Open
|
14
|
Wijesinghe R, Camp AJ. Intrinsic neuronal excitability: implications for health and disease. Biomol Concepts 2011; 2:247-59. [PMID: 25962033 DOI: 10.1515/bmc.2011.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/30/2011] [Indexed: 11/15/2022] Open
Abstract
The output of a single neuron depends on both synaptic connectivity and intrinsic membrane properties. Changes in both synaptic and intrinsic membrane properties have been observed during homeostatic processes (e.g., vestibular compensation) as well as in several central nervous system (CNS) disorders. Although changes in synaptic properties have been extensively studied, particularly with regard to learning and memory, the contribution of intrinsic membrane properties to either physiological or pathological processes is much less clear. Recent research, however, has shown that alterations in the number, location or properties of voltage- and ligand-gated ion channels can underlie both normal and abnormal physiology, and that these changes arise via a diverse suite of molecular substrates. The literature reviewed here shows that changes in intrinsic neuronal excitability (presumably in concert with synaptic plasticity) can fundamentally modify the output of neurons, and that these modifications can subserve both homeostatic mechanisms and the pathogenesis of CNS disorders including epilepsy, migraine, and chronic pain.
Collapse
|
15
|
Altered intrinsic properties of neuronal subtypes in malformed epileptogenic cortex. Brain Res 2010; 1374:116-28. [PMID: 21167139 DOI: 10.1016/j.brainres.2010.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023]
Abstract
Neuronal intrinsic properties control action potential firing rates and serve to define particular neuronal subtypes. Changes in intrinsic properties have previously been shown to contribute to hyperexcitability in a number of epilepsy models. Here we examined whether a developmental insult producing the cortical malformation of microgyria altered the identity or firing properties of layer V pyramidal neurons and two interneuron subtypes. Trains of action potentials were elicited with a series of current injection steps during whole cell patch clamp recordings. Cells in malformed cortex identified as having an apical dendrite had firing patterns similar to control pyramidal neurons. The duration of the second action potential in the train was increased in paramicrogyral (PMG) pyramidal cells, suggesting that these cells may be in an immature state, as was previously found for layer II/III pyramidal neurons. Based on stereotypical firing patterns and other intrinsic properties, fast-spiking (FS) and low threshold-spiking (LTS) interneuron subpopulations were clearly identified in both control and malformed cortex. Most intrinsic properties measured in malformed cortex were unchanged, suggesting that subtype identity is maintained. However, LTS interneurons in lesioned cortex had increased maximum firing frequency, decreased initial afterhyperpolarization duration, and increased total adaptation ratio compared to control LTS cells. FS interneurons demonstrated decreased maximum firing frequencies in malformed cortex compared to control FS cells. These changes may increase the efficacy of LTS while decreasing the effectiveness of FS interneurons. These data indicate that differential alterations of individual neuronal subpopulations may endow them with specific characteristics that promote epileptogenesis.
Collapse
|
16
|
Hargus NJ, Bertram EH, Patel MK. Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons. Brain Res 2009; 1280:60-8. [PMID: 19450566 DOI: 10.1016/j.brainres.2009.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 12/20/2022]
Abstract
Adenosine is an endogenous neuromodulator previously shown to suppress synaptic transmission and membrane excitability in the CNS. In this study we have determined the actions of adenosine on excitatory synaptic transmission in the subiculum, the main output area for the hippocampus. Adenosine (10 microM) reversibly inhibited excitatory post synaptic currents (EPSCs) recorded from subiculum neurons. These actions were mimicked by the A(1) receptor-specific agonist, N(6)-cyclopentyl-adenosine (CPA, 10 nM) and blocked by the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 500 nM), but were unaffected by the A(2A) antagonist ZM 241385 (50 nM). In membrane excitability experiments, bath application of adenosine and CPA reversibly inhibited action potentials (AP) in subiculum neurons that were evoked by stimulation of the pyramidal cell layer of the CA1, but not by depolarizing current injection steps in subiculum neurons, suggesting a presynaptic mechanism of action. In support, adenosine and CPA application reduced mEPSC frequency without modulating mEPSC amplitude. These studies suggest that modulation of subiculum neuron excitability by adenosine is mediated via presynaptic A(1) receptors.
