1
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Cunha AOS, Garcia-Cairasco N. Cannabinoids in Audiogenic Seizures: From Neuronal Networks to Future Perspectives for Epilepsy Treatment. Front Behav Neurosci 2021; 15:611902. [PMID: 33643007 PMCID: PMC7904685 DOI: 10.3389/fnbeh.2021.611902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel A. Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rui M. P. da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexandra O. S. Cunha
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Felippotti TT, de Freitas RL, Coimbra NC. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception. Neuropeptides 2012; 46:39-47. [PMID: 22104092 DOI: 10.1016/j.npep.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. METHODS Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. RESULTS Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. CONCLUSION μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception.
Collapse
Affiliation(s)
- Tatiana Tocchini Felippotti
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
3
|
Abstract
Epilepsy accounts for a significant portion of the dis-ease burden worldwide. Research in this field is fundamental and mandatory. Animal models have played, and still play, a substantial role in understanding the patho-physiology and treatment of human epilepsies. A large number and variety of approaches are available, and they have been applied to many animals. In this chapter the in vitro and in vivo animal models are discussed,with major emphasis on the in vivo studies. Models have used phylogenetically different animals - from worms to monkeys. Our attention has been dedicated mainly to rodents.In clinical practice, developmental aspects of epilepsy often differ from those in adults. Animal models have often helped to clarify these differences. In this chapter, developmental aspects have been emphasized.Electrical stimulation and chemical-induced models of seizures have been described first, as they represent the oldest and most common models. Among these models, kindling raised great interest, especially for the study of the epileptogenesis. Acquired focal models mimic seizures and occasionally epilepsies secondary to abnormal cortical development, hypoxia, trauma, and hemorrhage.Better knowledge of epileptic syndromes will help to create new animal models. To date, absence epilepsy is one of the most common and (often) benign forms of epilepsy. There are several models, including acute pharmacological models (PTZ, penicillin, THIP, GBL) and chronic models (GAERS, WAG/Rij). Although atypical absence seizures are less benign, thus needing more investigation, only two models are so far available (AY-9944,MAM-AY). Infantile spasms are an early childhood encephalopathy that is usually associated with a poor out-come. The investigation of this syndrome in animal models is recent and fascinating. Different approaches have been used including genetic (Down syndrome,ARX mutation) and acquired (multiple hit, TTX, CRH,betamethasone-NMDA) models.An entire section has been dedicated to genetic models, from the older models obtained with spontaneous mutations (GEPRs) to the new engineered knockout, knocking, and transgenic models. Some of these models have been created based on recently recognized patho-genesis such as benign familial neonatal epilepsy, early infantile encephalopathy with suppression bursts, severe myoclonic epilepsy of infancy, the tuberous sclerosis model, and the progressive myoclonic epilepsy. The contribution of animal models to epilepsy re-search is unquestionable. The development of further strategies is necessary to find novel strategies to cure epileptic patients, and optimistically to allow scientists first and clinicians subsequently to prevent epilepsy and its consequences.
Collapse
Affiliation(s)
- Antonietta Coppola
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | | |
Collapse
|
4
|
Etholm L, Lindén H, Eken T, Heggelund P. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 2011; 1383:270-88. [DOI: 10.1016/j.brainres.2011.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
5
|
Lam A, Whelan N, Corcoran ME. Susceptibility of brainstem to kindling and transfer to the forebrain. Epilepsia 2010; 51:1736-44. [PMID: 20384715 DOI: 10.1111/j.1528-1167.2010.02551.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The kindling of seizures with stimulation of brainstem sites has been reported inconsistently in the literature. The characteristics of the kindling observed, involving high intensities of stimulation and immediate onset of generalized tonic-clonic convulsions, raise questions regarding the nature of kindling from these sites. METHODS We implanted chronic electrodes in either the nucleus reticularis pontis oralis (RPO), mesencephalic reticular formation (MRF), dorsal periaqueductal gray (dPAG), or ventrolateral periaqueductal gray (vlPAG) in male Long-Evans rats, with a recording electrode in the amygdala. Rats received conventional high-frequency kindling stimulation once daily for 30 days. To test for transfer, we kindled the amygdala beginning 7 weeks after the last brainstem kindling trial. RESULTS Tonic-clonic seizures were evoked by stimulation from all brainstem sites. Seizures were brief and were associated with characteristic low-amplitude high-frequency afterdischarge (AD). Kindling of the dPAG resulted in the development of classic AD and increased AD duration. Prior kindling of the dPAG facilitated subsequent kindling of the amygdala; however, no transfer was observed with prekindling of other brainstem sites. DISCUSSION The variability in the response to kindling stimulation suggests that certain brainstem sites are resistant to kindling, whereas other sites are more susceptible to kindling but are still relatively resistant in comparison to sites in the forebrain. The development of classic AD in later trials of dPAG stimulation suggests that epileptogenesis can occur even in the initial absence of classic AD when low-amplitude high-frequency AD is present.
