1
|
Calvo-Flores Guzmán B, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RL, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer's disease. J Neurochem 2018; 146:649-669. [DOI: 10.1111/jnc.14345] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Beatriz Calvo-Flores Guzmán
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Chitra Vinnakota
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Karan Govindpani
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Richard L.M. Faull
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research; Faculty of Medical and Health Sciences; Department of Anatomy and Medical Imaging; University of Auckland; Auckland New Zealand
| |
Collapse
|
2
|
Talarek S, Listos J, Barreca D, Tellone E, Sureda A, Nabavi SF, Braidy N, Nabavi SM. Neuroprotective effects of honokiol: from chemistry to medicine. Biofactors 2017; 43:760-769. [PMID: 28817221 DOI: 10.1002/biof.1385] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 01/15/2023]
Abstract
The incidence of neurological disorders is growing in developed countries together with increased lifespan. Nowadays, there are still no effective treatments for neurodegenerative pathologies, which make necessary to search for new therapeutic agents. Natural products, most of them used in traditional medicine, are considered promising alternatives for the treatment of neurodegenerative diseases. Honokiol is a natural bioactive phenylpropanoid compound, belonging to the class of neolignan, found in notable amounts in the bark of Magnolia tree, and has been reported to exert diverse pharmacological properties including neuroprotective activities. Honokiol can permeate the blood brain barrier and the blood-cerebrospinal fluid to increase its bioavailability in neurological tissues. Diverse studies have provided evidence on the neuroprotective effect of honokiol in the central nervous system, due to its potent antioxidant activity, and amelioration of the excitotoxicity mainly related to the blockade of glutamate receptors and reduction in neuroinflammation. In addition, recent studies suggest that honokiol can attenuate neurotoxicity exerted by abnormally aggregated Aβ in Alzheimer's disease. The present work summarizes what is currently known concerning the neuroprotective effects of honokiol and its potential molecular mechanisms of action, which make it considered as a promising agent in the treatment and management of neurodegenerative diseases. © 2017 BioFactors, 43(6):760-769, 2017.
Collapse
Affiliation(s)
- Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin 20-093, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin 20-093, Poland
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Balearic Islands, Spain
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
4
|
Marques NF, Stefanello ST, Froeder ALF, Busanello A, Boligon AA, Athayde ML, Soares FAA, Fachinetto R. Centella asiatica and Its Fractions Reduces Lipid Peroxidation Induced by Quinolinic Acid and Sodium Nitroprusside in Rat Brain Regions. Neurochem Res 2015; 40:1197-210. [PMID: 25903808 DOI: 10.1007/s11064-015-1582-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 12/23/2022]
Abstract
Oxidative stress has been implicated in several pathologies including neurological disorders. Centella asiatica is a popular medicinal plant which has long been used to treat neurological disturbances in Ayurvedic medicine. In the present study, we quantified of compounds by high performance liquid chromatography (HPLC) and examined the phenolic content of infusion, ethyl acetate, n-butanolic and dichloromethane fractions. Furthermore, we analyzed the ability of the extracts from C. asiatica to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) radical as well as total antioxidant activity through the reduction of molybdenum (VI) (Mo(6+)) to molybdenum (V) (Mo(5+)). Finally, we examined the antioxidant effect of extracts against oxidant agents, quinolinic acid (QA) and sodium nitroprusside (SNP), on homogenates of different brain regions (cerebral cortex, striatum and hippocampus). The HPLC analysis revealed that flavonoids, triterpene glycoside, tannins, phenolic acids were present in the extracts of C. asiatica and also the phenolic content assay demonstrated that ethyl acetate fraction is rich in these compounds. Besides, the ethyl acetate fraction presented the highest antioxidant effect by decreasing the lipid peroxidation in brain regions induced by QA. On the other hand, when the pro-oxidant agent was SNP, the potency of infusion, ethyl acetate and dichloromethane fractions was equivalent. Ethyl acetate fraction from C. asiatica also protected against thiol oxidation induced by SNP and QA. Thus, the therapeutic potential of C. asiatica in neurological diseases could be associated to its antioxidant activity.