Collapse
Affiliation(s)
- Nicholas J Hargus
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
17
|
Beck H, Yaari Y. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 2008; 9:357-69. [DOI: 10.1038/nrn2371] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Kelly T, Mann M, Church J. The slow afterhyperpolarization modulates high pH-induced changes in the excitability of rat CA1 pyramidal neurons. Eur J Neurosci 2007; 26:2844-56. [PMID: 18001281 DOI: 10.1111/j.1460-9568.2007.05903.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Extra- and intracellular recordings from the CA1 region of rat hippocampal slices were employed to examine the role of the slow afterhyperpolarization (sAHP) in modulating the increases in neuronal excitability observed on increasing extracellular pH (pHo) from 7.4 to 7.7. In the majority of experiments, an antidromic conditioning stimulus applied in the presence of D(-)-2-amino-5-phosphonopentanoic acid (D-APV), 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX) and bicuculline was employed to elicit a sAHP, and an antidromic test stimulus was applied during the sAHP. At pHo 7.4, a single conditioning stimulus elicited an action potential followed by a sAHP, which in turn inhibited the response to the test stimulus compared with the conditioning stimulus. Increasing the number of action potentials in the conditioning stimulus augmented the sAHP and further inhibited the test response, whereas isoproterenol inhibited the sAHP and prevented the relative inhibition of the test response. At pHo 7.7, a single conditioning stimulus elicited a burst of action potentials followed by a large sAHP, which in turn prevented the test stimulus from eliciting a burst of action potentials and, in extracellular recordings, further increased the inhibition of the test response. The latter effect did not solely reflect a high pHo-induced increase in the conditioning response (and, thus, the subsequent sAHP), but rather involved a more direct effect of high pHo to augment the sAHP. The results indicate that increasing pHo increases the excitability of CA1 neurons to an initial stimulus; however, a high pHo-dependent increase in the sAHP evoked by the initial stimulus limits the response to subsequent stimuli.
Collapse
Affiliation(s)
- Tony Kelly
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| | | | | |
Collapse
|
19
|
Kamal A, Notenboom RGE, de Graan PNE, Ramakers GMJ. Persistent changes in action potential broadening and the slow afterhyperpolarization in rat CA1 pyramidal cells after febrile seizures. Eur J Neurosci 2006; 23:2230-4. [PMID: 16630069 DOI: 10.1111/j.1460-9568.2006.04732.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Febrile (fever-induced) seizures (FS) are the most common form of seizures during childhood and have been associated with an increased risk of epilepsy later in life. The relationship of FS to subsequent epilepsy is, however, still controversial. Insights from animal models do indicate that especially complex FS are harmful to the developing brain and contribute to a hyperexcitable state that may persist for life. Here, we determined long-lasting changes in neuronal excitability of rat hippocampal CA1 pyramidal cells after prolonged (complex) FS induced by hyperthermia on postnatal day 10. We show that hyperthermia-induced seizures at postnatal day 10 induce a long-lasting increase in the hyperpolarization-activated current I(h). Furthermore, we show that a reduction in the amount of spike broadening and in the amplitude of the slow afterhyperpolarization following FS are also likely to contribute to the hyperexcitability of the hippocampus long term.
Collapse
Affiliation(s)
- Amer Kamal
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Centre Utrecht, PO Box 85060, 3508 AB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
20
|
Yang KH, Franaszczuk PJ, Bergey GK. Inhibition modifies the effects of slow calcium-activated potassium channels on epileptiform activity in a neuronal network model. BIOLOGICAL CYBERNETICS 2005; 92:71-81. [PMID: 15614533 DOI: 10.1007/s00422-004-0532-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Accepted: 10/29/2004] [Indexed: 05/24/2023]
Abstract
Generation of epileptiform activity typically results from a change in the balance between network excitation and inhibition. Experimental evidence indicates that alterations of either synaptic activity or intrinsic membrane properties can produce increased network excitation. The slow Ca(2+)-activated K(+) currents (sI(AHP)) are important modulators of neuronal firing rate and excitability and have important established and potential roles in epileptogenesis. While the effects of changes in sI(AHP) on individual neuronal excitability are readily studied and well established, the effects of such changes on network behavior are less well known. The experiments here utilize a defined small network model of multicompartment pyramidal cells and an inhibitory interneuron to study the effects of changes in sI(AHP) on network behavior. The benefits of this model system include the ability to observe activity in all cells in a network and the effects of interactions of multiple simultaneous influences. In the model with no inhibitory interneuron, increasing sI(AHP) results in progressively decreasing burst activity. Adding an inhibitory interneuron changes the observed effects; at modest inhibitory strengths, increasing sI(AHP) in all network neurons actually results in increased network bursting (except at very high values). The duration of the burst activity is influenced by the length of delay in a feedback loop, with longer loops resulting in more prolonged bursting. These observations illustrate that the study of potential antiepileptogenic membrane effects must be extended to realistic networks. Network inhibition can dramatically alter the observations seen in pure excitatory networks.
Collapse
Affiliation(s)
- K-H Yang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
21
|
von Bohlen und Halbach O, Schulze K, Albrecht D. Amygdala-kindling induces alterations in neuronal density and in density of degenerated fibers. Hippocampus 2004; 14:311-8. [PMID: 15132430 DOI: 10.1002/hipo.10179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Kindling is characterized by a progressive intensification of seizure activity culminating in generalized seizures following repeated administration of an initially subconvulsive electrical or chemical stimulus. Since it is known that epilepsy induces morphological alterations in the limbic system, we examined the neuropathological consequences of kindling with a sensitive silver-staining method for the visualization of damaged neurons and Nissl staining for the estimation of the neuronal densities in different limbic areas. Wistar rats implanted with electrodes in the left basolateral nucleus were stimulated until 15 consecutive stage V seizures (scale of Racine). Amygdala-kindled animals had reduced cell density in the amygdala and increased density of fragments of degenerated axons. Reduced neuronal density and the occurrence of degenerated axons in kindled animals were more prominent in the ipsilateral than in the contralateral hemisphere. In addition, more degenerated axons were found in cortical structures of kindled than sham-operated animals. These results indicate that kindling induced morphological alterations that were not restricted to either the ipsilateral hemisphere or the stimulated region. These morphological changes might be responsible for the emotional and behavioral disturbances that can accompany epilepsy.
