1
|
Kinboshi M, Ikeda A, Ohno Y. Role of Astrocytic Inwardly Rectifying Potassium (Kir) 4.1 Channels in Epileptogenesis. Front Neurol 2020; 11:626658. [PMID: 33424762 PMCID: PMC7786246 DOI: 10.3389/fneur.2020.626658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/08/2020] [Indexed: 12/25/2022] Open
Abstract
Astrocytes regulate potassium and glutamate homeostasis via inwardly rectifying potassium (Kir) 4.1 channels in synapses, maintaining normal neural excitability. Numerous studies have shown that dysfunction of astrocytic Kir4.1 channels is involved in epileptogenesis in humans and animal models of epilepsy. Specifically, Kir4.1 channel inhibition by KCNJ10 gene mutation or expressional down-regulation increases the extracellular levels of potassium ions and glutamate in synapses and causes hyperexcitation of neurons. Moreover, recent investigations demonstrated that inhibition of Kir4.1 channels facilitates the expression of brain-derived neurotrophic factor (BDNF), an important modulator of epileptogenesis, in astrocytes. In this review, we summarize the current understanding on the role of astrocytic Kir4.1 channels in epileptogenesis, with a focus on functional and expressional changes in Kir4.1 channels and their regulation of BDNF secretion. We also discuss the potential of Kir4.1 channels as a therapeutic target for the prevention of epilepsy.
Collapse
Affiliation(s)
- Masato Kinboshi
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan.,Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Ohno
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| |
Collapse
|
2
|
Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019; 20:ijms20030577. [PMID: 30699993 PMCID: PMC6387313 DOI: 10.3390/ijms20030577] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Hotka M, Kubista H. The paroxysmal depolarization shift in epilepsy research. Int J Biochem Cell Biol 2018; 107:77-81. [PMID: 30557621 DOI: 10.1016/j.biocel.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Several shortcomings with currently available pharmacotherapy of epilepsy necessitate the search for new drug targets. Paroxysmal depolarization shifts (PDS) represent the cellular correlates of electrographic (e.g. interictal) spikes. While the ionic basis of PDS is understood in great detail, controversy exists regarding their proposed implication in epilepsy. To address this issue and to consider potential targetability, this mini-review gives an overview of the ionic conductances contributing to PDS and reflects on the hypotheses of their potential pro-epileptic (epileptogenic) and anti-epileptic roles.
Collapse
Affiliation(s)
- Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090, Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Identification of Candidate Genes for Generalized Tonic-Clonic Seizures in Noda Epileptic Rat. Behav Genet 2017; 47:609-619. [PMID: 28936718 DOI: 10.1007/s10519-017-9870-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/08/2017] [Indexed: 12/31/2022]
Abstract
The Noda epileptic rat (NER) exhibits generalized tonic-clonic seizures (GTCS). A genetic linkage analysis identified two GTCS-associated loci, Ner1 on Chr 1 and Ner3 on Chr 5. The wild-type Ner1 and Ner3 alleles suppressed GTCS when combined in double-locus congenic lines, but not when present in single-locus congenic lines. Global expression analysis revealed that cholecystokinin B receptor (Cckbr) and suppressor of tumorigenicity 5 (St5), which map within Ner1, and PHD finger protein 24 (Phf24), which maps within Ner3, were significantly downregulated in NER. De novo BAC sequencing detected an insertion of an endogenous retrovirus sequence in intron 2 of the Phf24 gene in the NER genome, and PHF24 protein was almost absent in the NER brain. Phf24 encodes a Gαi-interacting protein involved in GABAB receptor signaling pathway. Based on these findings, we conclude that Cckbr, St5, and Phf24 are strong candidate genes for GTCS in NER.
Collapse
|
5
|
Serikawa T, Mashimo T, Kuramoro T, Voigt B, Ohno Y, Sasa M. Advances on genetic rat models of epilepsy. Exp Anim 2014; 64:1-7. [PMID: 25312505 PMCID: PMC4329510 DOI: 10.1538/expanim.14-0066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Considering the suitability of laboratory rats in epilepsy research, we and other groups
have been developing genetic models of epilepsy in this species. After epileptic rats or
seizure-susceptible rats were sporadically found in outbred stocks, the epileptic traits
were usually genetically-fixed by selective breeding. So far, the absence seizure models
GAERS and WAG/Rij, audiogenic seizure models GEPR-3 and GEPR-9, generalized tonic-clonic
seizure models IER, NER and WER, and Canavan-disease related epileptic models TRM and SER
have been established. Dissection of the genetic bases including causative genes in these
epileptic rat models would be a significant step toward understanding epileptogenesis.
