1
|
Abstract
Hyperbaric oxygen therapy, intermittent breathing of 100% oxygen at a pressure upper than sea level, has been shown to be some of the neuroprotective effects and used therapeutically in a wide range of neurological disorders. This review summarizes current knowledge about the neuroprotective effects of hyperbaric oxygen therapy with their molecular mechanisms in different models of neurological disorders.
Collapse
Affiliation(s)
- Fahimeh Ahmadi
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
2
|
Zhao B, Wang H, Li CX, Song SW, Fang SH, Wei EQ, Shi QJ. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med 2018; 42:2750-2762. [PMID: 30226562 PMCID: PMC6192776 DOI: 10.3892/ijmm.2018.3848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemia-like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron‑glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R-induced responses in neuron-glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5′-diphosphate (UDP) in neuron-glial mixed cultures. However, GPR17 knockdown did not affect OGD/R-induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R-induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia-like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Cai-Xia Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sheng-Wen Song
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - San-Hua Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Er-Qing Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiao-Juan Shi
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
3
|
Zhao B, Zhao CZ, Zhang XY, Huang XQ, Shi WZ, Fang SH, Lu YB, Zhang WP, Xia Q, Wei EQ. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience 2011; 202:42-57. [PMID: 22155652 DOI: 10.1016/j.neuroscience.2011.11.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptor 17 (GPR17), the new P2Y-like receptor, is phylogenetically related to the P2Y and cysteinyl leukotriene receptors, and responds to both uracil nucleotides and cysteinyl leukotrienes. GPR17 has been proposed to be a damage sensor in ischemic stroke; however, its role in brain inflammation needs further detailed investigation. Here, we extended previous studies on the spatiotemporal profiles of GPR17 expression and localization, and their implications for brain injury after focal cerebral ischemia. We found that in the ischemic core, GPR17 mRNA and protein levels were upregulated at both 12-24 h and 7-14 days, but in the boundary zone the levels increased 7-14 days after reperfusion. The spatiotemporal pattern of GPR17 expression well matched the acute and late (subacute/chronic) responses in the ischemic brain. According to previous findings, in the acute phase, after ischemia (24 h), upregulated GPR17 was localized in injured neurons in the ischemic core and in a few microglia in the ischemic core and boundary zone. In the late phase (14 days), it was localized in microglia, especially in activated (ED1-positive) microglia in the ischemic core, but weakly in most microglia in the boundary zone. No GPR17 was detectable in astrocytes. GPR17 knockdown by a small interfering RNA attenuated the neurological dysfunction, infarction, and neuron loss at 24 h, and brain atrophy, neuron loss, and microglial activation at 14 days after reperfusion. Thus, GPR17 might mediate acute neuronal injury and late microgliosis after focal cerebral ischemia.
Collapse
Affiliation(s)
- B Zhao
- Department of Pharmacology, School of Medicine, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Yang ZJ, Xie Y, Bosco GM, Chen C, Camporesi EM. Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. Eur J Appl Physiol 2009; 108:513-22. [PMID: 19851780 DOI: 10.1007/s00421-009-1229-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2009] [Indexed: 11/30/2022]
Abstract
The present study examined the effect of hyperbaric oxygen (HBO) on the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), the products of salicylate trapping of hydroxyl free radicals, and glutamate release in the striatum during acute ischemia and reperfusion. Non-HBO rats (n = 8) were subjected to 1-h ischemia. Study rats (n = 8) were treated with HBO at 2.8 ATA for 1 h during ischemia. Artificial CSF solution containing 5 mM sodium salicylate was perfused at 1 microl/min. Samples were continuously collected at 15 min intervals and the levels of 2,3-DHBA, 2,5-DHBA, and glutamate were analyzed. The lesion volume was determined by TTC stain. Occlusion of the middle cerebral artery induced a significant increase in the levels of 2,3-DHBA and 2,5-DHBA. A peak of approximately two and fourfold of baseline levels was reached at 45 min and was maintained at elevated levels during reperfusion. The level of glutamate increased approximately two times at 30 min during ischemia, continued to increase, and reached approximately three times baseline level during reperfusion. HBO significantly alleviated brain injury associated with decreased levels of 2,3-DHBA, 2,5-DHBA and glutamate. This study suggests that the decreased glutamate release and the reduced formation of hydroxyl free radicals might contribute to the neuroprotective effect of HBO.
