1
|
Rui Y, Tang Q, Chen L, Pu J, Wang W, Ding SN. Rapid electrochemical detection of L-lactate in Baijiu affecting serotonin and dopamine secretion in mice. Analyst 2024. [PMID: 39143937 DOI: 10.1039/d4an00880d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Baijiu, a traditional Chinese alcoholic beverage, carries China's rich historical and cultural heritage. Consumers experience varying levels of relaxation and pleasure after consuming different types of Baijiu, with the biological basis of delectation influenced by serotonin and dopamine. In this study, we prepared carbon fiber electrodes modified with surface decorated gold nanoparticles to directly measure the electrochemical response signals in the serum of mice before and after gavage with different types of Baijiu. It was observed that the serum signal change in mice after consuming Baijiu sample 1 (J1) was higher than that of the other two types of Baijiu. Consequently, trace flavor compounds in the Baijiu samples were detected using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), revealing the highest content of L-lactic acid in J1. Mice were intraperitoneally injected with 200 mg kg-1 of L-lactic acid. The changes in dopamine and serotonin in the serum of the injected mice were monitored using a biosensor, and the results were compared with the results of high performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-MS). The findings confirmed that L-lactic acid could indeed stimulate the secretion of both neurotransmitters in mice, suggesting that the trace components in J1 may even exhibit synergistic effects. This study contributes to a deeper understanding of the effects of Baijiu on the body and provides a scientific basis for the production and consumption of Baijiu.
Collapse
Affiliation(s)
- Yating Rui
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Qunyong Tang
- Jiangsu King's Lucky Brewery Joint-Stock Co., Ltd, Lian shui 223411, China
| | - Liyi Chen
- Jiangsu King's Lucky Brewery Joint-Stock Co., Ltd, Lian shui 223411, China
| | - Juan Pu
- Lian shui Peoples Hospital, Huaian, 223400, China
| | - Wanpeng Wang
- Lian shui Peoples Hospital, Huaian, 223400, China
| | - Shou-Nian Ding
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Kim HU, Koyappayil A, Seok H, Aydin K, Kim C, Park KY, Jeon N, Kang WS, Lee MH, Kim T. Concurrent and Selective Determination of Dopamine and Serotonin with Flexible WS 2 /Graphene/Polyimide Electrode Using Cold Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102757. [PMID: 34558185 DOI: 10.1002/smll.202102757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Makers of point-of-care devices and wearable diagnostics prefer flexible electrodes over conventional electrodes. In this study, a flexible electrode platform is introduced with a WS2 /graphene heterostructure on polyimide (WGP) for the concurrent and selective determination of dopamine and serotonin. The WGP is fabricated directly via plasma-enhanced chemical vapor deposition (PECVD) at 150 °C on a flexible polyimide substrate. Owing to the limitations of existing fabrication methods from physical transfer or hydrothermal methods, many studies are not conducted despite excellent graphene-based heterostructures. The PECVD synthesis method can provide an innovative WS2 /graphene heterostructure of uniform quality and sufficient size (4 in.). This unique heterostructure affords excellent electrical conductivity in graphene and numerous electrochemically active sites in WS2 . A large number of uniform qualities of WGP electrodes show reproducible and highly sensitive electrochemical results. The synergistic effect enabled well-separated voltammetric signals for dopamine and serotonin with a potential gap of 188 mV. Moreover, the practical application of the flexible sensor is successfully evaluated by using artificial cerebrospinal fluid.
Collapse
Affiliation(s)
- Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Seoul, 06973, Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
| | - Kubra Aydin
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
| | - Changmin Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
| | - Kyu-Young Park
- Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Nari Jeon
- Department Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Woo Seok Kang
- Department of Plasma Engineering, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06973, Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Korea
| |
Collapse
|
3
|
Thermodynamic models for determination of solid-liquid equilibrium of the 4-methoxybenzoic acid in different solvents with solubility parameters and interaction energy aided analyses. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Graphene oxide and electropolymerized p-aminobenzenesulfonic acid mixed film used as dopamine and serotonin electrochemical sensor. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02559-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Runsewe D, Betancourt T, Irvin JA. Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2629. [PMID: 31426613 PMCID: PMC6720215 DOI: 10.3390/ma12162629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
Abstract
Conducting polymers are of interest due to their unique behavior on exposure to electric fields, which has led to their use in flexible electronics, sensors, and biomaterials. The unique electroactive properties of conducting polymers allow them to be used to prepare biosensors that enable real time, point of care (POC) testing. Potential advantages of these devices include their low cost and low detection limit, ultimately resulting in increased access to treatment. This article presents a review of the characteristics of conducting polymer-based biosensors and the recent advances in their application in the recognition of disease biomarkers.