N-ethyl-N-nitrosourea (ENU) mutagenesis provides a systematic approach which allowed us to
develop two novel epileptic rat models: heat-induced seizure susceptible (Hiss) rats with
an Scn1a missense mutation and autosomal dominant lateral temporal epilepsy (ADLTE) model
rats with an Lgi1 missense mutation. In addition, we have established episodic ataxia type
1 (EA1) model rats with a Kcna1 missense mutation derived from the ENU-induced rat mutant
stock, and identified a Cacna1a missense mutation in a N-Methyl-N-nitrosourea
(MNU)-induced mutant rat strain GRY, resulting in the discovery of episodic ataxia type 2
(EA2) model rats. Thus, epileptic rat models have been established on the two paths:
‘phenotype to gene’ and ‘gene to phenotype’. In the near future, development of novel
epileptic rat models will be extensively promoted by the use of sophisticated genome
editing technologies.
Collapse
Affiliation(s)
- Tadao Serikawa
- Graduate School of Medicine, Kyoto University, Sakyo-ku 606-8501; Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki 569-1094, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Enhanced susceptibility to spontaneous seizures of noda epileptic rats by loss of synaptic zn(2+). PLoS One 2013; 8:e71372. [PMID: 23951148 PMCID: PMC3741169 DOI: 10.1371/journal.pone.0071372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/04/2013] [Indexed: 01/21/2023] Open
Abstract
Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn2+ signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn2+. The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30–100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn2+ measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5–10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER.
Collapse
|
7
|
Harada Y, Nagao Y, Shimizu S, Serikawa T, Terada R, Fujimoto M, Okuda A, Mukai T, Sasa M, Kurachi Y, Ohno Y. Expressional analysis of inwardly rectifying Kir4.1 channels in Noda epileptic rat (NER). Brain Res 2013; 1517:141-9. [PMID: 23603404 DOI: 10.1016/j.brainres.2013.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/31/2013] [Accepted: 04/09/2013] [Indexed: 11/30/2022]
Abstract
The inwardly rectifying potassium channel subunit Kir4.1 is expressed in brain astrocytes and involved in spatial K(+) buffering, regulating neural activity. To explore the pathophysiological alterations of Kir4.1 channels in epileptic disorders, we analyzed interictal expressional levels of Kir4.1 in the Noda epileptic rat (NER), a hereditary animal model for generalized tonic-clonic (GTC) seizures. Western blot analysis showed that Kir4.1 expression in NERs was significantly reduced in the occipito-temporal cortical region and thalamus. However, the expression of Kir5.1, another Kir subunit mediating spatial K(+) buffering, remained unaltered in any brain regions examined. Immunohistochemical analysis revealed that Kir4.1 was primarily expressed in glial fibrillary acidic protein (GFAP)-positive astrocytes (somata) and foot processes clustered around neurons proved with anti-neuronal nuclear antigen (NeuN) antibody. In NERs, Kir4.1 expression in astrocytic processes was region-selectively diminished in the amygdaloid nuclei (i.e., medial amygdaloid nucleus and basomedial amygdaloid nucleus) while Kir4.1 expression in astrocytic somata was unchanged. Furthermore, the amygdala regions with reduced Kir4.1 expression showed a marked elevation of Fos protein expression following GTC seizures. The present results suggest that reduced activity of astrocytic Kir4.1 channels in the amygdala is involved in limbic hyperexcitability in NERs.
