1
|
Okazaki M, Matsumoto M, Koganezawa T. Hydrogen sulfide production in the medullary respiratory center modulates the neural circuit for respiratory pattern and rhythm generations. Sci Rep 2023; 13:20046. [PMID: 38049443 PMCID: PMC10696040 DOI: 10.1038/s41598-023-47280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Hydrogen sulfide (H2S), which is synthesized in the brain, modulates the neural network. Recently, the importance of H2S in respiratory central pattern generation has been recognized, yet the function of H2S in the medullary respiratory network remains poorly understood. Here, to evaluate the functional roles of H2S in the medullary respiratory network, the Bötzinger complex (BötC), the pre-Bötzinger complex (preBötC), and the rostral ventral respiratory group (rVRG), we observed the effects of inhibition of H2S synthesis at each region on the respiratory pattern by using an in situ arterially perfused preparation of decerebrated male rats. After microinjection of an H2S synthase inhibitor, cystathionine β-synthase, into the BötC or preBötC, the amplitude of the inspiratory burst decreased and the respiratory frequency increased according to shorter expiration and inspiration, respectively. These alterations were abolished or attenuated in the presence of a blocker of excitatory synaptic transmission. On the other hand, after microinjection of the H2S synthase inhibitor into the rVRG, the amplitude of the inspiratory burst was attenuated, and the respiratory frequency decreased, which was the opposite effect to those obtained by blockade of inhibitory synaptic transmission at the rVRG. These results suggest that H2S synthesized in the BötC and preBötC functions to limit respiratory frequency by sustaining the respiratory phase and to maintain the power of inspiration. In contrast, H2S synthesized in the rVRG functions to promote respiratory frequency by modulating the interval of inspiration and to maintain the power of inspiration. The underlying mechanism might facilitate excitatory synaptic transmission and/or attenuate inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Minako Okazaki
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masayuki Matsumoto
- Department of Cognitive and Behavioral Neuroscience, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tadachika Koganezawa
- Department of Neurophysiology, Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
2
|
Acute and chronic cardiorespiratory consequences of focal intrahippocampal administration of seizure-inducing agents. Implications for SUDEP. Auton Neurosci 2021; 235:102864. [PMID: 34428716 DOI: 10.1016/j.autneu.2021.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
The risk factors for SUDEP are undoubtedly heterogenous but the main factor is the frequency of generalized tonic-clonic seizures with apnoea and/or cardiac abnormalities likely precipitating the lethal event. By its very nature modelling SUDEP experimentally is challenging, yet insights into the nature of the lethal event and precipitating factors are vital in order to understand and prevent fatalities. Acute animal models, which induce status epilepticus (SE), can be used to help understand pathophysiological processes during and following seizures, which sometimes lead to death. The most commonly used method to induce seizures and status epilepticus is systemic administration of an ictogenic agent. Microinjection of such agents into restricted regions within the brain induces a more localised epileptic focus and circumvents the risk of direct actions on cardiorespiratory control centres. Both approaches have revealed substantial cardiovascular and respiratory consequences, including death as a result of apnoea, which may be of central origin, obstructive due to laryngospasm or, at least in genetically modified mice, a result of spreading depolarisation to medullary respiratory control centres. SUDEP is by definition a result of epilepsy, which in turn is diagnosed on the basis of two or more unprovoked seizures. The incidence of tonic-clonic seizures is the main risk factor, raising the possibility that repeated seizures cause cumulative pathological and/or pathophysiological changes that contribute to the risk of SUDEP. Chronic experimental models, which induce repeated seizures that in some cases lead to death, do show progressive development of pathophysiological changes in the myocardium, e.g. prolongation of QT the interval of the ECG or, over longer periods, ventricular hypertrophy. However, the currently available evidence indicates that seizure-related deaths are primarily due to apnoeas, but cardiac factors, particularly cumulative cardiac pathophysiologies due to repeated seizures, are potential contributing factors.
