1
|
Hwang CD, Hoftiezer YAJ, Raasveld FV, Gomez-Eslava B, van der Heijden EPA, Jayakar S, Black BJ, Johnston BR, Wainger BJ, Renthal W, Woolf CJ, Eberlin KR. Biology and pathophysiology of symptomatic neuromas. Pain 2024; 165:550-564. [PMID: 37851396 DOI: 10.1097/j.pain.0000000000003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/07/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Neuromas are a substantial cause of morbidity and reduction in quality of life. This is not only caused by a disruption in motor and sensory function from the underlying nerve injury but also by the debilitating effects of neuropathic pain resulting from symptomatic neuromas. A wide range of surgical and therapeutic modalities have been introduced to mitigate this pain. Nevertheless, no single treatment option has been successful in completely resolving the associated constellation of symptoms. While certain novel surgical techniques have shown promising results in reducing neuroma-derived and phantom limb pain, their effectiveness and the exact mechanism behind their pain-relieving capacities have not yet been defined. Furthermore, surgery has inherent risks, may not be suitable for many patients, and may yet still fail to relieve pain. Therefore, there remains a great clinical need for additional therapeutic modalities to further improve treatment for patients with devastating injuries that lead to symptomatic neuromas. However, the molecular mechanisms and genetic contributions behind the regulatory programs that drive neuroma formation-as well as the resulting neuropathic pain-remain incompletely understood. Here, we review the histopathological features of symptomatic neuromas, our current understanding of the mechanisms that favor neuroma formation, and the putative contributory signals and regulatory programs that facilitate somatic pain, including neurotrophic factors, neuroinflammatory peptides, cytokines, along with transient receptor potential, and ionotropic channels that suggest possible approaches and innovations to identify novel clinical therapeutics.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| | - Yannick Albert J Hoftiezer
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
| | - Floris V Raasveld
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Barbara Gomez-Eslava
- Hand and Arm Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - E P A van der Heijden
- Department of Plastic, Reconstructive and Hand Surgery, Radboudumc, Nijmegen, the Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Jeroen Bosch Ziekenhuis, Den Bosch, the Netherlands
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bryan James Black
- Department of Biomedical Engineering, UMass Lowell, Lowell, MA, United States
| | - Benjamin R Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Brian J Wainger
- Departments of Anesthesia, Critical Care & Pain Medicine and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Department of General Surgery, Massachusetts General Hospital, Harvard University, Boston, MA, United States
| |
Collapse
|
2
|
Yeoh S, Warner WS, Merchant SS, Hsu EW, Agoston DV, Mahan MA. Incorporating Blood Flow in Nerve Injury and Regeneration Assessment. Front Surg 2022; 9:862478. [PMID: 35529911 PMCID: PMC9069240 DOI: 10.3389/fsurg.2022.862478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, with limited treatment options and potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the vascular network of nerves impact regeneration, including perfusion for metabolic demands, appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal migration. However, the established nerve injury classification paradigm proposed by Sydney Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve structures and lacks further information regarding the state of cellular, metabolic, or inflammatory processes that are critical in determining regenerative outcomes. This review covers the anatomical structure of nerve-associated vasculature, and describes the biological processes that makes these vessels critical to successful end-organ reinnervation after severe nerve injuries. We then propose a theoretical framework that incorporates measurements of blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.