Collapse
Affiliation(s)
- Damilola Runsewe
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Tania Betancourt
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Jennifer A Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA.
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
6
|
Zhang SJ, Kang K, Niu LM, Kang WJ. Electroanalysis of neurotransmitters via 3D gold nanoparticles and a graphene composite coupled with a microdialysis device. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Atta NF, Ahmed YM, Galal A. Electrochemical Determination of Neurotransmitters at Crown Ether Modified Carbon Nanotube Composite: Application for Sub‐nano‐sensing of Serotonin in Human Serum. ELECTROANAL 2018. [DOI: 10.1002/elan.201800065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nada F. Atta
- Chemistry Department, Faculty of ScienceCairo University 12613 Giza Egypt
| | - Yousef M. Ahmed
- Chemistry Department, Faculty of ScienceCairo University 12613 Giza Egypt
| | - Ahmed Galal
- Chemistry Department, Faculty of ScienceCairo University 12613 Giza Egypt
| |
Collapse
|
8
|
Abbaspour A, Noori A. A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 2011; 26:4674-80. [PMID: 21715153 DOI: 10.1016/j.bios.2011.04.061] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 02/05/2023]
Abstract
An electrochemical sensor for simultaneous quantification of serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) using a β-cyclodextrin/poly(N-acetylaniline)/carbon nanotube composite modified carbon paste electrode has been developed. Synergistic effect of multi-walled carbon nanotube (MWCNT) in addition to the pre-concentrating effect of β-cyclodextrin (β-CD) as well as its different inclusion complex stability with 5-HT and DA was used to construct an electrochemical sensor for quantification of these important neurotransmitters. The overlapping anodic peaks of 5-HT and DA at 428 mV on bare electrode resolved in two well-defined voltammetric peaks at 202 and 363 mV vs. Ag/AgCl respectively. The oxidation mechanism of 5-HT and DA on the surface of the electrode was investigated by cyclic voltammetry and it was found that the electrode processes are pH dependent and electrochemical oxidation of 5-HT is totally irreversible while the electrode gave a more reversible process to DA. Under optimized conditions, linear calibration curves were obtained in the range of about 4-200 μM with a detection limits down to sub-μM levels (S/N=3) after 20-s accumulation, for both. The proposed sensor was shown to be remarkably selective for 5-HT and DA in matrices containing different species including ascorbic acid and uric acid. The suitability of the developed method was tested for the determination of 5-HT and DA in the Randox Synthetic Plasma samples and acceptable recoveries were obtained for a set of spiked samples.
Collapse
Affiliation(s)
- Abdolkarim Abbaspour
- Chemistry Department, College of Sciences, Shiraz University, Shiraz 7145685464, Iran.
| | | |
Collapse
|
9
|
Koliaki CC, Messini C, Tsolaki M. Clinical efficacy of aniracetam, either as monotherapy or combined with cholinesterase inhibitors, in patients with cognitive impairment: a comparative open study. CNS Neurosci Ther 2011; 18:302-12. [PMID: 22070796 DOI: 10.1111/j.1755-5949.2010.00244.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Dementia constitutes an increasingly prevalent cognitive disorder with serious socioeconomic implications. AIMS In the present study, we aimed to evaluate the efficacy of aniracetam, either as monotherapy or combined with cholinesterase inhibitors (ChEIs), in terms of several neuropsychological parameters, in a considerable number of patients with dementia. RESULTS In our prospective, open-label study, we enrolled a total of 276 patients (mean age 71 ± 8 years, 95 males) with cognitive disorders. Our study population comprised four groups: no treatment group (n = 75), aniracetam monotherapy group (n = 58), ChEIs monotherapy group (n = 68), and group of combined treatment (n = 68). Patients were examined with validated neuropsychological tests at baseline, 3, 6, and 12 months of treatment. In patients treated with aniracetam, all studied parameters were adequately maintained at 6 and 12 months, while emotional state was significantly improved at 3 months. In patients treated with ChEIs, we observed a significant cognitive deterioration at 12 months. The comparison between aniracetam and ChEIs in patients with relatively mild dementia (15 ≤ MMSE ≤ 25) revealed a significantly better cognitive performance with aniracetam at 6 months and improved functionality at 3 months. Comparing aniracetam monotherapy with combined treatment in the same population, aniracetam performed better in the cognitive scale at 6 months, and displayed a notable tendency for enhanced mood at 12 months and improved functionality at 6 months. CONCLUSIONS Our findings indicate that aniracetam (a nootropic compound with glutamatergic activity and neuroprotective potential) is a promising option for patients with cognitive deficit of mild severity. It preserved all neuropsychological parameters for at least 12 months, and seemed to exert a favorable effect on emotional stability of demented patients.
