1
|
Diquigiovanni C, Rizzardi N, Cataldi-Stagetti E, Gozzellino L, Isidori F, Valenti F, Orsini A, Astolfi A, Giangregorio T, Pironi L, Boschetti E, Arrigo S, Maresca A, Magnoni P, Costanzini A, Carelli V, Taniguchi-Ikeda M, Fato R, Bergamini C, De Giorgio R, Bonora E. Glutamine Supplementation as a Novel Metabolic Therapeutic Strategy for LIG3-Dependent Chronic Intestinal Pseudo-Obstruction. Gastroenterology 2025; 168:68-83. [PMID: 39173721 DOI: 10.1053/j.gastro.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND & AIMS We recently identified a recessive syndrome due to DNA ligase 3 (LIG3) mutations in patients with chronic intestinal pseudo-obstruction, leukoencephalopathy, and neurogenic bladder. LIG3 mutations affect mitochondrial DNA maintenance, leading to defective energy production. We aimed at identifying altered molecular pathways and developing possible targeted treatments to revert/ameliorate the cellular energy impairment. METHODS Whole transcriptome analysis was performed on patient-derived fibroblasts total RNA and controls. Mitochondrial function, mitophagy, and l-glutamine supplementation effects were analyzed by live cell analysis, immunostaining, and Western blot. Patients were treated with Dipeptiven (Fresenius-Kabi) according to standard protocols. Patients' symptoms were analyzed by the Gastrointestinal Symptom Rating Scale questionnaire. RESULTS We identified deregulated transcripts in mutant fibroblasts vs controls, including overexpression of genes involved in extracellular matrix development and remodeling and mitochondrial functions. Gut biopsy specimens of LIG3-mutant patients documented collagen and elastic fiber accumulation. Mutant fibroblasts exhibited impaired mitochondrial mitophagy indicative of dysfunctional turnover and altered Ca2+ homeostasis. Supplementation with l-glutamine (6 mmol/L), previously shown to increase mitochondrial DNA-defective cell survival, improved growth rate and adenosine 5'-triphosphate production in LIG3-mutant fibroblasts. These data led us to provide parenterally a dipeptide containing l-glutamine to 3 siblings carrying biallelic LIG3 mutations. Compared with baseline, gastrointestinal and extra-gastrointestinal symptoms significantly improved after 8 months of treatment. CONCLUSIONS LIG3 deficiency leads to mitochondrial dysfunction. High levels l-glutamine supplementation were beneficial in LIG3-mutant cells and improved symptom severity without noticeable adverse effects. Our results provide a proof of concept to design ad hoc clinical trials with l-glutamine in LIG3-mutant patients.
Collapse
Affiliation(s)
- Chiara Diquigiovanni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Livia Gozzellino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Federica Isidori
- Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Arianna Orsini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tania Giangregorio
- Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Loris Pironi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Boschetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Serena Arrigo
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Maresca
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Penelope Magnoni
- Istituto di Ricovero e Cura a Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Mariko Taniguchi-Ikeda
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Yan X, Zhao Z, Feng S, Zhang Y, Wang Z, Li Z. Multi-omics analysis reveal the fall armyworm Spodoptera frugiperda tolerate high temperature by mediating chitin-related genes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104192. [PMID: 39401552 DOI: 10.1016/j.ibmb.2024.104192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Climate change facilitates the rapid invasion of agricultural pests, threatening global food security. The fall armyworm Spodoptera frugiperda is a highly polyphagous migratory pest tolerant to high temperatures, allowing its proliferation in harsh thermal environments. We aimed to demonstrate mechanisms of its high-temperature tolerance, particularly transcriptional and metabolic regulation, which are poorly understood. To achieve the aim, we examined the impact and mechanism of heat events on S. frugiperda by using multiple approaches: ecological measurements, transcriptomics, metabolomics, RNAi, and CRISPR/Cas9 technology. We observed that several physiological indices (larval survival rate, larval period, pupation rate, pupal weight, eclosion rate, and average fecundity) decreased as the temperature increased, with the 32 °C treatment displaying a significant difference from the control group at 26 °C. Significantly upregulated expression of genes encoding endochitinase and chitin deacetylase was observed in the chitin-binding, extracellular region, and carbohydrate metabolic process GO terms of hemolymph, fat body, and brain, exhibiting a tissue-specific pattern. Significantly enriched pathways (e.g., cutin, suberin, and wax biosynthesis; oxidative phosphorylation and cofactor biosynthesis; diverse amino acid biosynthesis and degradation; carbon metabolism; and energy metabolism), all of which are essential for S. frugiperda larvae to tolerate temperature, were found in metabolites that were expressed differently. Successful RNA interference targeting of the three chitin-related genes reduced gene expression levels and larval survival rate. Knockout of the endochitinase gene by using the CRISPR/Cas9 system significantly reduced the relative gene expression and increased sensitivity to high-temperature exposure. On the basis of our findings, theoretical foundations for understanding the high-temperature tolerance of S. frugiperda populations and latent genetic control strategies were established.