Collapse
|
22
|
Vreugdenhil M, Hack SP, Draguhn A, Jefferys JGR. Tetanus toxin induces long-term changes in excitation and inhibition in the rat hippocampal CA1 area. Neuroscience 2003; 114:983-94. [PMID: 12379253 DOI: 10.1016/s0306-4522(02)00212-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intrahippocampal tetanus toxin induces a period of chronic recurrent limbic seizures in adult rats, associated with a failure of inhibition in the hippocampus. The rats normally gain remission from their seizures after 6-8 weeks, but show persistent cognitive impairment. In this study we assessed which changes in cellular and network properties could account for the enduring changes in this model, using intracellular and extracellular field recordings in hippocampal slices from rats injected with tetanus toxin or vehicle, 5 months previously. In CA1 pyramidal neurones from toxin-injected rats, the slope of the action potential upstroke was reduced by 32%, the fast afterhyperpolarisation by 32% and the slow afterhyperpolarisation by 54%, suggesting changes in voltage-dependent conductances. The excitatory postsynaptic potential slope was reduced by 60% and the population synaptic potential slope was reduced at all stimulus intensities, suggesting a reduced afferent input in CA1. Paired-pulse stimulation showed an increase of the excitability ratio and an increase of cellular excitability only for the second pulse, suggesting a reduced inhibition. The polysynaptic inhibitory postsynaptic potential was reduced by 34%, whereas neither the inhibitory postsynaptic potential at subthreshold stimulus intensities,nor the pharmacologically isolated monosynaptic inhibitory postsynaptic potential were different in toxin-injected rats, suggesting a reduced synaptic excitation of interneurones. Stratum radiatum stimuli in toxin-injected rats, and not in controls, evoked antidromic activation of CA1 neurones, demonstrating axonal sprouting into areas normally devoid of CA1 pyramidal cell axons.We conclude that this combination of enduring changes in cellular and network properties, both pro-epileptic (increased recurrent excitatory connectivity, reduced recurrent inhibition and reduced afterhyperpolarisations) and anti-epileptic (impaired firing and reduced excitation), reaches a balance that allows remission of seizures, perhaps at the price of persistent cognitive impairment.
Collapse
Affiliation(s)
- M Vreugdenhil
- Division of Neuroscience (Neurophysiology), School of Medicine, University of Birmingham, Edgbaston B15 2TT, UK.
| | | | | | | |
Collapse
|
23
|
Martín ED, Araque A, Buño W. Synaptic regulation of the slow Ca2+-activated K+ current in hippocampal CA1 pyramidal neurons: implication in epileptogenesis. J Neurophysiol 2001; 86:2878-86. [PMID: 11731544 DOI: 10.1152/jn.2001.86.6.2878] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The slow Ca2+-activated K+ current (sI(AHP)) plays a critical role in regulating neuronal excitability, but its modulation during abnormal bursting activity, as in epilepsy, is unknown. Because synaptic transmission is enhanced during epilepsy, we investigated the synaptically mediated regulation of the sI(AHP) and its control of neuronal excitability during epileptiform activity induced by 4-aminopyridine (4AP) or 4AP+Mg2+-free treatment in rat hippocampal slices. We used electrophysiological and photometric Ca2+ techniques to analyze the sI(AHP) modifications that parallel epileptiform activity. Epileptiform activity was characterized by slow, repetitive, spontaneous depolarizations and action potential bursts and was associated with increased frequency and amplitude of spontaneous excitatory postsynaptic currents and a reduced sI(AHP.) The metabotropic glutamate receptor (mGluR) antagonist (S)-alpha-methyl-4-carboxyphenylglycine did not modify synaptic activity enhancement but did prevent sI(AHP) inhibition and epileptiform discharges. The mGluR-dependent regulation of the sI(AHP) was not caused by modulated intracellular Ca2+ signaling. Histamine, isoproterenol, and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid reduced the sI(AHP) but did not increase synaptic activity and failed to evoke epileptiform activity. We conclude that 4AP or 4AP+Mg-free-induced enhancement of synaptic activity reduced the sI(AHP) via activation of postsynaptic group I/II mGluRs. The increased excitability caused by the lack of negative feedback provided by the sI(AHP) contributes to epileptiform activity, which requires the cooperative action of increased synaptic activity.
Collapse
Affiliation(s)
- E D Martín
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | | | | |
Collapse
|