Collapse
|
3
|
Ashraf O, Huynh T, Purnell BS, Murugan M, Fedele DE, Chitravanshi V, Boison D. Suppression of phrenic nerve activity as a potential predictor of imminent sudden unexpected death in epilepsy (SUDEP). Neuropharmacology 2021; 184:108405. [PMID: 33212114 PMCID: PMC8199795 DOI: 10.1016/j.neuropharm.2020.108405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death in patients with refractory epilepsy. Centrally-mediated respiratory dysfunction has been identified as one of the principal mechanisms responsible for SUDEP. Seizures generate a surge in adenosine release. Elevated adenosine levels suppress breathing. Insufficient metabolic clearance of a seizure-induced adenosine surge might be a precipitating factor in SUDEP. In order to deliver targeted therapies to prevent SUDEP, reliable biomarkers must be identified to enable prompt intervention. Because of the integral role of the phrenic nerve in breathing, we hypothesized that suppression of phrenic nerve activity could be utilized as predictive biomarker for imminent SUDEP. We used a rat model of kainic acid-induced seizures in combination with pharmacological suppression of metabolic adenosine clearance to trigger seizure-induced death in tracheostomized rats. Recordings of EEG, blood pressure, and phrenic nerve activity were made concomitant to the seizure. We found suppression of phrenic nerve burst frequency to 58.9% of baseline (p < 0.001, one-way ANOVA) which preceded seizure-induced death; importantly, irregularities of phrenic nerve activity were partly reversible by the adenosine receptor antagonist caffeine. Suppression of phrenic nerve activity may be a useful biomarker for imminent SUDEP. The ability to reliably detect the onset of SUDEP may be instrumental in the timely administration of potentially lifesaving interventions.
Collapse
Affiliation(s)
- Omar Ashraf
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Trong Huynh
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Denise E Fedele
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vineet Chitravanshi
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ, 08854, USA; Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA; Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
4
|
Cinelli E, Iovino L, Bongianni F, Pantaleo T, Mutolo D. GABAA- and glycine-mediated inhibitory modulation of the cough reflex in the caudal nucleus tractus solitarii of the rabbit. Am J Physiol Lung Cell Mol Physiol 2016; 311:L570-80. [PMID: 27402692 DOI: 10.1152/ajplung.00205.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023] Open
Abstract
Cough-related sensory inputs from rapidly adapting receptors (RARs) and C fibers are processed by second-order neurons mainly located in the caudal nucleus tractus solitarii (NTS). Both GABAA and glycine receptors have been proven to be involved in the inhibitory control of second-order cells receiving RAR projections. We investigated the role of these receptors within the caudal NTS in the modulation of the cough reflex induced by either mechanical or chemical stimulation of the tracheobronchial tree in pentobarbital sodium-anesthetized, spontaneously breathing rabbits. Bilateral microinjections (30-50 nl) of the receptor antagonists bicuculline and strychnine as well as of the receptor agonists muscimol and glycine were performed. Bicuculline (0.1 mM) and strychnine (1 mM) caused decreases in peak abdominal activity and marked increases in respiratory frequency due to decreases in both inspiratory time (Ti) and expiratory time (Te), without concomitant changes in arterial blood pressure. Noticeably, these microinjections induced potentiation of the cough reflex consisting of increases in the cough number associated with decreases either in cough-related Ti after bicuculline or in both cough-related Ti and Te after strychnine. The effects caused by muscimol (0.1 mM) and glycine (10 mM) were in the opposite direction to those produced by the corresponding antagonists. The results show that both GABAA and glycine receptors within the caudal NTS mediate a potent inhibitory modulation of the pattern of breathing and cough reflex responses. They strongly suggest that disinhibition is one important mechanism underlying cough regulation and possibly provide new hints for novel effective antitussive strategies.
