1
|
Meng Q, Ding Y, Chen L, Li L. The medial agranular cortex mediates attentional enhancement of prepulse inhibition of the startle reflex. Behav Brain Res 2020; 383:112511. [DOI: 10.1016/j.bbr.2020.112511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/12/2022]
|
2
|
Ding Y, Xu N, Gao Y, Wu Z, Li L. The role of the deeper layers of the superior colliculus in attentional modulations of prepulse inhibition. Behav Brain Res 2019; 364:106-113. [DOI: 10.1016/j.bbr.2019.01.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/30/2018] [Accepted: 01/27/2019] [Indexed: 01/19/2023]
|
3
|
Baldwin MKL, Young NA, Matrov D, Kaas JH. Cortical projections to the superior colliculus in grey squirrels (Sciurus carolinensis). Eur J Neurosci 2018; 49:1008-1023. [PMID: 29450943 DOI: 10.1111/ejn.13867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 01/07/2023]
Abstract
The superior colliculus is an important midbrain structure involved with integrating information from varying sensory modalities and sending motor signals to produce orienting movements towards environmental stimuli. Because of this role, the superior colliculus receives a multitude of sensory inputs from a wide variety of subcortical and cortical structures. Proportionately, the superior colliculus of grey squirrels is among the largest in size of all studied mammals, suggesting the importance of this structure in the behavioural characteristics of grey squirrels. Yet, our understanding of the connections of the superior colliculus in grey squirrels is lacking, especially with respect to possible cortical influences. In this study, we placed anatomical tracer injections within the medial aspect of the superior colliculus of five grey squirrels (Sciurus carolinensis) and analysed the areal distribution of corticotectal projecting cells in flattened cortex. V1 projections to the superior colliculus were studied in two additional animals. Our results indicate that the superior colliculus receives cortical projections from visual, higher order somatosensory, and higher order auditory regions, as well as limbic, retrosplenial and anterior cingulate cortex. Few, if any, corticotectal projections originate from primary motor, primary somatosensory or parietal cortical regions. This distribution of inputs is similar to the distribution of inputs described in other rodents such as rats and mice, yet the lack of inputs from primary somatosensory and motor cortex is features of corticotectal inputs more similar to those observed in tree shrews and primates, possibly reflecting a behavioural shift from somatosensory (vibrissae) to visual navigation.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA.,Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Nicole A Young
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA.,Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Denis Matrov
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA.,Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Neuropsychopharmacology, Institute of Psychology, University of Tartu, Tartu, Estonia
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN, 37203, USA
| |
Collapse
|
4
|
The rostromedial zona incerta is involved in attentional processes while adjacent LHA responds to arousal: c-Fos and anatomical evidence. Brain Struct Funct 2017; 222:2507-2525. [DOI: 10.1007/s00429-016-1353-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/16/2016] [Indexed: 01/27/2023]
|
5
|
Baldwin MKL, Wei H, Reed JL, Bickford ME, Petry HM, Kaas JH. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri). J Comp Neurol 2013; 521:1614-32. [PMID: 23124770 PMCID: PMC3604183 DOI: 10.1002/cne.23249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/10/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that, unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| | - Haiyang Wei
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville KY, 40292 USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville KY, 40292 USA
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville KY, 40292 USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| |
Collapse
|
6
|
Aparicio MA, Saldaña E. The dorsal tectal longitudinal column (TLCd): a second longitudinal column in the paramedian region of the midbrain tectum. Brain Struct Funct 2013; 219:607-30. [PMID: 23468089 PMCID: PMC3933748 DOI: 10.1007/s00429-013-0522-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/08/2013] [Indexed: 11/03/2022]
Abstract
The tectal longitudinal column (TLC) is a longitudinally oriented, long and narrow nucleus that spans the paramedian region of the midbrain tectum of a large variety of mammals (Saldaña et al. in J Neurosci 27:13108–13116, 2007). Recent analysis of the organization of this region revealed another novel nucleus located immediately dorsal, and parallel, to the TLC. Because the name “tectal longitudinal column” also seems appropriate for this novel nucleus, we suggest the TLC described in 2007 be renamed the “ventral tectal longitudinal column (TLCv)”, and the newly discovered nucleus termed the “dorsal tectal longitudinal column (TLCd)”. This work represents the first characterization of the rat TLCd. A constellation of anatomical techniques was used to demonstrate that the TLCd differs from its surrounding structures (TLCv and superior colliculus) cytoarchitecturally, myeloarchitecturally, neurochemically and hodologically. The distinct expression of vesicular amino acid transporters suggests that TLCd neurons are GABAergic. The TLCd receives major projections from various areas of the cerebral cortex (secondary visual mediomedial area, and granular and dysgranular retrosplenial cortices) and from the medial pretectal nucleus. It densely innervates the ipsilateral lateral posterior and laterodorsal nuclei of the thalamus. Thus, the TLCd is connected with vision-related neural centers. The TLCd may be unique as it constitutes the only known nucleus made of GABAergic neurons dedicated to providing massive inhibition to higher order thalamic nuclei of a specific sensory modality.