Collapse
Affiliation(s)
- Zhong-jin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
5
|
Flegg JA, McElwain DLS, Byrne HM, Turner IW. A three species model to simulate application of Hyperbaric Oxygen Therapy to chronic wounds. PLoS Comput Biol 2009; 5:e1000451. [PMID: 19649306 PMCID: PMC2710516 DOI: 10.1371/journal.pcbi.1000451] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 06/26/2009] [Indexed: 01/16/2023] Open
Abstract
Chronic wounds are a significant socioeconomic problem for governments worldwide. Approximately 15% of people who suffer from diabetes will experience a lower-limb ulcer at some stage of their lives, and 24% of these wounds will ultimately result in amputation of the lower limb. Hyperbaric Oxygen Therapy (HBOT) has been shown to aid the healing of chronic wounds; however, the causal reasons for the improved healing remain unclear and hence current HBOT protocols remain empirical. Here we develop a three-species mathematical model of wound healing that is used to simulate the application of hyperbaric oxygen therapy in the treatment of wounds. Based on our modelling, we predict that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds. Furthermore, treatment should continue until healing is complete, and HBOT will not stimulate healing under all circumstances, leading us to conclude that finding the right protocol for an individual patient is crucial if HBOT is to be effective. We provide constraints that depend on the model parameters for the range of HBOT protocols that will stimulate healing. More specifically, we predict that patients with a poor arterial supply of oxygen, high consumption of oxygen by the wound tissue, chronically hypoxic wounds, and/or a dysfunctional endothelial cell response to oxygen are at risk of nonresponsiveness to HBOT. The work of this paper can, in some way, highlight which patients are most likely to respond well to HBOT (for example, those with a good arterial supply), and thus has the potential to assist in improving both the success rate and hence the cost-effectiveness of this therapy.
Collapse
Affiliation(s)
- Jennifer A. Flegg
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Donald L. S. McElwain
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Helen M. Byrne
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian W. Turner
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Thackham JA, McElwain DLS, Long RJ. The use of hyperbaric oxygen therapy to treat chronic wounds: A review. Wound Repair Regen 2008; 16:321-30. [PMID: 18471250 DOI: 10.1111/j.1524-475x.2008.00372.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic wounds, defined as those wounds which fail to proceed through an orderly process to produce anatomic and functional integrity, are a significant socioeconomic problem. A wound may fail to heal for a variety of reasons including the use of corticosteroids, formation of squamous cell carcinoma, persistent infection, unrelieved pressure, and underlying hypoxia within the wound bed. Hypoxia appears to inhibit the wound healing process by blocking fibroblast proliferation, collagen production, and capillary angiogenesis and to increase the risk of infection. Hyperbaric oxygen therapy (HBOT) has been shown to aid the healing of ulcerated wounds and demonstrated to reduce the risk of amputation in diabetic patients. However, the causal reasons for the response of the underlying biological processes of wound repair to HBOT, such as the up-regulation of angiogenesis and collagen synthesis are unclear and, consequently, current protocols remain empirical. Here we review chronic wound healing and the use of hyperbaric oxygen as an adjunctive treatment for nonhealing wounds. Databases including PubMed, ScienceDirect, Blackwell Synergy, and The Cochrane Library were searched for relevant phrases including HBOT, HBO/HBOT, wound healing, and chronic/nonhealing wounds/ulcers.
Collapse
Affiliation(s)
- Jennifer A Thackham
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia.
| | | | | |
Collapse
|
7
|
Abstract
Peripheral nerves are essential connections between the central nervous system and muscles, autonomic structures and sensory organs. Their injury is one of the major causes for severe and longstanding impairment in limb function. Acute peripheral nerve lesion has an important inflammatory component and is considered as ischemia-reperfusion (IR) injury. Surgical repair has been the standard of care in peripheral nerve lesion. It has reached optimal technical development but the end results still remain unpredictable and complete functional recovery is rare. Nevertheless, nerve repair is not primarily a mechanical problem and microsurgery is not the only key to success. Lately, there have been efforts to develop alternatives to nerve graft. Work has been carried out in basal lamina scaffolds, biologic and non-biologic structures in combination with neurotrophic factors and/or Schwann cells, tissues, immunosuppressive agents, growth factors, cell transplantation, principles of artificial sensory function, gene technology, gangliosides, implantation of microchips, hormones, electromagnetic fields and hyperbaric oxygenation (HBO). HBO appears to be a beneficial adjunctive treatment for surgical repair in the acute peripheral nerve lesion, when used at lower pressures and in a timely fashion (<6 hours).