Collapse
Affiliation(s)
- Elenia Cinelli
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Ludovica Iovino
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Fulvia Bongianni
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Tito Pantaleo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| | - Donatella Mutolo
- Dipartimento di Medicina Sperimentale e Clinica, Sezione Scienze Fisiologiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
5
|
Chitravanshi VC, Kawabe K, Sapru HN. GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus. Am J Physiol Heart Circ Physiol 2015; 309:H174-84. [PMID: 25957221 DOI: 10.1152/ajpheart.00801.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/01/2015] [Indexed: 02/07/2023]
Abstract
We have previously reported that stimulation of the hypothalamic arcuate nucleus (ARCN) by microinjections of N-methyl-d-aspartic acid (NMDA) elicits tachycardia, which is partially mediated via inhibition of vagal inputs to the heart. The neuronal pools and neurotransmitters in them mediating tachycardia elicited from the ARCN have not been identified. We tested the hypothesis that the tachycardia elicited from the ARCN may be mediated by inhibitory neurotransmitters in the nucleus ambiguus (nAmb). Experiments were done in urethane-anesthetized, artificially ventilated, male Wistar rats. In separate groups of rats, unilateral and bilateral microinjections of muscimol (1 mM), gabazine (0.01 mM), and strychnine (0.5 mM) into the nAmb significantly attenuated tachycardia elicited by unilateral microinjections of NMDA (10 mM) into the ARCN. Histological examination of the brains showed that the microinjections sites were within the targeted nuclei. Retrograde anatomic tracing from the nAmb revealed direct bilateral projections from the ARCN and hypothalamic paraventricular nucleus to the nAmb. The results of the present study suggest that tachycardia elicited by stimulation of the ARCN by microinjections of NMDA is mediated via GABAA and glycine receptors located in the nAmb.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kazumi Kawabe
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Hreday N Sapru
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
6
|
Abstract
Postsynaptic inhibition is a key element of neural circuits underlying behavior, with 20-50% of all mammalian (nongranule) neurons considered inhibitory. For rhythmic movements in mammals, e.g., walking, swimming, suckling, chewing, and breathing, inhibition is often hypothesized to play an essential rhythmogenic role. Here we study the role of fast synaptic inhibitory neurotransmission in the generation of breathing pattern by blocking GABA(A) and glycine receptors in the preBötzinger complex (preBötC), a site essential for generation of normal breathing pattern, and in the neighboring Bötzinger complex (BötC). The breathing rhythm continued following this blockade, but the lung inflation-induced Breuer-Hering inspiratory inhibitory reflex was suppressed. The antagonists were efficacious, as this blockade abolished the profound effects of the exogenously applied GABA(A) receptor agonist muscimol or glycine, either of which under control conditions stopped breathing in vagus-intact or vagotomized, anesthetized, spontaneously breathing adult rats. In vagotomized rats, GABA(A)ergic and glycinergic antagonists had little, if any, effect on rhythm. The effect in vagus-intact rats was to slow the rhythm to a pace equivalent to that seen after suppression of the aforementioned Breuer-Hering inflation reflex. We conclude that postsynaptic inhibition within the preBötC and BötC is not essential for generation of normal respiratory rhythm in intact mammals. We suggest the primary role of inhibition is in shaping the pattern of respiratory motor output, assuring its stability, and in mediating reflex or volitional apnea, but not in the generation of rhythm per se.
Collapse
|
7
|
Chitravanshi VC, Kawabe K, Sapru HN. Bradycardic effects of microinjections of urocortin 3 into the nucleus ambiguus of the rat. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1023-30. [PMID: 23019211 DOI: 10.1152/ajpregu.00224.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The presence of urocortin 3 (UCN3) and CRF2 receptors (CRF2R) has been demonstrated in brain tissue. Nucleus ambiguus (nAmb) is the predominant brain area providing parasympathetic innervation to the heart. On the basis of these reports, it was hypothesized that activation of CRF2Rs in the nAmb may elicit cardiac effects. Experiments were carried out in urethane-anesthetized, artificially ventilated, and adult male Wistar rats. Microinjections of l-glutamate (l-GLU, 5 mM) were used to identify the nAmb. Different concentrations of UCN3 (0.031, 0.062, 0.125, 0.25, and 0.5 mM) microinjected into the nAmb elicited decreases in heart rate (HR) (5.3 ± 1, 22 ± 3.3, 38 ± 4.9, 45.7 ± 2.7, and 27.3 ± 2.3 bpm, respectively). The volume of all microinjections was 30 nl. Blood pressure changes concomitant with decreases in HR were not observed. Bradycardia elicited by microinjections of UCN3 (0.25 mM; maximally effective concentration) into the nAmb was significantly (P < 0.05) attenuated by microinjections of selective CRF2R antagonists (K41498, 0.5 mM, and astressin 2B, 0.25 mM) at the same site. Bilateral vagotomy abolished the bradycardic responses to UCN3. These results indicated that activation of CRF2Rs in the nAmb by UCN3 elicited bradycardia, which was vagally mediated. UCNs have been reported to exert cardioprotective effects in heart failure and ischemia/reperfusion injury. In this situation, centrally induced bradycardia by UCN3 would be beneficial. The results of the present investigation provide a platform for future studies on the role of CRF2Rs in the nAmb in pathological states such as heart failure.