Collapse
Affiliation(s)
- Stewart Yeoh
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Wesley S. Warner
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Samer S. Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Edward W. Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Denes v. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Mark A. Mahan
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
4
|
Ugrenović S, Jovanović I, Kundalić B, Stojanović V, Pavlović M, Antović A, Milić M, Kokoris JČ. Morphometric analysis of the epineurial and endoneurial blood vessels of the human sciatic nerve in relation to aging. Tissue Cell 2020; 66:101389. [PMID: 32933712 DOI: 10.1016/j.tice.2020.101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
The aim of this research is to perform an analysis of the epineurial and endoneurial blood vessels in relation to aging. The research is conducted on samples of the human sciatic nerve of 12 case (age from 27 to 89). The histological sections are stained by streptavidin-biotin method of detecting the presence of Type IV collagen. After morphometric analysis the following stereological parameters have been calculated: the number of blood vessels per unit of area, the volume density of the blood vessels and the surface density of the blood vessels of the epineurium and endoneurium. An additional diameter measurement is performed for the endoneural blood vessels. In order to perform a more detailed analysis, the cases were classified into three age groups, the first (27-48 years), the second (49-70 years) and, the third (over 70 years). The bivariate correlation analysis showed that the number of blood vessels of the endoneurium, their volume and surface densities in relation to age produced a statistically significant positive correlation. One Way ANOVA test demonstrated a statistically significant increase in the number of endoneurial blood vessels in the age group III when compared the age group I and, in addition, it showed a significant decrease in the diameter of the age group II when compared to the age group I. Paired t - test shows a statistically significant higher number of endoneurial blood vessels in relation to the epineurial, namely, in the age group III. The volume and surface density of the epineurial blood vessels is significantly higher than the endoneurial in both the I and II age group. Age brings about significant changes of the endoneurial vascular network of the sciatic nerve due to the increase in density of the endoneurial blood vessels, their volume and surface densities. Consequently, in the cases older than 70 years, the number of endoneurial blood vessels significantly exceeds the number of epineurial blood vessels.
Collapse
Affiliation(s)
| | - Ivan Jovanović
- Department of Anatomy, Faculty of Medicine, University of Niš, Serbia
| | - Braca Kundalić
- Department of Anatomy, Faculty of Medicine, University of Niš, Serbia
| | - Vesna Stojanović
- Department of Anatomy, Faculty of Medicine, University of Niš, Serbia
| | - Miljana Pavlović
- Department of Anatomy, Faculty of Medicine, University of Niš, Serbia
| | - Aleksandra Antović
- Department of Forensic Medicine, Faculty of Medicine, University of Niš, Serbia
| | - Miroslav Milić
- Department of Forensic Medicine, Faculty of Medicine, University of Niš, Serbia
| | | |
Collapse
|
5
|
Lu J, Yan X, Sun X, Shen X, Yin H, Wang C, Liu Y, Lu C, Fu H, Yang S, Wang Y, Sun X, Zhao L, Lu S, Mikos AG, Peng J, Wang X. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. NANOSCALE 2019; 11:19943-19958. [PMID: 31602446 DOI: 10.1039/c9nr04521j] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The crosstalk between vascularization and nerve regeneration in the peripheral nervous system has recently been suggested to play an important role in the treatment of peripheral nerve injury. Regenerative strategies via synergistic delivery of multiple biochemical cues have received growing attention, especially the combination of pro-angiogenic factors and neurotrophic factors. Here we developed a self-assembling peptide nanofiber hydrogel dual-functionalized with vascular endothelial growth factor (VEGF)- and brain-derived neurotrophic factor (BDNF)-mimetic peptide epitopes for peripheral nerve reconstruction. It could simultaneously present VEGF- and BDNF-mimetic peptide epitopes and provides a three-dimensional (3D) neurovascular microenvironment for endothelial cell and neural cell growth. In vitro cellular experiments showed that the functionalized peptide hydrogel scaffold effectively promoted the pro-myelination of Schwann cell, as well as the adhesion and proliferation of endothelial cell compared with scaffolds presenting VEGF- or BDNF-mimetic peptide epitope alone. When implanted in a rat model to bridge a critical-size sciatic nerve gap in vivo, the functionalized peptide hydrogel significantly improved the number of newly formed blood vessels, the density of regenerating axons, the morphometric analysis of the regenerated muscles and the electrophysiological findings, indicating the synergistic effect of the two bioactive motifs on peripheral nerve regeneration. Collectively, constructing an artificial neurovascular microenvironment in the lesion area by using the functionalized self-assembling peptide nanofiber hydrogel may have a great potential for promoting nerve tissue engineering and regeneration in other tissues.