Collapse
Affiliation(s)
- Naiani Ferreira Marques
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Paula-Lima AC, Brito-Moreira J, Ferreira ST. Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer's disease. J Neurochem 2013; 126:191-202. [PMID: 23668663 DOI: 10.1111/jnc.12304] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Memory loss in AD is increasingly attributed to soluble oligomers of the amyloid-β peptide (AβOs), toxins that accumulate in AD brains and target particular synapses. Glutamate receptors appear to be centrally involved in synaptic targeting by AβOs. Once bound to neurons, AβOs dysregulate the activity and reduce the surface expression of both N-methyl-D-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA) types of glutamate receptors, impairing signaling pathways involved in synaptic plasticity. In the extracellular milieu, AβOs promote accumulation of the excitatory amino acids, glutamate and D-serine. This leads to overactivation of glutamate receptors, triggering abnormal calcium signals with noxious impacts on neurons. Here, we review key findings linking AβOs to deregulated glutamate neurotransmission and implicating this as a primary mechanism of synapse failure in AD. We also discuss strategies to counteract the impact of AβOs on excitatory neurotransmission. In particular, we review evidence showing that inducing neuronal hyperpolarization via activation of inhibitory GABA(A) receptors prevents AβO-induced excitotoxicity, suggesting that this could comprise a possible therapeutic approach in AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- Department of Basic Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
6
|
Nørregaard A, Jensen SS, Kolenda J, Aaberg-Jessen C, Christensen KG, Jensen PH, Schrøder HD, Kristensen BW. Effects of Chemotherapeutics on Organotypic Corticostriatal Slice Cultures Identified by A Panel of Fluorescent and Immunohistochemical Markers. Neurotox Res 2011; 22:43-58. [DOI: 10.1007/s12640-011-9300-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 11/29/2022]
|
7
|
Lee HH, Deeb TZ, Walker JA, Davies PA, Moss SJ. NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents. Nat Neurosci 2011; 14:736-43. [PMID: 21532577 PMCID: PMC3102766 DOI: 10.1038/nn.2806] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/15/2011] [Indexed: 01/27/2023]
Abstract
KCC2 is a neuron-specific K(+)-Cl(-) co-transporter that maintains a low intracellular Cl(-) concentration that is essential for hyperpolarizing inhibition mediated by GABA(A) receptors. Deficits in KCC2 activity occur in disease states associated with pathophysiological glutamate release. However, the mechanisms by which elevated glutamate alters KCC2 function are unknown. The phosphorylation of KCC2 residue Ser940 is known to regulate its surface activity. We found that NMDA receptor activity and Ca(2+) influx caused the dephosphorylation of Ser940 in dissociated rat neurons, leading to a loss of KCC2 function that lasted longer than 20 min. Protein phosphatase 1 mediated the dephosphorylation events of Ser940 that coincided with a deficit in hyperpolarizing GABAergic inhibition resulting from the loss of KCC2 activity. Blocking dephosphorylation of Ser940 reduced the glutamate-induced downregulation of KCC2 and substantially improved the maintenance of hyperpolarizing GABAergic inhibition. Reducing the downregulation of KCC2 therefore has therapeutic potential in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Henry H.C. Lee
- Department of Neuroscience, Tufts University, Boston, MA 02111 USA
| | - Tarek Z. Deeb
- Department of Neuroscience, Tufts University, Boston, MA 02111 USA
| | - Joshua A. Walker
- Department of Neuroscience, Tufts University, Boston, MA 02111 USA
| | - Paul A. Davies
- Department of Neuroscience, Tufts University, Boston, MA 02111 USA
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University, Boston, MA 02111 USA
- Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT UK
| |
Collapse
|
8
|
Olszewski PK, Fredriksson R, Olszewska AM, Stephansson O, Alsiö J, Radomska KJ, Levine AS, Schiöth HB. Hypothalamic FTO is associated with the regulation of energy intake not feeding reward. BMC Neurosci 2009; 10:129. [PMID: 19860904 PMCID: PMC2774323 DOI: 10.1186/1471-2202-10-129] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/27/2009] [Indexed: 11/10/2022] Open
Abstract
Background Polymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH) was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal. Results Deprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin. Conclusion We conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Foran E, Trotti D. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis. Antioxid Redox Signal 2009; 11:1587-602. [PMID: 19413484 PMCID: PMC2842587 DOI: 10.1089/ars.2009.2444] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Responsible for the majority of excitatory activity in the central nervous system (CNS), glutamate interacts with a range of specific receptor and transporter systems to establish a functional synapse. Excessive stimulation of glutamate receptors causes excitotoxicity, a phenomenon implicated in both acute and chronic neurodegenerative diseases [e.g., ischemia, Huntington's disease, and amyotrophic lateral sclerosis (ALS)]. In physiology, excitotoxicity is prevented by rapid binding and clearance of synaptic released glutamate by high-affinity, Na(+)-dependent glutamate transporters and amplified by defects to the glutamate transporter and receptor systems. ALS pathogenetic mechanisms are not completely understood and characterized, but excitotoxicity has been regarded as one firm mechanism implicated in the disease because of data obtained from ALS patients and animal and cellular models as well as inferred by the documented efficacy of riluzole, a generic antiglutamatergic drug, has in patients. In this article, we critically review the several lines of evidence supporting a role for glutamate-mediated excitotoxicity in the death of motor neurons occurring in ALS, putting a particular emphasis on the impairment of the glutamate-transport system.