Collapse
Affiliation(s)
- Yuya Harada
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pandit S, Jeong JA, Jo JY, Cho HS, Kim DW, Kim JM, Ryu PD, Lee SY, Kim HW, Jeon BH, Park JB. Dual mechanisms diminishing tonic GABAA inhibition of dentate gyrus granule cells in Noda epileptic rats. J Neurophysiol 2013; 110:95-102. [PMID: 23576696 DOI: 10.1152/jn.00727.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Noda epileptic rat (NER), a Wistar colony mutant, spontaneously has tonic-clonic convulsions with paroxysmal discharges. In the present study, we measured phasic and tonic γ-aminobutyric acid A (GABAA) current (I tonic) in NER hippocampal dentate gyrus granule cells and compared the results with those of normal parent strain Wistar rats (WIS). I tonic, revealed by a bicuculline-induced outward shift in holding current, was significantly smaller in NER than in WIS (P < 0.01). The frequency of inhibitory postsynaptic currents (IPSCs) was also significantly lower in NER than in WIS (P < 0.05), without significant differences in the IPSC amplitude or decay time between WIS and NER. I tonic attenuation in NER was further confirmed in the presence of GABA transporter blockers, NO-711 and nipecotic acid, with no difference in neuronal GABA transporter expression between WIS and NER. I tonic responses to extrasynaptic GABAA receptor agonists (THIP and DS-2) were significantly reduced in NER compared with WIS (P < 0.05). Allopregnanolone caused less I tonic increase in NER than in WIS, while it prolonged the IPSC decay time to a similar rate in the two groups. Expression of the GABAA receptor δ-subunit was decreased in the dentate gyrus of NER relative to that of WIS. Taken together, our results showed that a combination of attenuated presynaptic GABA release and extrasynaptic GABAA receptor expression reduced I tonic amplitude and its sensitivity to neurosteroids, which likely diminishes the gating function of dentate gyrus granule cells and renders NER more susceptible to seizure propagation.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Physiology, School of Medicine and Brain Research Institute, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ishimaru Y, Chiba S, Serikawa T, Sasa M, Inaba H, Tamura Y, Ishimoto T, Takasaki H, Sakamoto K, Yamaguchi K. Effects of levetiracetam on hippocampal kindling in Noda epileptic rats. Brain Res 2010; 1309:104-9. [DOI: 10.1016/j.brainres.2009.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
10
|
Ohno Y, Shimizu S, Harada Y, Morishita M, Ishihara S, Kumafuji K, Sasa M, Serikawa T. Regional expression of Fos-like immunoreactivity following seizures in Noda epileptic rat (NER). Epilepsy Res 2009; 87:70-6. [PMID: 19713079 DOI: 10.1016/j.eplepsyres.2009.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/22/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
Abstract
Noda epileptic rat (NER) is a genetic rat model of epilepsy that exhibit spontaneous generalized tonic-clonic (GTC) seizures with paroxysmal discharges. We analyzed the regional expression of Fos-like immunoreactivity (Fos-IR) following GTC seizures in NER to clarify the brain regions involved in the seizure generation. GTC seizures in NER elicited a marked increase in Fos expression in the piriform cortex, perirhinal-entorhinal cortex, insular cortex and other cortices including the motor cortex. In the limbic regions, Fos-IR was highest in the amygdalar nuclei (e.g., basomedial amygdaloid nucleus), followed by the cingulate cortex and hippocampus (i.e., dentate gyrus and CA3). As compared to the above forebrain regions, NER either with or without GTC seizures exhibited only marginal Fos expression in the basal ganglia (e.g., accumbens, striatum and globus pallidus), diencephalon (e.g., thalamus and hypothalamus) and lower brain stem structures (e.g., pons-medulla oblongata). These results suggest that GTC seizures in NER are of forebrain origin and are evoked primarily by activation of the limbic and/or cortical seizure circuits.
Collapse
Affiliation(s)
- Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka 569-1094, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kiura Y, Hanaya R, Serikawa T, Kurisu K, Sakai N, Sasa M. Involvement of Ca(2+) channels in abnormal excitability of hippocampal CA3 pyramidal cells in noda epileptic rats. J Pharmacol Sci 2003; 91:137-44. [PMID: 12686757 DOI: 10.1254/jphs.91.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Noda epileptic rat (NER) is a mutant rat, which spontaneously exhibits a tonic-clonic convulsion from 14 weeks of age. An intracellular recording study was performed to elucidate the abnormal excitability of NER hippocampal CA3 neurons. The recorded neurons were classified into two groups, group A and B neurons, according to the responses to a single stimulation of mossy fibers. In group A neurons, a stimulus elicited a long-lasting depolarization shift accompanying repetitive firings followed by after-hyperpolarization. In group B neurons, the same stimulus elicited a single spike without a long-lasting depolarization shift. Bath application of 1 mM Cd(2+), a nonselective Ca(2+) channel blocker, completely inhibited the abnormal excitation in group A neurons. We further examined the character of Ca(2+) spikes in NER CA3 neurons. Ca(2+) spikes were completely blocked by 10 microM Cd(2+) in group A neurons, but not in either group B or control neurons, suggesting that Ca(2+) channels in NER group A neurons have the hypersensitivity to Cd(2+). Analysis using subtype specific blockers of Ca(2+) channel raised the possible involvement of T-type Ca(2+) channels. These results suggest that Ca(2+) channel dysfunction is involved in the abnormal excitability of CA3 pyramidal neurons and pathogenesis of epilepsy in NER.
Collapse
Affiliation(s)
- Yoshihiro Kiura
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|