Collapse
Affiliation(s)
- Chrysi C Koliaki
- Third Department of Neurology, Aristotle University of Thessaloniki, General Hospital G. Papanikolaou, Exohi, Thessaloniki, Greece.
| | | | | |
Collapse
|
10
|
A disposable amperometric sensor for rapid detection of serotonin in the blood and brain of the depressed mice based on Nafion membrane-coated colloidal gold screen-printed electrode. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2009.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Gabryel B, Pudelko A, Malecki A. Erk1/2 and Akt kinases are involved in the protective effect of aniracetam in astrocytes subjected to simulated ischemia in vitro. Eur J Pharmacol 2005; 494:111-20. [PMID: 15212964 DOI: 10.1016/j.ejphar.2004.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 04/07/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
The present study focused on the mechanism of cytoprotective effect of aniracetam on the primary rat astrocyte cultures exposed to simulated ischemia conditions in vitro. To study these mechanisms, the aniracetam-mediated modulation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/Akt kinase pathways was determined. Simulated in vitro ischemia caused death of approximately 35% of astrocytes via apoptosis and decreased cell viability about 50% at 8 h. Exposure to aniracetam at concentrations of 0.1-10 microM in these conditions significantly decreased the number of apoptotic cells. Moreover, the intensification of 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolinum bromide (MTT) conversion and the decrease of lactate dehydrogenase (LDH) release after 1 and 10 microM aniracetam treatment were observed indicating a significant increase in cell viability. When cultured astrocytes were incubated during 8 h simulated ischemia with [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] (U0126), an extracellular regulated kinase 1 and 2 (Erk1/2) inhibitor or wortmannin, a phosphatidylinositol 3-kinase (PI3 kinase)/Akt inhibitor, the cell apoptosis was accelerated. These effects of used kinase inhibitors (both U0126 and wortmannin) were antagonized by adding 1 and 10 microM aniracetam to the culture medium. In addition, aniracetam significantly stimulated of phospho-Erk1/2 kinase and phospho-Akt expression. Maximum levels of Erk1/2 and Akt activation were observed as a result of treatment with 10 microM aniracetam. U0126 and wortmannin markedly attenuated the effects of aniracetam on expression of activated kinases. Results of the present study indicate that both Erk1/2 and PI 3-K/Akt kinase pathways are vital for cytoprotective effect of aniracetam.
Collapse
Affiliation(s)
- Bozena Gabryel
- Department of Pharmacology, Silesian Medical University, 18 Medyków Street, PL 40752 Katowice, Poland.