Collapse
Affiliation(s)
- Jiaju Lu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaoqing Yan
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China. and Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Xuezhen Shen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China. and Department of Orthopedics, Luhe Hospital Affiliated to Capital Medical University, Beijing 101149, China
| | - Heyong Yin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University, Munich 80336, Germany
| | - Chenhao Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yifan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China. and Department of Orthopaedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Haitao Fu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China. and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226007, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Zochodne DW. Local blood flow in peripheral nerves and their ganglia: Resurrecting key ideas around its measurement and significance. Muscle Nerve 2018; 57:884-895. [DOI: 10.1002/mus.26031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Douglas W. Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
7
|
Konczalik W, Sadr AH, Nikkhah D. The Adipofascial Nerve Patch as an Alternative to Grafting in Partial Transection of a Peripheral Nerve. J Hand Microsurg 2017; 9:107-108. [PMID: 28867913 DOI: 10.1055/s-0037-1604291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wojciech Konczalik
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Amir H Sadr
- Department of Plastic and Reconstructive Surgery, Royal Free Hospital, London, United Kingdom
| | - Dariush Nikkhah
- Department of Plastic and Reconstructive Surgery, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
8
|
A systematic review of animal models for experimental neuroma. J Plast Reconstr Aesthet Surg 2015; 68:1447-63. [DOI: 10.1016/j.bjps.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023]
|
9
|
The nerve regenerative microenvironment: Early behavior and partnership of axons and Schwann cells. Exp Neurol 2010; 223:51-9. [DOI: 10.1016/j.expneurol.2009.05.037] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
|
10
|
Turgut M, Kaplan S, Unal BZ, Bozkurt M, Yürüker S, Yenisey C, Sahin B, Uyanıkgil Y, Baka M. Stereological analysis of sciatic nerve in chickens following neonatal pinealectomy: an experimental study. J Brachial Plex Peripher Nerve Inj 2010; 5:10. [PMID: 20409336 PMCID: PMC2867982 DOI: 10.1186/1749-7221-5-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 04/21/2010] [Indexed: 11/11/2022] Open
Abstract
Background Although the injury to the peripheral nervous system is a common clinical problem, understanding of the role of melatonin in nerve degeneration and regeneration is incomplete. Methods The current study investigated the effects of neonatal pinealectomy on the sciatic nerve microarchitecture in the chicken. The chickens were divided into two equal groups: unpinealectomized controls and pinealectomized chickens. At the end of the study, biochemical examination of 10 sciatic nerve samples from both groups was performed and a quantitative stereological evaluation of 10 animals in each group was performed. The results were compared using Mann-Whitney test. Results In this study, the results of axon number and thickness of the myelin sheath of a nerve fiber in newly hatched pinealectomy group were higher than those in control group. Similarly, surgical pinealectomy group had significantly larger axonal cross-sectional area than the control group (p < 0.05). In addition, the average hydroxyproline content of the nerve tissue in neonatal pinealectomy group was higher than those found in control group. Our results suggest that melatonin may play a role on the morphologic features of the peripheral nerve tissue and that melatonin deficiency might be a pathophysiological mechanism in some degenerative diseases of peripheral nerves. The changes demonstrated by quantitative morphometric methods and biochemical analysis has been interpreted as a reflection of the effects of melatonin upon nerve tissue. Conclusion In the light of these results from present animal study, changes in sciatic nerve morphometry may be indicative of neuroprotective feature of melatonin, but this suggestion need to be validated in the human setting.
Collapse
Affiliation(s)
- Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydin, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xu Q, Midha R, Zochodne DW. The Microvascular Impact of Focal Nerve Trunk Injury. J Neurotrauma 2010; 27:639-46. [DOI: 10.1089/neu.2009.1025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- QingGui Xu
- Division of Neurosurgery, University of Calgary, Calgary, Alberta
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
| | - Rajiv Midha
- Division of Neurosurgery, University of Calgary, Calgary, Alberta
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
| | | |
Collapse
|
12
|
Kretschmer T, Heinen CW, Antoniadis G, Richter HP, König RW. Iatrogenic Nerve Injuries. Neurosurg Clin N Am 2009; 20:73-90, vii. [DOI: 10.1016/j.nec.2008.07.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Cheng C, Webber CA, Wang J, Xu Y, Martinez JA, Liu WQ, McDonald D, Guo GF, Nguyen MD, Zochodne DW. Activated RHOA and peripheral axon regeneration. Exp Neurol 2008; 212:358-69. [PMID: 18554585 DOI: 10.1016/j.expneurol.2008.04.023] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/17/2008] [Accepted: 04/08/2008] [Indexed: 11/16/2022]
Abstract
The regeneration of adult peripheral neurons after transection is slow, incomplete and encumbered by severe barriers to proper regrowth. The role of RHOA GTPase has not been examined in this context. We examined the expression, activity and functional role of RHOA GTPase and its ROK effector, inhibitors of regeneration, during peripheral axon outgrowth. We used qRT-PCR, quantitative immunohistochemistry, and assays of RHOA activation to examine expression in sensory neurons of rats with sciatic transection injuries. In vitro, we exposed dissociated adult sensory neurons, not grown on inhibitory substrates, to a RHOA-ROK inhibitor HA-1077 and measured neurite initiation and outgrowth. In vivo, we exposed early regenerating axons and Schwann cells directly to HA-1077 in a conduit connecting the proximal and distal stumps of transected sciatic nerves. Intact adult dorsal root ganglia sensory neurons expressed RHOA and ROK 1 mRNAs and protein and there were rises in RHOA after injury. Activated GTP-bound RHOA, undetectable in intact ganglia, was dramatically upregulated in both neurons and axons after injury. Adult rat sensory neurons in vitro demonstrated a dose-related increase in the initiation of neurite outgrowth, and in the proportion with long neurites when they were exposed to a ROK antagonist. Regenerative bridges that were directly exposed to the ROK inhibitor had a dose-related rise in the extent and distance of in vivo axon and partnered Schwann cell regrowth within them. RHOA activation and signaling are features of adult peripheral axon regeneration within its own milieu, independent of myelin. Inhibition of its activation may benefit peripheral axon lesions.