Collapse
Affiliation(s)
- Emily Foran
- Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
10
|
Horn AP, Frozza RL, Grudzinski PB, Gerhardt D, Hoppe JB, Bruno AN, Chagastelles P, Nardi NB, Lenz G, Salbego C. Conditioned medium from mesenchymal stem cells induces cell death in organotypic cultures of rat hippocampus and aggravates lesion in a model of oxygen and glucose deprivation. Neurosci Res 2009; 63:35-41. [DOI: 10.1016/j.neures.2008.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/15/2008] [Accepted: 10/01/2008] [Indexed: 11/16/2022]
|
11
|
BASKYS ANDRIUS, FANG LIWEI, BAYAZITOV ILDAR. Activation of Neuroprotective Pathways by Metabotropic Group I Glutamate Receptors: A Potential Target for Drug Discovery? Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00011.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Montero M, Nielsen M, Rønn LCB, Møller A, Noraberg J, Zimmer J. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils. Brain Res 2007; 1177:124-35. [PMID: 17894933 DOI: 10.1016/j.brainres.2007.08.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/08/2007] [Accepted: 08/10/2007] [Indexed: 11/17/2022]
Abstract
PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in transient global cerebral ischemia in gerbils. For in vitro studies, hippocampal slice cultures derived from 7-day-old mice and grown for 14 days, were submersed in oxygen-glucose deprived medium for 30 min and exposed to PNQX for 24 h, starting together with OGD, immediately after OGD, or 2 h after OGD. For comparison, other cultures were exposed to the NMDA antagonist MK-801 using the same protocol. Both PNQX and MK-801 displayed significant neuroprotective effects in all hippocampal subfields when present during and after OGD. When added just after OGD, only PNQX retained some neuroprotective effect. When added 2 h after OGD neither PNQX nor MK-801 had an effect. Transient global cerebral ischemia was induced in Mongolian gerbils by occlusion of both common carotid arteries for 4.5 min, with PNQX (10 mg/kg) being injected i.p. 30, 60 and 90 min after the insult. Subsequent analysis of brain sections stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral ischemia in gerbils in vivo and oxygen-glucose deprivation in mouse hippocampal slice cultures.
Collapse
Affiliation(s)
- Maria Montero
- Anatomy and Neurobiology, Institute of Medical Biology, University of Southern Denmark, Winslowparken 21st, DK-5000 Odense C, Denmark.
| | | | | | | | | | | |
Collapse
|
13
|
Mioduszewska B, Jaworski J, Szklarczyk AW, Klejman A, Kaczmarek L. Inducible cAMP early repressor (ICER)-evoked delayed neuronal death in the organotypic hippocampal culture. J Neurosci Res 2007; 86:61-70. [PMID: 17722060 DOI: 10.1002/jnr.21469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death involving gene regulation and de novo protein synthesis is a major component of both normal development and a number of disease conditions. Hence, knowledge of its mechanisms, especially transcription factors, that regulate expression of the genes involved in neurodegenerative disorders is of great importance. cAMP-responsive element-binding protein (CREB) has repeatedly been implicated in the neuronal survival. In the present study we showed that inducible cAMP early repressor (ICER), an endogenous CREB antagonist, is expressed during both excitotoxic and spontaneous neuronal cell death in organotypic hippocampal slice cultures in vitro. Furthermore, overexpression of ICER via an adenoviral vector evoked neuronal cell loss in such cultures. The time course of ICER-dependent cell death was hippocampal subdivision specific, with dentate gyrus neurons dying mostly 3-7 days after the adenovector infection, followed by CA3, where neuronal death peaked after 7 days, and then CA1, where most neuronal death occurred after 7-14 days. These results underscore the usefulness of the organotypic cultures for studies of neurodegeneration and point to neuronal loss having a multifaceted nature in a complex cellular environment.