| | | | | |
Collapse
|
12
|
Ling DSF, Benardo LS. Nootropic Agents Enhance the Recruitment of Fast GABAA Inhibition in Rat Neocortex. Cereb Cortex 2004; 15:921-8. [PMID: 15459084 DOI: 10.1093/cercor/bhh191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is widely believed that nootropic (cognition-enhancing) agents produce their therapeutic effects by augmenting excitatory synaptic transmission in cortical circuits, primarily through positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs). However, GABA-mediated inhibition is also critical for cognition, and enhanced GABA function may be likewise therapeutic for cognitive disorders. Could nootropics act through such a mechanism as well? To address this question, we examined the effects of nootropic agents on excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) recorded from layer V pyramidal cells in acute slices of somatosensory cortex. Aniracetam, a positive modulator of AMPA/kainate receptors, increased the peak amplitude of evoked EPSCs and the amplitude and duration of polysynaptic fast IPSCs, manifested as a greater total charge carried by IPSCs. As a result, the EPSC/IPSC ratio of total charge was decreased, representing a shift in the excitation-inhibition balance that favors inhibition. Aniracetam did not affect the magnitude of either monosynaptic IPSCs (mono-IPSCs) recorded in the presence of excitatory amino acid receptor antagonists, or miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin. However, the duration of both mono-IPSCs and mIPSCs was prolonged, suggesting that aniracetam also directly modulates GABAergic transmission. Cyclothiazide, a preferential modulator of AMPAR function, enhanced the magnitude and duration of polysynaptic IPSCs, similar to aniracetam, but did not affect mono-IPSCs. Concanavalin A, a kainate receptor modulator, had little effect on EPSCs or IPSCs, suggesting there was no contribution from kainate receptor activity. These findings indicate that AMPAR modulators strengthen inhibition in neocortical pyramidal cells, most likely by altering the kinetics of AMPARs on synaptically connected interneurons and possibly by modulating GABA(A) receptor responses in pyramidal cells. This suggests that the therapeutic actions of nootropic agents may be partly mediated through enhanced cortical GABAergic inhibition, and not solely through the direct modification of excitation, as previously thought.
Collapse
Affiliation(s)
- Douglas S F Ling
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY 11203,
| | | |
Collapse
|
13
|
Singh SB, Hull RD, Fluder EM. Text Influenced Molecular Indexing (TIMI): a literature database mining approach that handles text and chemistry. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2003; 43:743-52. [PMID: 12767132 DOI: 10.1021/ci025587a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present an application of a novel methodology called Text Influenced Molecular Indexing (TIMI) to mine the information in the scientific literature. TIMI is an extension of two existing methodologies: (1) Latent Semantic Structure Indexing (LaSSI), a method for calculating chemical similarity using two-dimensional topological descriptors, and (2) Latent Semantic Indexing (LSI), a method for generating correlations between textual terms. The singular value decomposition (SVD) of a feature/object matrix is the fundamental mathematical operation underlying LSI, LaSSI, and TIMI and is used in the identification of associations between textual and chemical descriptors. We present the results of our studies with a database containing 11,571 PubMed/MEDLINE abstracts which show the advantages of merging textual and chemical descriptors over using either text or chemistry alone. Our work demonstrates that searching text-only databases limits retrieved documents to those that explicitly mention compounds by name in the text. Similarly, searching chemistry-only databases can only retrieve those documents that have chemical structures in them. TIMI, however, enables search and retrieval of documents with textual, chemical, and/or text- and chemistry-based queries. Thus, the TIMI system offers a powerful new approach to uncovering the contextual scientific knowledge sought by the medical research community.
Collapse
Affiliation(s)
- Suresh B Singh
- Department of Molecular Systems, Merck Research Laboratories, 126 East Lincoln Avenue, RY50SW-100, Rahway, New Jersey 07065-0900, USA.
| | | | | |
Collapse
|
14
|
Tanaka Y, Kurasawa M, Nakamura K. Cholinergic and dopaminergic mechanisms involved in the recovery of circadian anticipation by aniracetam in aged rats. Pharmacol Biochem Behav 2002; 72:45-53. [PMID: 11900768 DOI: 10.1016/s0091-3057(01)00734-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have reported that repeated administration of aniracetam (100 mg/kg p.o.) for 7 consecutive days recovers mealtime-associated circadian anticipatory behavior diminished in aged rats. The present study examines the mode of action underlying the restoration by aniracetam with various types of receptor antagonists. Coadministration of scopolamine (0.1 mg/kg i.p.) or haloperidol (0.1 mg/kg i.p.) for the last 3 days significantly reduced the restorative effects of aniracetam without affecting the timed feeding-induced anticipatory behavior by each receptor antagonist itself. The other receptor antagonists, mecamylamine (3 mg/kg i.p.), 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX, 1 microg/rat i.c.v.) had no effect on either the basal or aniracetam-elicited circadian anticipation. In contrast, ketanserin (1 mg/kg i.p.) itself recovered the diminished anticipatory behavior as aniracetam did, but it did not alter the restorative effects of aniracetam. Among the receptor antagonists tested, NBQX reduced appetite and haloperidol induced circadian hypoactivity. These results suggest that the food-entrainable circadian oscillations or the temporal regulatory system of behavior is modulated by cholinergic, dopaminergic and serotonergic systems. Furthermore, aniracetam may restore the aging-diminished behavioral anticipation by activating muscarinic acetylcholine (ACh) and/or dopamine (DA) D2 receptors through the enhanced release of ACh and/or DA in the brain.