Collapse
Affiliation(s)
- Ann Lam
- Department of Anatomy and Cell Biology Neural Systems and Plasticity Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
6
|
Magdaleno-Madrigal VM, Martínez-Vargas D, Valdés-Cruz A, Almazán-Alvarado S, Fernández-Mas R. Preemptive effect of nucleus of the solitary tract stimulation on amygdaloid kindling in freely moving cats. Epilepsia 2010; 51:438-44. [DOI: 10.1111/j.1528-1167.2009.02337.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Vinogradova LV, Kuznetsova GD, Coenen AM. Unilateral cortical spreading depression induced by sound in rats. Brain Res 2009; 1286:201-7. [DOI: 10.1016/j.brainres.2009.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 01/29/2023]
|
8
|
Etholm L, Heggelund P. Seizure elements and seizure element transitions during tonic-clonic seizure activity in the synapsin I/II double knockout mouse: a neuroethological description. Epilepsy Behav 2009; 14:582-90. [PMID: 19236947 DOI: 10.1016/j.yebeh.2009.02.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/15/2009] [Accepted: 02/18/2009] [Indexed: 11/16/2022]
Abstract
Inactivation of genes for the synaptic terminal proteins synapsin I and synapsin II leads to development of epileptic seizures in mice (Syn-DKO mice) in which no other behavioral abnormalities or any gross anatomical brain deformities have been reported. In humans, mutated synapsin I is associated with epilepsy. Thus, the Syn-DKO mouse might model human seizure development. Here we describe a neuroethological analysis of behavioral elements and relationships between these elements during seizures in Syn-DKO mice. The seizure elements belong to one of three clusters each characterized by specific patterns of activity: truncus-dominated elements, myoclonic elements, and running-fit activity. The first two clusters, constituting the majority of seizural activity, evolve quite differently during ongoing seizure activity. Whereas truncus-dominated elements unfold in a strict sequence, the myoclonic elements wax and wane more independently, once myoclonic activity has started. These differences may point to neurobiological mechanisms relevant to both rodent and human epilepsies.
Collapse
Affiliation(s)
- Lars Etholm
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway.
| | | |
Collapse
|
9
|
Vinogradova LV, Shatskova AB, Tuomisto L. Histaminergic modulation of acoustically induced running behavior in rats. Brain Res 2007; 1148:198-204. [DOI: 10.1016/j.brainres.2007.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/08/2007] [Accepted: 02/09/2007] [Indexed: 11/15/2022]
|
10
|
Zhao Z, Davis M. Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 2004; 24:10326-34. [PMID: 15548646 PMCID: PMC6730294 DOI: 10.1523/jneurosci.2758-04.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 10/05/2004] [Accepted: 10/05/2004] [Indexed: 11/21/2022] Open
Abstract
The amygdala sends heavy and broad projections to the rostral midbrain including the periaqueductal gray (PAG), the deep layers of the superior colliculus/deep mesencephalic nucleus (deep SC/DpMe), and the lateral mesencephalic reticular formation (MRF) that in turn project to the nucleus reticularis pontis caudalis (PnC), an obligatory relay in the primary acoustic startle circuit. Chemical lesions or inactivation of these areas blocked fear-potentiated startle, suggesting that these areas serve as a relay between the amygdala and the PnC. In the present study, we tried to determine more precisely which of these sites were critical for fear-potentiated startle and the role of glutamate receptors in this site in mediating fear-potentiated startle. Local infusion of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)-quinoxaline (NBQX) dose-dependently blocked fear-potentiated startle when infused into the deep SC/DpMe before testing but had no effect on baseline startle amplitude. NBQX did not block fear-potentiated startle when infused before training. The same dose of NBQX infused into the dorsal/lateral PAG, the lateral MRF, or the superficial layers of the SC did not affect fear-potentiated startle. However, NBQX tended to reduce contextual freezing when infused into the dorsal/lateral PAG. These findings suggest that the deep SC/DpMe is the site that serves as a critical output relay between the amygdala and the PnC in mediating fear-potentiated startle and that glutamatergic transmission is required for this action.