Collapse
Affiliation(s)
- Vineet C Chitravanshi
- Dept. of Neurological Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | |
Collapse
|
8
|
Bongianni F, Mutolo D, Cinelli E, Pantaleo T. Respiratory responses induced by blockades of GABA and glycine receptors within the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Brain Res 2010; 1344:134-47. [PMID: 20483350 DOI: 10.1016/j.brainres.2010.05.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/11/2010] [Indexed: 01/01/2023]
Abstract
The respiratory role of GABA(A), GABA(B) and glycine receptors within the Bötzinger complex (BötC) and the pre-Bötzinger complex (preBötC) was investigated in alpha-chloralose-urethane anesthetized, vagotomized, paralysed and artificially ventilated rabbits by using bilateral microinjections (30-50 nl) of GABA and glycine receptor agonists and antagonists. GABA(A) receptor blockade by bicuculline (5mM) or gabazine (2mM) within the BötC induced strong depression of respiratory activity up to apnea. The latter was reversed by hypercapnia. Glycine receptor blockade by strychnine (5mM) within the BötC decreased the frequency and amplitude of phrenic bursts. Bicuculline microinjections into the preBötC caused decreases in respiratory frequency and the appearance of two alternating different levels of peak phrenic activity. Strychnine microinjections into the preBötC increased respiratory frequency and decreased peak phrenic amplitude. GABA(A), but not glycine receptor antagonism within the preBötC restored respiratory rhythmicity during apnea due to bicuculline or gabazine applied to the BötC. GABA(B) receptor blockade by CGP-35348 (50mM) within the BötC and the preBötC did not affect baseline respiratory activity, though microinjections of the GABA(B) receptor agonist baclofen (1mM) into the same regions altered respiratory activity. The results show that only GABA(A) and glycine receptors within the BötC and the preBötC mediate a potent control on both the intensity and frequency of inspiratory activity during eupneic breathing. This study is the first to provide evidence that these inhibitory receptors have a respiratory function within the BötC.
Collapse
Affiliation(s)
- Fulvia Bongianni
- Dipartimento di Scienze Fisiologiche, Università degli Studi di Firenze, Viale GB Morgagni 63, I-50134 Firenze, Italy.
| | | | | | | |
Collapse
|
9
|
Luo Z, McMullen NT, Costy-Bennett S, Fregosi RF. Prenatal nicotine exposure alters glycinergic and GABAergic control of respiratory frequency in the neonatal rat brainstem-spinal cord preparation. Respir Physiol Neurobiol 2007; 157:226-34. [PMID: 17321805 DOI: 10.1016/j.resp.2007.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 12/19/2006] [Accepted: 01/02/2007] [Indexed: 11/24/2022]
Abstract
Bath application of GABA-A receptor agonists in neonatal rat brainstem-spinal cord preparations (BSSC) reduces respiratory frequency, an effect that is enhanced by prenatal nicotine exposure. Here we test the hypothesis that these effects can be reproduced by microinjection of GABAergic and glycinergic agonists into the pre-Botzinger complex region (PBC). We recorded the activity of phrenic motor axons from the fourth cervical ventral root in 1-3 days old BSSC that were exposed to either nicotine (6 mg/(kg day)) or saline prenatally. Microinjection of glycine or muscimol into the PBC caused abrupt, reversible apnea in all experiments. Apnea duration with glycine averaged 50.3+/-5 s in saline-exposed (N=12), and 95.7+/-9.9 s in nicotine-exposed (N=12) neonates (P<0.001). Apnea duration with muscimol averaged 51+/-5.1 s in saline-exposed (N=10), and 86+/-10.6 s in nicotine-exposed (N=12) neonates (P<0.05). These data show that prenatal nicotine exposure alters development of central ventilatory control, and that neurons in the PBC region are involved.