Collapse
Affiliation(s)
- Xiaorui Yan
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Zihua Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhihong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
3
|
Luo X, Liu Y, Balck A, Klein C, Fleming RMT. Identification of metabolites reproducibly associated with Parkinson's Disease via meta-analysis and computational modelling. NPJ Parkinsons Dis 2024; 10:126. [PMID: 38951523 PMCID: PMC11217404 DOI: 10.1038/s41531-024-00732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Many studies have reported metabolomic analysis of different bio-specimens from Parkinson's disease (PD) patients. However, inconsistencies in reported metabolite concentration changes make it difficult to draw conclusions as to the role of metabolism in the occurrence or development of Parkinson's disease. We reviewed the literature on metabolomic analysis of PD patients. From 74 studies that passed quality control metrics, 928 metabolites were identified with significant changes in PD patients, but only 190 were replicated with the same changes in more than one study. Of these metabolites, 60 exclusively increased, such as 3-methoxytyrosine and glycine, 54 exclusively decreased, such as pantothenic acid and caffeine, and 76 inconsistently changed in concentration in PD versus control subjects, such as ornithine and tyrosine. A genome-scale metabolic model of PD and corresponding metabolic map linking most of the replicated metabolites enabled a better understanding of the dysfunctional pathways of PD and the prediction of additional potential metabolic markers from pathways with consistent metabolite changes to target in future studies.
Collapse
Affiliation(s)
- Xi Luo
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Yanjun Liu
- School of Medicine, University of Galway, University Rd, Galway, Ireland
| | - Alexander Balck
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Christine Klein
- Institute of Neurogenetics and Department of Neurology, University of Luebeck and University Hospital Schleswig-Holstein, Luebeck, Germany
| | - Ronan M T Fleming
- School of Medicine, University of Galway, University Rd, Galway, Ireland.
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands.
| |
Collapse
|
4
|
Gao Z, Batool R, Xie W, Huang X, Wang Z. Transcriptome and Metabolome Analysis Reveals the Importance of Amino-Acid Metabolism in Spodoptera Frugiperda Exposed to Spinetoram. INSECTS 2022; 13:852. [PMID: 36135553 PMCID: PMC9504701 DOI: 10.3390/insects13090852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 05/31/2023]
Abstract
Pests are inevitably exposed to sublethal and lethal doses in the agroecosystem following the application of pesticides indispensable to protect food sources. The effect of spinetoram on amino-acid metabolism of fall armyworm, Spodoptera frugiperda (J.E. Smith), was investigated, at the dose of LC10 and LC90, by transcriptome and LC-MS/MS analysis. Using statistics-based analysis of both POS and NEG mode, a total of 715,501 metabolites in S. frugiperda were significantly changed after spinetoram treatment. The enhancement of glucose metabolism provides energy support for detoxification in larvae. The decrease in valine and isoleucine is associated with an increase in leucine, without maintaining the conservation of citric acid in the larvae. The down-regulation of phenylalanine may retard the tricarboxylic acid cycle to produce GTP. The abundance of lysine was decreased in response to spinetoram exposure, which damages the nervous system of the larvae. The abundance of arginine increases and causes non-functional contraction of the insect's muscles, causing the larva to expend excess energy. Tryptophan provides an important substrate for eliminating ROS. The changes in glutamic acid, aspartic acid, and lysine cause damage to the nerve centers of the larvae. The results of transcriptome and LC-MS/MS analysis revealed the effects of pesticide exposure on amino-acid metabolism of S. frugiperda successfully and provide a new overview of the response of insect physio-biochemistry against pesticides.