Collapse
Affiliation(s)
- Zuowei Zhao
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|
11
|
Ishimoto T, Chiba S, Omori N. Convulsive seizures induced by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid microinjection into the mesencephalic reticular formation in rats. Brain Res 2004; 1021:69-75. [PMID: 15328033 DOI: 10.1016/j.brainres.2004.03.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2004] [Indexed: 11/22/2022]
Abstract
Effects of microinjections of a single 2 or 10 nmol dose of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the unilateral mesencephalic reticular formation (MRF) on behavior and on the electroencephalogram were examined in rats (n=30) over a 15-min period (Exp. 1); subsequent effects of sound stimulation with key jingling applied at 15, 30, and 45 min after the injection were observed (Exp. 2). The microinjections of a 2 nmol dose of AMPA (n=15) induced hyperactivity (15 of 15 rats) and running/circling (10 of 15 rats) in Exp. 1, and hyperactivity (5 of 15 rats) in Exp. 2. Moreover, the microinjections of a 10 nmol dose of AMPA (n=15) induced hyperactivity (15 of 15 rats), running/circling (13 of 15 rats), generalized tonic-clonic seizures (GTCS) (4 of 15 rats), and amygdala kindling-like seizures (AMKS) (8 of 15 rats) in Exp. 1; electroencephalographic seizure discharges were predominantly observed in the MRF during hyperactivity, running/circling and GTCS, while those predominantly observed in the amygdala were during AMKS. In Exp. 2, hyperactivity (15 of 15 rats), running/circling (14 of 15 rats) and GTCS (6 of 15 rats) were elicited by sound stimulation, although AMKS were not. The control group of rats (n=15) which received a single dose of saline microinjection into the unilateral MRF showed no behavioral or electroencephalographic changes in both Exp. 1 and 2. These findings suggest that potentiation of excitatory amino acid neurotransmission induced by AMPA injection into the MRF plays an important role not only in the development of hyperactivity, running/circling, GTCS and AMKS, but also in the development of audiogenic seizures.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Department of Psychiatry and Neurology, Asahikawa Medical College, Midorigaoka higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | | | | |
Collapse
|
12
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 625] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
13
|
Kohsaka S, Mizukami S, Kohsaka M, Shiraishi H, Kobayashi K. Widespread activation of the brainstem preceding the recruiting rhythm in human epilepsies. Neuroscience 2003; 115:697-706. [PMID: 12435408 DOI: 10.1016/s0306-4522(02)00511-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The excitability change of the brainstem was investigated before and during the conspicuous epileptic discharge in six patients with generalized convulsive seizures. The discharge consisted of a short duration of recruiting rhythm, which was considered equivalent to the seizure discharge on electroencephalogram. The excitability of the brainstem was measured with the parameters (amplitude and area) of component waves (wave-III and -V) of brainstem auditory evoked potentials. The theoretical background of the analysis is that brainstem auditory evoked potentials are 'far-field' potentials, by which they convey the information on the activity change of the brainstem even during the paroxysmal discharge within the cortex. The excitability of both the ventral (parameters of wave-III) and the dorsal brainstem (parameters of wave-V) exhibited a synchronized change (activation-inactivation). They were enhanced from -2.4+/-0.4 s, reaching the maxima before the onset of the seizure discharge, and decayed corresponding to the emergence of the recruiting rhythm. The results suggest the possibility that the widespread (ventral and dorsal) and synchronized activation of the brainstem triggers the seizure discharge in human generalized epilepsy. During the widespread activation of the brainstem, both the thalamus and the cortex probably undergo a suppressed inhibitory state through the cholinergic activation, precipitating the seizure discharge.
Collapse
Affiliation(s)
- S Kohsaka
- Department of Pediatrics, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo 060, Japan.