Collapse
Affiliation(s)
- E Cuauhtemoc Sanchez
- Hyperbaric Medicine Department, Hospital Angeles del Pedregal, Mexico, DF, Mexico.
| |
Collapse
|
8
|
Abstract
Hyperbaric oxygen (HBO) therapy is defined by the Undersea and Hyperbaric Medical Society (UHMS) as a treatment in which a patient intermittingly breathes 100% oxygen under a pressure that is greater than the pressure at sea level [a pressure greater than 1 atmosphere absolute (ATA)]. HBO has been shown to be a potent means to increase the oxygen content of blood and has been advocated for the treatment of various ailments, including air embolism, carbon monoxide poisoning, wound healing and ischemic stroke. However, definitive established mechanisms of action are still lacking. This has led to uncertainty among clinicians, who have understandingly become hesitant in regard to using HBO therapy, even in situations where it could prove beneficial. Therefore, this review will summarize the literature regarding the effects of HBO on brain oxygenation, cerebral blood flow and intracranial pressure in both the healthy and injured brains, as well as discuss how changes in these three factors can impart protection.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Division of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, USA.
| | | | | |
Collapse
|
9
|
Abstract
OBJECTIVE The purpose of this study was to determine whether oxygen treatment could attenuate the alterations in cerebral energy metabolism found in the brain following hypoxia-ischemia. DESIGN Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 hrs of hypoxia (8% oxygen at 37 degrees C). The concentrations of high-energy phosphate compounds and glycolytic intermediates and the activity of Na+/K+-adenosine triphosphatase were measured at 4-72 hrs of recovery. Brain weight was used to determine the severity of the brain injury at 2 wks after insult. SETTING Experimental setting. SUBJECTS Rat pups. INTERVENTIONS Pups were treated with 100% oxygen 1 hr after the insult at 2.5 atmospheres absolute (hyperbaric oxygen) or at normobaric pressure for a duration of 2 hrs. MEASUREMENTS AND MAIN RESULTS During the initial period of recovery from hypoxia-ischemia, values of adenosine triphosphate and phosphocreatine remained at levels below normal, whereas the levels of glucose and other glycolytic intermediates were elevated. Hyperbaric oxygen and normobaric oxygen both attenuated brain injury, restored the levels of adenosine triphosphate and phosphocreatine, decreased the levels of the glycolytic intermediates, and increased the utilization of energy. CONCLUSIONS These results suggest that oxygen treatment during the initial period of recovery from a hypoxia-ischemic insult is able to attenuate energy deficits in the brain, which ultimately leads to a reduction in brain injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | |
Collapse
|
10
|
Wirkner K, Köfalvi A, Fischer W, Günther A, Franke H, Gröger-Arndt H, Nörenberg W, Madarász E, Vizi ES, Schneider D, Sperlágh B, Illes P. Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 2006; 95:1421-37. [PMID: 16313518 DOI: 10.1111/j.1471-4159.2005.03465.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronally enriched primary cerebrocortical cultures were exposed to glucose-free medium saturated with argon (in vitro ischemia) instead of oxygen (normoxia). Ischemia did not alter P2X7 receptor mRNA, although serum deprivation clearly increased it. Accordingly, P2X7 receptor immunoreactivity (IR) of microtubuline-associated protein 2 (MAP2)-IR neurons or of glial fibrillary acidic protein (GFAP)-IR astrocytes was not affected; serum deprivation augmented the P2X7 receptor IR only in the astrocytic, but not the neuronal cell population. However, ischemia markedly increased the ATP- and 2'-3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP)-induced release of previously incorporated [3H]GABA. Both Brilliant Blue G and oxidized ATP inhibited the release of [3H]GABA caused by ATP application; the Brilliant Blue G-sensitive, P2X7 receptor-mediated fraction, was much larger after ischemia than after normoxia. Whereas ischemic stimulation failed to alter the amplitude of ATP- and BzATP-induced small inward currents recorded from a subset of non-pyramidal neurons, BzATP caused a more pronounced increase in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) after ischemia than after normoxia. Brilliant Blue G almost abolished the effect of BzATP in normoxic neurons. Since neither the amplitude of mIPSCs nor that of the muscimol-induced inward currents was affected by BzATP, it is assumed that BzATP acts at presynaptic P2X7 receptors. Finally, P2X7 receptors did not enhance the intracellular free Ca2+ concentration either in proximal dendrites or in astrocytes, irrespective of the normoxic or ischemic pre-incubation conditions. Hence, facilitatory P2X7 receptors may be situated at the axon terminals of GABAergic non-pyramidal neurons. When compared with normoxia, ischemia appears to markedly increase P2X7 receptor-mediated GABA release, which may limit the severity of the ischemic damage. At the same time we did not find an accompanying enhancement of P2X7 mRNA or protein expression, suggesting that receptors may become hypersensitive because of an increased efficiency of their transduction pathways.