Collapse
Affiliation(s)
- Zupeng Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weifeng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xiaodan Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Engineering Research Center of Natural Enemy Insects/Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Liu G, Yu Q, Tan B, Ke X, Zhang C, Li H, Zhang T, Lu Y. Gut dysbiosis impairs hippocampal plasticity and behaviors by remodeling serum metabolome. Gut Microbes 2022; 14:2104089. [PMID: 35876011 PMCID: PMC9327780 DOI: 10.1080/19490976.2022.2104089] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Accumulating evidence suggests that gut microbiota as a critical mediator of gut-brain axis plays an important role in human health. Altered gut microbial profiles have been implicated in increasing the vulnerability of psychiatric disorders, such as autism, depression, and schizophrenia. However, the cellular and molecular mechanisms underlying the association remain unknown. Here, we modified the gut microbiome with antibiotics in newborn mice, and found that gut microbial alteration induced behavioral impairment by decreasing adult neurogenesis and long-term potentiation of synaptic transmission, and altering the gene expression profile in hippocampus. Reconstitution with normal gut flora produced therapeutic effects against both adult neurogenesis and behavioral deficits in the dysbiosis mice. Furthermore, our results show that circulating metabolites changes mediate the effect of gut dysbiosis on hippocampal plasticity and behavior outcomes. Elevating the serum 4-methylphenol, a small aromatic metabolite produced by gut bacteria, was found to induce autism spectrum disorder (ASD)-like behavior impairment and hippocampal dysfunction. Together our finding demonstrates that early-life gut dysbiosis and its correlated metabolites change contribute to hippocampal dysfunction and behavior impairment, hence highlight the potential microbiome-mediated therapies for treating psychiatric disorders.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Quntao Yu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Bo Tan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Xiao Ke
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Chen Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Hao Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China
| | - Tongmei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, province, China,Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, province, China,CONTACT Youming Lu Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan4030030, China
| |
Collapse
|
6
|
Gonzalez-Riano C, Saiz J, Barbas C, Bergareche A, Huerta JM, Ardanaz E, Konjevod M, Mondragon E, Erro ME, Chirlaque MD, Abilleira E, Goñi-Irigoyen F, Amiano P. Prognostic biomarkers of Parkinson's disease in the Spanish EPIC cohort: a multiplatform metabolomics approach. NPJ Parkinsons Dis 2021; 7:73. [PMID: 34400650 PMCID: PMC8368017 DOI: 10.1038/s41531-021-00216-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The lack of knowledge about the onset and progression of Parkinson's disease (PD) hampers its early diagnosis and treatment. Metabolomics might shed light on the PD imprint seeking a broader view of the biochemical remodeling induced by this disease in an early and pre-symptomatic stage and unveiling potential biomarkers. To achieve this goal, we took advantage of the great potential of the European Prospective Study on Nutrition and Cancer (EPIC) cohort to apply metabolomics searching for early diagnostic PD markers. This cohort consisted of healthy volunteers that were followed for around 15 years until June 2011 to ascertain incident PD. For this untargeted metabolomics-based study, baseline preclinical plasma samples of 39 randomly selected individuals that developed PD (Pre-PD group) and the corresponding control group were analyzed using a multiplatform approach. Data were statistically analyzed and exposed alterations in 33 metabolites levels, including significantly lower levels of free fatty acids (FFAs) in the preclinical samples from PD subjects. These results were then validated by adopting a targeted HPLC-QqQ-MS approach. After integrating all the metabolites affected, our finding revealed alterations in FFAs metabolism, mitochondrial dysfunction, oxidative stress, and gut-brain axis dysregulation long before the development of PD hallmarks. Although the biological purpose of these events is still unknown, the remodeled metabolic pathways highlighted in this work might be considered worthy prognostic biomarkers of early prodromal PD. The findings revealed by this work are of inestimable value since this is the first study conducted with samples collected many years before the disease development.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Jorge Saiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - Alberto Bergareche
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain.