Collapse
Affiliation(s)
- C Cheng
- University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu QG, Midha R, Martinez JA, Guo GF, Zochodne DW. Facilitated sprouting in a peripheral nerve injury. Neuroscience 2008; 152:877-87. [PMID: 18358630 DOI: 10.1016/j.neuroscience.2008.01.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 12/14/2007] [Accepted: 02/05/2008] [Indexed: 12/26/2022]
Abstract
During regeneration of injured peripheral nerves, local conditions may influence how regenerative axon sprouts emerge from parent axons. More extensive lesions might be expected to disrupt such growth. In this work, we discovered instead that long segmental crush injuries facilitate the growth and maturation of substantially more axon sprouts than do classical short crush injuries (20 mm length vs. 2 mm). At identical distances from the proximal site of axon interruption there was a 45% rise in the numbers of neurofilament labeled axons extending through a long segmental crush zone by 1 week. By 2 weeks, there was a 35% greater density of regenerating myelinated axons in long compared with short crush injuries just beyond (5 mm) the proximal injury site. Moreover, despite the larger numbers of axons, their maturity was identical and they were regular, parallel, associated with Schwann cells (SCs) and essentially indistinguishable between the injuries. Backlabeling with Fluorogold indicated that despite these differences, the axons arose from similar numbers of parent motor and sensory neurons. Neither injury was associated with ischemia. Both injuries were associated with rises in GFAP (glial acidic fibrillary protein) and p75 mRNAs, markers of SC plasticity but p75, GFAP and brain-derived neurotrophic factor mRNAs did not differ between the injuries. There was a higher local mRNA level of GAP43/B50 at 7 days following injury and a higher sonic hedgehog protein (Shh) mRNA at 24 h in long crush zones. GAP43/B50 protein and SHH protein both had prominent localization within regenerating axons. Long segmental nerve trunk crush injuries do not impair regeneration but instead generate greater axon plasticity that results in larger numbers of mature myelinated axons. The changes occur without apparent change in SC activation, overall nerve architecture or nerve blood flow. While the mechanism is uncertain, the findings indicate that manipulation of the nerve microenvironment can induce substantial changes in regenerative sprouting.
Collapse
Affiliation(s)
- Q G Xu
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
15
|
Ugrenovic SZ, Jovanovic ID, Vasović LP, Stefanović BD. Extraneural arterial blood vessels of human fetal sciatic nerve. Cells Tissues Organs 2007; 186:147-53. [PMID: 17587786 DOI: 10.1159/000104407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2007] [Indexed: 11/19/2022] Open
Abstract
Nerves get segmental blood supply either from the neighboring muscular and cutaneous branches or from the regional main arterial trunks. The aim of our research was to detect, in the gluteal and posterior femoral region, the blood vessels which are involved in the blood supply of the human fetal sciatic nerve, as well as to establish their origin. Micro-dissection was performed on 48 fetal lower extremities which were previously fixed in 10% formalin. Micropaque solution (barium sulfate) was injected into their blood vessels. The fetal gestational age was established by measuring the crump-crown length and it ranged from the third to the ninth lunar month. The observed nutritional arteries of the human sciatic nerve originated from the inferior gluteal artery, medial circumflex femoral artery, perforating branches, and popliteal artery. The anastomotic arterial chain of the human sciatic nerve was observed in all cases. In 75% of the cases it was composed of the branches of the inferior gluteal artery, the medial circumflex femoral artery and the first two perforating arteries. The nutrient branch of the third perforating branch was less frequently (in 14.5% of the cases) part of this anastomotic arterial chain.