Collapse
Affiliation(s)
- Zili Luo
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
10
|
Orer HS, Gebber GL, Barman SM. Medullary lateral tegmental field neurons influence the timing and pattern of phrenic nerve activity in cats. J Appl Physiol (1985) 2006; 101:521-30. [PMID: 16645195 DOI: 10.1152/japplphysiol.00059.2006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In an effort to characterize the role of the medullary lateral tegmental field (LTF) in regulating respiration, we tested the effects of selective blockade of excitatory (EAA) and inhibitory amino acid (IAA) receptors in this region on phrenic nerve activity (PNA) of vagus-intact and vagotomized cats anesthetized with dial-urethane. We found distinct patterns of changes in central respiratory rate, duration of inspiratory and expiratory phases of PNA (Ti and Te, respectively), and I-burst amplitude after selective blockade of EAA and IAA receptors in the LTF. First, blockade of N-methyl-D-aspartate (NMDA) receptors significantly (P < 0.05) decreased central respiratory rate primarily by increasing Ti but did not alter I-burst amplitude. Second, blockade of non-NMDA receptors significantly reduced I-burst amplitude without affecting central respiratory rate. Third, blockade of GABAA receptors significantly decreased central respiratory rate by increasing Te and significantly reduced I-burst amplitude. Fourth, blockade of glycine receptors significantly decreased central respiratory rate by causing proportional increases in Ti and Te and significantly reduced I-burst amplitude. These changes in PNA were markedly different from those produced by blockade of EAA or IAA receptors in the pre-Bötzinger complex. We propose that a proper balance of excitatory and inhibitory inputs to several functionally distinct pools of LTF neurons is essential for maintaining the normal pattern of PNA in anesthetized cats.
Collapse
Affiliation(s)
- Hakan S Orer
- Dept. of Pharmacology and Toxicology, Michigan State Univ., East Lansing, MI 48824, USA
| | | | | |
Collapse
|
11
|
Fisher JAN, Marchenko VA, Yodh AG, Rogers RF. Spatiotemporal Activity Patterns During Respiratory Rhythmogenesis in the Rat Ventrolateral Medulla. J Neurophysiol 2006; 95:1982-91. [PMID: 16339002 DOI: 10.1152/jn.00674.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the most important brain rhythms is that which generates involuntary breathing movements. The lower brain stem contains neural circuitry for respiratory rhythm generation in mammals. To date, microsectioning and selective lesioning studies have revealed anatomical regions necessary for respiratory rhythmogenesis. Although respiratory neurons distributed within these regions can be identified by their firing patterns in different phases of the respiratory cycle, conventional electrophysiology techniques have limited the study of spatial organization within this network. Optical imaging techniques offer the potential for monitoring the spatiotemporal activity of large groups of neurons simultaneously. Using high-speed voltage-sensitive dye imaging and spatial correlation analysis in an arterially perfused in situ preparation of the juvenile rat, we determined the spatial distribution of respiratory neuronal activity in a region of the ventrolateral respiratory group containing the pre-Bötzinger complex (pBC) during spontaneous eupneic breathing. While distinctly pre- and postinspiratory-related responses were spatially localizable on length scales less than 100 μm, we found the studied area on whole exhibited a spatial mixture of phase-spanning and postinspiratory-related activity. Additionally, optical recordings revealed significant widespread hyperpolarization, suggesting inhibition in the same region during expiration. This finding is consistent with the hypothesis that inhibitory neurons play a crucial role in the inspiration-expiration phase transition in the pBC. To our knowledge this is the first optical imaging of a near fully intact in situ preparation that exhibits both eupneic respiratory activity and functional reflexes.
Collapse
Affiliation(s)
- Jonathan A N Fisher
- Dept. of Physics and Astronomy, Univ. of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|