- Disorders Unit, Department of Neurology, University Hospital Donostia, San Sebastián, Spain.
- Biomedical Research Networking Centre Consortium for the Area of Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| | - José Mª Huerta
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Ardanaz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Instituto de Salud Pública de Navarra, Pamplona, Spain
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Elisabet Mondragon
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - M E Erro
- Department of Neurology, Complejo Hospitalario de Navarra, IdiSNA (Navarra Institute for Health Research), Pamplona, Spain
| | - M Dolores Chirlaque
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eunate Abilleira
- Public Health Laboratory in Gipuzkoa, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Fernando Goñi-Irigoyen
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Laboratory in Gipuzkoa, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Pilar Amiano
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Public Health Laboratory in Gipuzkoa, Biodonostia Health Research Institute, San Sebastián, Spain
| |
Collapse
|
7
|
An integrated metagenomics and metabolomics approach implicates the microbiota-gut-brain axis in the pathogenesis of Huntington's disease. Neurobiol Dis 2020; 148:105199. [PMID: 33249136 DOI: 10.1016/j.nbd.2020.105199] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder with onset and severity of symptoms influenced by various environmental factors. Recent discoveries have highlighted the importance of the gastrointestinal microbiome in mediating the gut-brain-axis bidirectional communication via circulating factors. Using shotgun sequencing, we investigated the gut microbiome composition in the R6/1 transgenic mouse model of HD from 4 to 12 weeks of age (early adolescent through to adult stages). Targeted metabolomics was also performed on the blood plasma of these mice (n = 9 per group) at 12 weeks of age to investigate potential effects of gut dysbiosis on the plasma metabolome profile. RESULTS Modelled time profiles of each species, KEGG Orthologs and bacterial genes, revealed heightened volatility in the R6/1 mice, indicating potential early effects of the HD mutation in the gut. In addition to gut dysbiosis in R6/1 mice at 12 weeks of age, gut microbiome function was perturbed. In particular, the butanoate metabolism pathway was elevated, suggesting increased production of the protective SCFA, butyrate, in the gut. No significant alterations were found in the plasma butyrate and propionate levels in the R6/1 mice at 12 weeks of age. The statistical integration of the metagenomics and metabolomics unraveled several Bacteroides species that were negatively correlated with ATP and pipecolic acid in the plasma. CONCLUSIONS The present study revealed the instability of the HD gut microbiome during the pre-motor symptomatic stage of the disease which may have dire consequences on the host's health. Perturbation of the HD gut microbiome function prior to significant cognitive and motor dysfunction suggest the potential role of the gut in modulating the pathogenesis of HD, potentially via specific altered plasma metabolites which mediate gut-brain signaling.
Collapse
|
8
|
Glutaminolysis and lipoproteins are key factors in late immune recovery in successfully treated HIV-infected patients. Clin Sci (Lond) 2019; 133:997-1010. [PMID: 30952809 DOI: 10.1042/cs20190111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
Abstract
The immunological, biochemical and molecular mechanisms associated with poor immune recovery are far from known, and metabolomic profiling offers additional value to traditional soluble markers. Here, we present novel and relevant data that could contribute to better understanding of the molecular mechanisms preceding a discordant response and HIV progression under suppressive combined antiretroviral therapy (cART). Integrated data from nuclear magnetic resonance (NMR)-based lipoprotein profiles, mass spectrometry (MS)-based metabolomics and soluble plasma biomarkers help to build prognostic and immunological progression tools that enable the differentiation of HIV-infected subjects based on their immune recovery status after 96 weeks of suppressive cART. The metabolomic signature of ART-naïve HIV subjects with a subsequent late immune recovery is the expression of pro-inflammatory molecules and glutaminolysis, which is likely related to elevate T-cell turnover in these patients. The knowledge about how these metabolic pathways are interconnected and regulated provides new targets for future therapeutic interventions not only in HIV infection but also in other metabolic disorders such as human cancers where glutaminolysis is the alternative pathway for energy production in tumor cells to meet their requirement of rapid proliferation.