Collapse
Affiliation(s)
- M-Auxiliadora Aparicio
- Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain
| | | |
Collapse
|
7
|
Mundiñano IC, Martínez-Millán L. Somatosensory cross-modal plasticity in the superior colliculus of visually deafferented rats. Neuroscience 2009; 165:1457-70. [PMID: 19932888 DOI: 10.1016/j.neuroscience.2009.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 11/18/2022]
Abstract
The effects of neonatal visual deafferentation on the final adult pattern of cortico-collicular connections from the rat primary somatosensory cortex barrel field were studied by injecting an anterograde tracer (BDA) into different locations of the barrel cortex. Collicular afferents originating in the barrel cortex normally end in the intermediate collicular strata (SGI and SAI). However, neonatal visual deafferentation caused an invasion of abundant somatosensory cortical afferents into the lateral portions of the superficial collicular strata (SGS and SO). Moreover, anterograde-labelled fibers in the intermediate strata were more densely packed in visually deafferented animals. In order to study the activity of the altered somatosensory cortico-collicular connection, the effects of two different types of whisker stimuli on c-fos expression in the SC were analyzed (apomorphine treatment and enriched environment exploration). In stimulated control animals, c-fos expression was clearly evident in neurons of the intermediate layers 2 h after whisker stimulation. Similar stimulation in adult animals that underwent neonatal visual deafferentation triggered higher levels of c-fos expression in the superficial collicular layers that were invaded by cortico-collicular axonal branches. In exploration experiments, increased levels of c-fos expression were also detected in lateral parts of the intermediate layers of visually deafferented animals. These results suggest that the ascending fibers of somatosensory cortical origin can recruit deafferented superficial collicular neurons that enabling them to participate in extravisual behavioural responses mediated by collicular circuits.
Collapse
Affiliation(s)
- I C Mundiñano
- Laboratory of Regenerative Therapy, Department of Neurology and Neuroscience Division, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
8
|
Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat Protoc 2009; 4:1157-66. [PMID: 19617887 DOI: 10.1038/nprot.2009.93] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholera toxin subunit B (CTB) is a highly sensitive retrograde neuroanatomical tracer. With the new availability of fluorescent Alexa Fluor (AF) conjugates of CTB, multiple neuroanatomical connections can be reliably studied and compared in the same animal. Here we provide a protocol that describes the use of AF-CTB for studying connections in the central nervous system of rats. The viscous properties of CTB allow small and discreet injection sites yet still show robust retrograde labeling. Furthermore, the AF conjugates are extremely bright and photostable, compared with other conventional fluorescent tracers. This protocol can also be adapted for use with other neuroanatomical tracers. Including a 7-d survival period, this protocol takes approximately 11 to 12 d to complete in its entirety.