Collapse
Affiliation(s)
- Yushiro Tanaka
- CNS Supporting Laboratory, Nippon Roche Research Center, 200 Kajiwara, Kamakura, Kanagawa 247-8530, Japan
| | | | | |
Collapse
|
15
|
Togashi H, Nakamura K, Matsumoto M, Ueno KI, Ohashi S, Saito H, Yoshioka M. Aniracetam enhances glutamatergic transmission in the prefrontal cortex of stroke-prone spontaneously hypertensive rats. Neurosci Lett 2002; 320:109-12. [PMID: 11852174 DOI: 10.1016/s0304-3940(01)02436-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of aniracetam, a cognition enhancer, on extracellular levels of glutamate (Glu), gamma-aminobutyric acid (GABA) and nitric oxide metabolites (NOx) were examined in the prefrontal cortex (PFC) and the basolateral amygdala (AMG) in stroke-prone spontaneously hypertensive rats (SHRSP) using in vivo microdialysis. Basal release of Glu, was lower in the AMG of SHRSP than in normotensive Wistar Kyoto rats, whereas no difference in GABA and NOx was noted. Aniracetam (100 mg/kg, p.o.) significantly increased the area under the curve of Glu levels in the PFC, but not in the AMG, of SHRSP. Aniracetam failed to exert any remarkable effects on GABA or NOx levels in either brain region. Our findings suggest that aniracetam enhances cortical glutamatergic release, which may be the mechanism involved in the ameliorating effects of aniracetam on various neuronal dysfunctions.
Collapse
Affiliation(s)
- Hiroko Togashi
- Department of Pharmacology, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nakamura K. Aniracetam: its novel therapeutic potential in cerebral dysfunctional disorders based on recent pharmacological discoveries. CNS DRUG REVIEWS 2002; 8:70-89. [PMID: 12070527 PMCID: PMC6741661 DOI: 10.1111/j.1527-3458.2002.tb00216.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aniracetam is a pyrrolidinone-type cognition enhancer that has been clinically used in the treatment of behavioral and psychological symptoms of dementia following stroke and in Alzheimer's disease. New discoveries in the behavioral pharmacology, biochemistry and pharmacokinetics of aniracetam provided new indications for this drug in the treatment of various CNS disorders or disease states. This article reviews these new findings and describes the effects of aniracetam in various rodent models of mental function impairment or cerebral dysfunction. Also, several metabolites of aniracetam have been reported to affect learning and memory in animals. It is, therefore, conceivable that major metabolites of aniracetam contribute to its pharmacological effects. The animal models, used in pharmacological evaluation of aniracetam included models of hypoattention, hypovigilance-arousal, impulsiveness, hyperactivity, fear and anxiety, depression, impaired rapid-eye movement sleep, disturbed temporal regulation, behavioral performance, and bladder hyperactivity. These are models of clinical disorders or symptoms that may include personality disorders, anxiety, depression, posttraumatic stress disorder, attention-deficit/hyperactivity disorder, autism, negative symptoms of schizophrenia, and sleep disorders. At present, there is no convincing evidence that promising effects of aniracetam in the animal models will guarantee its clinical efficacy. It is conceivable, however, that clinical trials will demonstrate beneficial effects of aniracetam in the above listed disease states. New findings regarding the mechanism of action of aniracetam, its central target sites, and its effects on signal transduction are also discussed in this review article.
Collapse
Affiliation(s)
- Kazuo Nakamura
- Department of Product Research, Nippon Roche Research Center, 200 Kajiwara, Kamakura, 247-8530, Japan.
| |
Collapse
|