Collapse
|
16
|
Lago N, Navarro X. Evaluation of the long-term regenerative potential in an experimental nerve amputee model. J Peripher Nerv Syst 2007; 12:108-20. [PMID: 17565536 DOI: 10.1111/j.1529-8027.2007.00130.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, we evaluated the long-term maintenance of regenerated axons in an experimental nerve amputee model. The sciatic nerve of adult rats was transected and repaired with a silicone tube leaving a short gap; the distal nerve segment was again transected 10 mm distally and the distal stump either introduced in a capped silicone chamber (amputee group) or connected to denervated targets (tibial branch into the gastrocnemius muscle and peroneal nerve apposed to skin) (reinnervation group). Morphological studies were performed at 2.5, 6, and 9 months after surgery. In all cases, axons regenerated across the silicone tube and grew in the distal nerve segment. In the amputee group, the morphological results show the expected features of a neuroma that is formed when regenerating axons are prevented from reaching the end organs, with a large number of axonal profiles indicative of regenerative sprouting. The number of myelinated axons counted at the distal nerve was sustained over 9 months follow-up, indicating that regenerated axons are maintained chronically. Immunohistochemical labeling showed maintained expression of choline acetyltransferase, calcitonin gene-related peptide, and growth-related peptides 43 in the distal neuroma at 6 and 9 months. Reconnection of the distal nerve to foreign targets mildly improved the pattern of nerve regeneration, decreasing the number of excessive sprouts. These results indicate that axons regenerated may be eventually interfaced with external input-output systems over long time, even if ending in the absence of distal targets as will occur in amputee limbs.
Collapse
Affiliation(s)
- Natalia Lago
- Group of Neuroplasticity and Regeneration, Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
17
|
Shah SS, Ghannoum J, Carness A, Freedman PD. Intraosseous traumatic neuroma of the maxilla after excision of giant cell granuloma: a case report. J Oral Maxillofac Surg 2004; 62:1161-4. [PMID: 15346373 DOI: 10.1016/j.joms.2003.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
|
19
|
Zochodne DW. Nerve and ganglion blood flow in diabetes: an appraisal. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:161-202. [PMID: 12198810 DOI: 10.1016/s0074-7742(02)50077-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vasa nervorum, the vascular supply to peripheral nerve trunks, and their associated cell bodies in ganglia have unique anatomical and physiological characteristics. Several different experimental approaches toward understanding the changes in vase nervorum following injury and disease have been used. Quantative techniques most widely employed have been microelectrode hydrogen clearance palarography and [14C]iodoantipyrine autoradiographic distribution, whereas estimates of red blood cell flux using a fiber-optic laser Doppler probe offer real time data at different sites along the nerve trunk. There are important caveats about the use of these techniques, their advantages, and their limitations. Reports of nerve blood flow require careful documentation of physiological variables, including mean arterial pressure and nerve temperature during the recordings. Several ischemic models of the peripheral nerve trunk have addressed the ischemic threshold below which axonal degeneration ensues (< 5ml/100 g/min). Following injury, rises in local blood flow reflect acitons of vasoactive peptides, nitric oxide, and the development of angiogenesis. In experimental diabetes, a large number of studies have documented reductions in nerve blood flow and tandem corrections of nerve blood flow and conduction slowing. A significant proportions, however, of the work can be criticized on the basis of methodology and interpretation. Similarly, not all work has confirmed that reductions of nerve blood flow are an invariable feature of experimental or human diabetic polyneuropathy. Therefore, while there is disagreement as to whether early declines in nerve blood flow "account" for diabetic polyneuropathy, there is unquestioned eveidence of early microangiopathy. Abnormalities of vase nervorum and micorvessels supplying ganglia at the very least develop parallel to and together with changes in neurons, Schwann cells, and axons.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|