Collapse
|
9
|
Capper-Loup C, Burgunder JM, Kaelin-Lang A. Modulation of parvalbumin expression in the motor cortex of parkinsonian rats. Exp Neurol 2005; 193:234-7. [PMID: 15817282 DOI: 10.1016/j.expneurol.2004.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/25/2004] [Accepted: 12/06/2004] [Indexed: 11/16/2022]
Abstract
Dopamine deficiency in Parkinson's disease leads to numerous molecular changes in basal ganglia. However, the consequences of these changes on the motor cortex remain unclear. Here we show that the immunoreactivity of parvalbumin, which is expressed in GABAergic interneurons, increases in the primary motor cortex of parkinsonian rats. This increase can be reversed by a subsequent lesion of the subthalamic nucleus. These results suggest that dopamine deficiency induces reversible changes in GABAergic cortical cells, which might be linked with parkinsonian symptoms.
Collapse
Affiliation(s)
- Christine Capper-Loup
- Laboratory of Neuromorphology, Department of Neurology, Inselspital, University Hospital, 3010 Bern, Switzerland
| | | | | |
Collapse
|
10
|
Shibata H, Kondo S, Naito J. Organization of retrosplenial cortical projections to the anterior cingulate, motor, and prefrontal cortices in the rat. Neurosci Res 2004; 49:1-11. [PMID: 15099698 DOI: 10.1016/j.neures.2004.01.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 01/09/2004] [Indexed: 11/21/2022]
Abstract
The retrosplenial cortex (areas 29a-29d) has been implicated in spatial memory, which is essential for performing spatial behavior. Despite this link with behavior, neural connections between areas 29a-29d and frontal association and motor cortices--areas also essential for spatial behavior--have been analyzed only to a limited extent. Here, we report an analysis of the anatomical organization of projections from areas 29a-29d to area 24 and motor and prefrontal cortices in the rat, using the axonal transport of biotinylated dextran amine (BDA) and cholera toxin B subunit (CTb). Area 29a projects to rostral area 24a, whereas area 29b projects to caudodorsal area 24a and ventral area 24b. Caudal area 29c projects to mid-rostrocaudal area 24b, whereas rostral area 29c projects to caudal areas 24a and 24b and caudal parts of primary and secondary motor areas. Caudal area 29d projects to mid-rostrocaudal areas 24a and 24b, whereas rostral area 29d projects to the caudalmost parts of areas 24a and 24b and the secondary motor area and to the mid-rostrocaudal part of the primary motor area. Area 29d also projects weakly to the prefrontal cortex. These differential corticocortical projections may constitute important pathways that transmit spatial information to particular frontal cortical regions, enabling an animal to accomplish spatial behavior.
Collapse
Affiliation(s)
- Hideshi Shibata
- Department of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | | | | |
Collapse
|
11
|
Comoli E, Coizet V, Boyes J, Bolam JP, Canteras NS, Quirk RH, Overton PG, Redgrave P. A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat Neurosci 2003; 6:974-80. [PMID: 12925855 DOI: 10.1038/nn1113] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 06/24/2003] [Indexed: 12/22/2022]
Abstract
Midbrain dopaminergic neurons respond to unexpected and biologically salient events, but little is known about the sensory systems underlying this response. Here we describe, in the rat, a direct projection from a primary visual structure, the midbrain superior colliculus (SC), to the substantia nigra pars compacta (SNc) where direct synaptic contacts are made with both dopaminergic and non-dopaminergic neurons. Complementary electrophysiological data reveal that short-latency visual responses in the SNc are abolished by ipsilateral lesions of the SC and increased by local collicular stimulation. These results show that the tectonigral projection is ideally located to relay short-latency visual information to dopamine-containing regions of the ventral midbrain. We conclude that it is within this afferent sensory circuitry that the critical perceptual discriminations that identify stimuli as both unpredicted and biologically salient are made.
Collapse
Affiliation(s)
- Eliane Comoli
- Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK
| | | | | | | | | | | | | | | |
Collapse
|