Collapse
Affiliation(s)
- Kerstin Wirkner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Günther A, Manaenko A, Franke H, Wagner A, Schneider D, Berrouschot J, Reinhardt R. Hyperbaric and normobaric reoxygenation of hypoxic rat brain slices--impact on purine nucleotides and cell viability. Neurochem Int 2004; 45:1125-32. [PMID: 15380622 DOI: 10.1016/j.neuint.2004.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/29/2004] [Indexed: 11/25/2022]
Abstract
Hyperbaric oxygen treatment has been suggested as able to reduce hypoxia induced neuronal damage. The aim of the study was to compare the impact of different reoxygenation strategies on early metabolical (purine nucleotide content determined by HPLC) and morphological changes (index of cell injury after celestine blue/acid fuchsin staining) of hypoxically damaged rat neocortical brain slices. For this purpose slices (300 microm and 900 microm) were subjected to either 5 or 30 min of hypoxia by gassing the incubation medium with nitrogen. During the following reoxygenation period treatment groups were administered either 100% oxygen (O) or room air (A) at normobaric (1 atm absolute, NB-O; NB-A) or hyperbaric (2.5 atm absolute, HB-O; HB-A) conditions. After 5 min of hypoxia, both HB-O and NB-O led to a complete nucleotide status restoration (ATP/ADP; GTP/GDP) in 300 microm slices. However, reoxygenation after 30 min of hypoxia was less effective, irrespective of the oxygen pressure. Furthermore, administering hyperbaric room air resulted in no significant posthypoxic nucleotide recovery. In 900 microm slices, both control incubation as well as 30 min of hypoxia resulted in significantly lower trinucleotide and higher dinucleotide levels compared to 300 microm slices. While there was no significant difference between HB-O and NB-O on the nucleotide status, morphological evaluation revealed a better recovery of the index of cell injury (profoundly injured/intact cell-ratio) in the HB-O group. Conclusively, the posthypoxic recovery of metabolical characteristics was dependent on the duration of hypoxia and slice thickness, but not on the reoxygenation pressure. A clear restorative effect on purine nucleotides was found only in early-administered HB-O as well as NB-O in contrast to room air treated slices. However, these pressure independent metabolic changes were morphologically accompanied by a significantly improved index of cell injury, indicating a possible neuroprotective role of HB-O in early posthypoxic reoxygenation.
Collapse
Affiliation(s)
- A Günther
- Department of Neurology, University of Leipzig, Liebigstrasse 22a, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Reinhardt R, Manaenko A, Guenther A, Franke H, Dickel T, Garcia de Arriba S, Muench G, Schneider D, Wagner A, Illes P. Early biochemical and histological alterations in rat corticoencephalic cell cultures following metabolic damage and treatment with modulators of mitochondrial ATP-sensitive potassium channels. Neurochem Int 2003; 43:563-71. [PMID: 12820985 DOI: 10.1016/s0197-0186(03)00053-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was aimed at characterizing alterations of the nucleotide content and morphological state of rat corticoencephalic cell cultures subjected to metabolic damage and treatment with modulators of mitochondrial ATP-dependent potassium channels (mitoK(ATP)). In a first series of experiments, in vitro ischemic changes of the contents of purine and pyrimidine nucleoside diphosphates and triphosphates were measured by high performance liquid chromatography (HPLC) and the corresponding histological alterations were determined by celestine blue/acid fuchsin staining. As an ischemic stimulus, incubation with a glucose-free medium saturated with argon was used. Ischemia decreased the levels of adenosine, guanine and uridine triphosphate (ATP, GTP, UTP) and increased the levels of the respective dinucleotides ADP and UDP, whereas the GDP content was not changed. Both 5-hydroxydecanoate (5-HD) and diazoxide failed to alter the contents of nucleoside diphosphates and triphosphates, when applied under normoxic conditions. 5-HD (30 microM) prevented the ischemia-induced changes of nucleotide and nucleoside levels. Diazoxide (300 microM), either alone or in combination with 5-hydroxydecanoate (30 microM) was ineffective. Pyruvate (5 mM) partially reversed the effects of ischemia or ischemia plus 2-deoxyglucose (20mM) in the incubation medium. Diazoxide (300 microM) and 5-HD (30 microM) had no effect in the presence of pyruvate (5mM) and 2-deoxyglucose (20mM). Staining the cells with celestine blue/acid fuchsin in order to classify them as intact, reversibly or profoundly injured, revealed a protective effect of 5-HD. When compared with 5-HD, diazoxide, pyruvate and 2-deoxyglucose had similar but less pronounced effects. In conclusion, these results suggest a protective role of 5-hydroxydecanoate on early corticoencephalic nucleotide and cell viability alterations during ischemia.
Collapse
Affiliation(s)
- R Reinhardt
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, D-04107, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|