Collapse
|
14
|
Choi Y, McClain MA, LaPlaca MC, Frazier AB, Allen MG. Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures. Biomed Microdevices 2006; 9:7-13. [PMID: 17091392 DOI: 10.1007/s10544-006-9004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In vitro tissue culture models are often benchmarked by their ability to replicate in vivo function. One of the limitations of in vitro systems is the difficulty in preserving an orchestrated cell population, especially for generating three-dimensional tissue equivalents. For example, tissue-engineering applications involve large high-density constructs, requiring a perfusing system that is able to apply adequate oxygen and nutrients to the interior region of the tissue. This is particularly true with respect to thick tissue sections harvested for in vitro culture. We have fabricated a microneedle-based perfusion device for high-cell-density in vitro tissue culture from SU-8 photosensitive epoxy and suitable post-processing. The device was tested for its ability to improve viability in slices of harvested brain tissue. This model was chosen due to its acute sensitivity to disruptions in its nutrient supply. Improved viability was visible in the short term as assessed via live-dead discriminating fluorescent staining and confocal microscopy. This perfusion system opens up many possibilities for both neurobiological as well as other culture systems.
Collapse
Affiliation(s)
- Yoonsu Choi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 791 Atlantic Dr. Atlanta, GA 30332-0250, USA
| | | | | | | | | |
Collapse
|
15
|
Holopainen IE. Organotypic Hippocampal Slice Cultures: A Model System to Study Basic Cellular and Molecular Mechanisms of Neuronal Cell Death, Neuroprotection, and Synaptic Plasticity. Neurochem Res 2005; 30:1521-8. [PMID: 16362771 DOI: 10.1007/s11064-005-8829-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2005] [Indexed: 10/25/2022]
Abstract
The hippocampus has become one of the most extensively studied areas of the mammalian brain, and its proper function is of utmost importance, particularly for learning and memory. The hippocampus is the most susceptible brain region for damage, and its impaired function has been documented in many human brain diseases, e.g. hypoxia, ischemia, and epilepsy regardless of the age of the affected patients. In addition to experimental in vivo models of these disorders, the investigation of basic anatomical, physiological, and molecular aspects requires an adequate experimental in vitro model, which should meet the requirements for well-preserved representation of various cell types, and functional information processing properties in the hippocampus. In this review, the characteristics of organotypic hippocampal slice cultures (OHCs) together with the main differences between the in vivo and in vitro preparations are first briefly outlined. Thereafter, the use of OHCs in studies focusing on neuron cell death and synaptic plasticity is discussed.
Collapse
Affiliation(s)
- Irma E Holopainen
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4, FI-20520, Turku, Finland.
| |
Collapse
|
16
|
Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST. Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of β-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 2005; 49:1140-8. [PMID: 16150468 DOI: 10.1016/j.neuropharm.2005.06.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/16/2005] [Accepted: 06/21/2005] [Indexed: 11/26/2022]
Abstract
The beta-amyloid peptide (Abeta) is centrally related to the pathogenesis of Alzheimer's disease (AD) and is potently neurotoxic to central nervous system neurons. The neurotoxicity of Abeta has been partially related to the over activation of glutamatergic transmission and excitotoxicity. Taurine is a naturally occurring beta-amino acid present in the mammalian brain. Due to its safety and tolerability, taurine has been clinically used in humans in the treatment of a number of non-neurological disorders. Here, we show that micromolar doses of taurine block the neurotoxicity of Abeta to rat hippocampal and cortical neurons in culture. Moreover, taurine also rescues central neurons from the excitotoxicity induced by high concentrations of extracellular glutamate. Neuroprotection by taurine is abrogated by picrotoxin, a GABA(A) receptor antagonist. GABA and muscimol, an agonist of the GABA(A) receptor, also block neuronal death induced by Abeta in rat hippocampal and cortical neurons. These results suggest that activation of GABA(A) receptors protects neurons against Abeta toxicity in AD-affected regions of the mammalian brain and that taurine should be investigated as a novel therapeutic tool in the treatment of AD and of other neurological disorders in which excitotoxicity plays a relevant role.