Collapse
|
9
|
Natarajan SK, Muthukrishnan E, Khalimonchuk O, Mott JL, Becker DF. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem 2016; 118:1678-1688. [PMID: 27922192 DOI: 10.1002/jcb.25825] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023]
Abstract
Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583
| | - Ezhumalai Muthukrishnan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, 68583
| | - Oleh Khalimonchuk
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| | - Justin L Mott
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588
| |
Collapse
|
10
|
Reciprocal Control of Thyroid Binding and the Pipecolate Pathway in the Brain. Neurochem Res 2016; 42:217-243. [DOI: 10.1007/s11064-016-2015-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
|
11
|
Jin Y, Tsuchiya A, Kanno T, Nishizaki T. Amyloid-β peptide increases cell surface localization of α7 ACh receptor to protect neurons from amyloid β-induced damage. Biochem Biophys Res Commun 2015; 468:157-60. [PMID: 26522221 DOI: 10.1016/j.bbrc.2015.10.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 11/27/2022]
Abstract
Amyloid-β peptide 1-42 (Aβ1-42) reduced PC-12 cell viability in a concentration (1-10 μM)- and treatment time (48-72 h)-dependent manner. Nicotine prevented Aβ1-42-induced PC-12 cell death, but conversely, the α7 ACh receptor antagonist α-bungarotoxin enhanced Aβ1-42-induced cell toxicity. Extracellularly applied Aβ1-42 significantly increased cell surface localization of α7 ACh receptor in PC-12 cells as compared with that for non-treated control cells. Cell surface localization of α7 ACh receptor in the brain of 5xFAD mouse, an animal model of Alzheimer's disease (AD), apparently increased in an age (1-12 months)-dependent manner in association with increased accumulation of Aβ1-42 in the plasma membrane component. Taken together, these results indicate that Aβ1-42 promotes translocation of α7 ACh receptor towards the cell surface and that α7 ACh receptor rescues neuronal cells from Aβ1-42-induced damage.
Collapse
Affiliation(s)
- Yu Jin
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | - Tomoyuki Nishizaki
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| |
Collapse
|
12
|
Li Y, Zhang L, Chen H, Koštál V, Simek P, Moos M, Denlinger DL. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:34-46. [PMID: 26005120 DOI: 10.1016/j.ibmb.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 05/23/2023]
Abstract
The ectoparasitoid wasp, Nasonia vitripennis can enhance its cold tolerance by exploiting a maternally-induced larval diapause. A simple manipulation of the fly host diapause status and supplementation of the host diet with proline also dramatically increase cold tolerance in the parasitoid. In this study, we used a metabolomics approach to define alterations in metabolite profiles of N. vitripennis caused by diapause in the parasitoid, diapause of the host, and augmentation of the host's diet with proline. Metabolic profiles of diapausing and nondiapausing parasitoid were significantly differentiated, with pronounced distinctions in levels of multiple cryoprotectants, amino acids, and carbohydrates. The dynamic nature of diapause was underscored by a shift in the wasp's metabolomic profile as the duration of diapause increased, a feature especially evident for increased concentrations of a suite of cryoprotectants. Metabolic pathways involved in amino acid and carbohydrate metabolism were distinctly enriched during diapause in the parasitoid. Host diapause status also elicited a pronounced effect on metabolic signatures of the parasitoid, noted by higher cryoprotectants and elevated compounds derived from glycolysis. Proline supplementation of the host diet did not translate directly into elevated proline in the parasitoid but resulted in an alteration in the abundance of many other metabolites, including elevated concentrations of essential amino acids, and reduction in metabolites linked to energy utilization, lipid and amino acid metabolism. Thus, the enhanced cold tolerance of N. vitripennis associated with proline augmentation of the host diet appears to be an indirect effect caused by the metabolic perturbations associated with diet supplementation.