| | | | | | | | | |
Collapse
|
14
|
Merrill MA, Clough RW, Jobe PC, Browning RA. Role of the superior colliculus and the intercollicular nucleus in the brainstem seizure circuitry of the genetically epilepsy-prone rat. Epilepsia 2003; 44:305-14. [PMID: 12614385 DOI: 10.1046/j.1528-1157.2003.31802.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The neuronal network responsible for the convulsive behavior associated with sound-induced seizures in genetically epilepsy-prone rats (GEPRs) is believed to include the inferior colliculus and other brainstem structures such as the deep layers of the superior colliculus (DLSC), periaqueductal gray, and pontine reticular formation. However, previous studies also suggested that the DLSC and the nearby intercollicular nucleus (ICN) are part of a midbrain anticonvulsant zone capable of suppressing tonic convulsions when activated with bicuculline. Our aim in this study was to investigate the role of the superior colliculus (SC) and the ICN in generalized tonic-clonic seizures (GTCSs). METHODS Bilateral lesions of the SC and the ICN as well as bicuculline infusions into the ICN were used to assess the role of this dorsal midbrain region in brainstem seizures induced by sound stimulation in GEPR-9s and GEPR-3s. RESULTS Lesions of the SC markedly attenuated audiogenic seizure (AGS) severity by abolishing all behavioral components except the wild running. Lesions of the ICN significantly reduced seizure severity in GEPR-9s, but were somewhat less effective than SC lesions. Bicuculline infusion into the deep layers of the SC and/or the ICN produced audiogenic-like seizures in GEPR-9s. CONCLUSIONS These findings support the hypothesis that the SC and ICN are important components of the brainstem seizure network, but suggest they are not necessary for the wild-running component of the seizure. The results further indicate that stimulation of the tectum facilitates GTCSs. Thus these findings suggest that the dorsal midbrain, when stimulated, is proconvulsant rather than anticonvulsant regarding brainstem seizures in GEPRs.
Collapse
Affiliation(s)
- Michelle A Merrill
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA
| | | | | | | |
Collapse
|
15
|
Stafstrom CE, Sasaki-Adams DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 2003; 53:129-37. [PMID: 12576174 DOI: 10.1016/s0920-1211(02)00258-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors play a prominent role in the pathogenesis of epilepsy, yet few studies have used NMDA as a convulsant in whole animals. In developing rats, systemic NMDA induces seizures with a unique seizure phenotype ("emprosthotonic" or hyperflexion seizures) and electrographic pattern (electrodecrement). These features are not seen in kainic acid-induced seizures, suggesting that seizures activated by NMDA might cause different long-term consequences. Therefore, we investigated the effects of NMDA seizures during development on cognitive function and susceptibility to seizures in adulthood. Rat pups (P12-20) were injected with saline (n=36) or NMDA (n=64) at convulsant doses (15-30mg/kg, i.p.). After NMDA injection, a characteristic sequence of seizure activity was seen: initial behavioral arrest, followed by hyperactivity, agitation, and then emprosthotonus and generalized tonic-clonic seizures. Seizures were terminated 30min later by ketamine (50mg/kg, i.p.). On P85, rats underwent behavioral testing in the water maze. Rats that had experienced NMDA seizures as pups took significantly longer to learn the platform location over 5 days of testing, compared to controls. On P90, rats were injected with pentylenetetrazol (PTZ, 50mg/kg, i.p.) to assess their susceptibility to generalized seizures. NMDA-treated rats had decreased latency and increased duration of class V PTZ seizures. Cresyl violet-stained sections of cortex and hippocampus had no obvious cell loss or gliosis. In summary, NMDA causes a unique seizure phenotype in the developing brain, with subsequent deficits in spatial learning and an increased susceptibility to PTZ seizures in adulthood. This study provides additional evidence for long-term alterations of neuronal excitability and cognitive capacity associated with seizures during development.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, Neuroscience Training Program, H6-528, University of Wisconsin, 600 Highland Avenue, 53792, Madison, WI, USA.
| | | |
Collapse
|
16
|
Pranzatelli MR. Infantile spasms versus myoclonus: is there a connection? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:285-314. [PMID: 12040898 DOI: 10.1016/s0074-7742(02)49018-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Infantile spasms (IS) is usually classified as a form of "myoclonic epilepsy," but the nosology of this whole group of disorders is unclear. Evidence suggests that the spasms are subcortically mediated, but can be modified by input from the cortex, which is believed to be abnormally excitable and disorganized. The latter features may give rise to hypsarrhythmia. The whole issue of myoclonus rests on the phenotype of IS and precise measurements of the length of electromyographic (EMG) bursts. Based on scant EMG data, it would appear that the bursts during flexor spasms are too long for epileptic myoclonus. The nature of tonic spasms of even longer duration is not myoclonic. However, the infrequent spontaneous myoclonic jerks, which can occur without spasms, and head nodding could represent positive and negative myoclonus, respectively. Data can be collected easily through techniques such as back-averaging to resolve the issue of classification and localization of motor phenomena.
Collapse
Affiliation(s)
- Michael R Pranzatelli
- Departments of Neurology and Pediatrics, Southern Illinois University School of Medicine, Springfield, Illinois 62702, USA
| |
Collapse
|