Collapse
Affiliation(s)
- Andréa C Paula-Lima
- Instituto de Bioquímica Médica, Programa de Bioquimica e Biofisica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | |
Collapse
|
17
|
Lange-Asschenfeldt C, Raval AP, Pérez-Pinzón MA. Ischemic tolerance induction in organotypic hippocampal slices: role for the GABA(A) receptor? Neurosci Lett 2005; 384:87-92. [PMID: 15908115 DOI: 10.1016/j.neulet.2005.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Revised: 03/30/2005] [Accepted: 04/16/2005] [Indexed: 11/15/2022]
Abstract
Ischemic preconditioning (IPC) refers to sublethal ischemic insults rendering brain tissue tolerant against subsequent ischemic insults. We investigated the role of the GABA(A) receptor (GABA(A)R) upon IPC induction. Rat organotypic hippocampal slices were subjected to IPC by 15 min of oxygen-glucose deprivation (OGD) followed by 40 min of OGD 48 h later, resulting in robust cell death reduction as assessed by the propidium iodide fluorescence method ('late' or 'second window' IPC). Superfusion with the GABA(A)R antagonist bicuculline during IPC ameliorated propidium iodide uptake at a high but not at low doses indicating that GABA(A)R activation may be assigned a limited role in neuroprotection. In previous studies, we found that increased neuronal excitability can promote IPC neuroprotection. We, therefore, tested the hypothesis that blockade of inhibitory GABAergic transmission conferred ischemic tolerance. However, temporary administration of bicuculline 48 h prior to ischemic challenge was not neuroprotective. In another approach, we tested whether preconditioning with the GABA(A)R agonist, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) mediated ischemic tolerance and found no significant neuroprotection. The results are discussed in light of the intrinsic excitatory-inhibitory balance of glutamate and GABA.
Collapse
Affiliation(s)
- Christian Lange-Asschenfeldt
- Cerebral Vascular Disease Research Center, Department of Neurology and Neuroscience, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
18
|
Han C, Kasai N, Torimitsu K. CA2: the most vulnerable sector to bicuculline exposure in rat hippocampal slice cultures. Neuroreport 2005; 16:333-6. [PMID: 15729133 DOI: 10.1097/00001756-200503150-00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vulnerability of the CA2 sector to chronic exposure to bicuculline was investigated in rat hippocampal slice cultures. Selective neuronal cell death was observed only in the CA2 sector after exposure to 6 microM bicuculline for 12 h, but the effect of the cell toxicity extended to the CA3 sector after 24 h. The effect was increased by adding 20 microM roscovitine but was reduced by adding 200 nM omega-agatoxin IVA. Bicuculline also induced a calcium influx into neuronal cells mainly in the CA2 sector. These results suggest that CA2 is the most vulnerable sector to bicuculline exposure in hippocampal slice cultures, and that neuronal cell death in the CA2 sector involves the P/Q-type voltage-dependent calcium channel.
Collapse
Affiliation(s)
- Chunxi Han
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
| | | | | |
Collapse
|
19
|
Manome Y, Nakayama N, Nakayama K, Furuhata H. Insonation facilitates plasmid DNA transfection into the central nervous system and microbubbles enhance the effect. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:693-702. [PMID: 15866419 DOI: 10.1016/j.ultrasmedbio.2005.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 01/19/2005] [Accepted: 01/27/2005] [Indexed: 05/02/2023]
Abstract
Many of the diseases which affect the central nervous system are intractable to conventional therapies and therefore require alternative treatments such as gene therapy. Therapy requires safety, since the central nervous system is a critical organ. Choice of nonviral vectors such as naked plasmid DNA may have merit. However, transfection efficiencies of these vectors are low. We have investigated the use of 210.4 kHz ultrasound and found that 5.0 W/cm(2) of insonation for 5 s most effectively transfected a plasmid DNA into culture slices of mouse brain (147.68-fold increase compared with 0 W/cm(2) of insonation for 5 s). The effect was reinforced by combination with echo contrast agent, Levovist. One hundred fifty mg/mL of Levovist significantly increased gene transfection by ultrasound (5.23-fold when insonated at 5.0 W/cm(2) for 5 s). When DNA was intracranially injected, Levovist also enhanced gene transfection in newborn mice (4.49-fold increase when insonated at 5.0 W/cm(2) for 5 s). Since ultrasound successfully transfected naked plasmid DNA into the neural tissue and Levovist enhanced the effect, this approach may have a significant role in gene transfer to the central nervous system.
Collapse
Affiliation(s)
- Yoshinobu Manome
- Department of Molecular Cell Biology, Institute of DNA Medicine, Research Center for Medical Science, Jikei University School of medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo, Japan 105-8461.
| | | | | | | |
Collapse
|