Collapse
Affiliation(s)
- Yuyan Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
| | - Lisheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongyin Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vladimir Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Simek
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
13
|
Shyti R, Kohler I, Schoenmaker B, Derks RJE, Ferrari MD, Tolner EA, Mayboroda OA, van den Maagdenberg AMJM. Plasma metabolic profiling after cortical spreading depression in a transgenic mouse model of hemiplegic migraine by capillary electrophoresis – mass spectrometry. MOLECULAR BIOSYSTEMS 2015; 11:1462-71. [DOI: 10.1039/c5mb00049a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cortical spreading depression-induced brain metabolic changes have been captured in the plasma of a transgenic migraine mouse model using CE-MS.
Collapse
Affiliation(s)
- Reinald Shyti
- Department of Human Genetics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Isabelle Kohler
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Bart Schoenmaker
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Rico J. E. Derks
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Michel D. Ferrari
- Department of Neurology
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Else A. Tolner
- Department of Neurology
- Leiden University Medical Center
- Leiden
- The Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics
- Leiden University Medical Center
- Leiden
- The Netherlands
| | | |
Collapse
|
14
|
Zhang SN, Li XZ, wang Y, zhang N, Yang ZM, Liu SM, Lu F. Neuroprotection or neurotoxicity? new insights into the effects of Acanthopanax senticosus harms on nervous system through cerebral metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 156:290-300. [PMID: 25223591 DOI: 10.1016/j.jep.2014.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/30/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthopanax senticosus harms (AS), also called "Ciwujia" in Chinese and "Siberian ginseng" in the Siberian Taiga region, is the herb used in traditional medicinal systems in China and Russia, which has been applied to the treatment of various nervous and cerebrovascular diseases, such as depression, mental fatigue, and transient global cerebral ischemia. The previous research works usually tended to focus on the neuroprotective effects of AS, but ignored its additional effects that are not entirely beneficial to the nervous system. Therefore, to discover the potential intervention targets of AS and evaluate their roles in the nervous system are the urgent problems. MATERIALS AND METHODS Ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods were integrated to investigate the metabolic profiles of AS-treated rats. The analysis of possible pathways influenced by AS was performed by ingenuity pathway analysis (IPA) with MetPA. RESULTS Treated with AS, 16 modulated metabolites were identified and considered as the potential intervention targets of AS, out of which 3 metabolites had protective effects on the nervous system, whereas 7 metabolites showed the neurotoxicity. CONCLUSION These results may reveal that the effects of AS on nervous system had two sides, and it could not only exert the neuroprotection but also produce some potential neurotoxicity.
Collapse
Affiliation(s)
- Shuai-nan Zhang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Xu-zhao Li
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Yu wang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Na zhang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Zhi-ming Yang
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China
| | - Shu-min Liu
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China; Drug Safety Evaluation Center, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China.
| | - Fang Lu
- Chinese Medicine Toxicological Laboratory, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, He Ping Road 24, Harbin 150040, PR China.
| |
Collapse
|
15
|
Hallen A, Jamie JF, Cooper AJL. Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 2013; 45:1249-72. [PMID: 24043460 DOI: 10.1007/s00726-013-1590-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 12/23/2022]
Abstract
The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of ∆(1)-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate ∆(1)-piperideine-2-carboxylate (P2C) and its reduced metabolite L-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to L-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3'-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The inter-relationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway.
Collapse
Affiliation(s)
- André Hallen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Balaclava Road, North Ryde, NSW, 2109, Australia,
| | | | | |
Collapse
|
16
|
Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, Benno Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci 2013; 7:9. [PMID: 23630473 PMCID: PMC3632785 DOI: 10.3389/fnsys.2013.00009] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 04/01/2013] [Indexed: 12/14/2022] Open
Abstract
Recent studies suggest that intestinal microbiota influences gut-brain communication. In this study, we aimed to clarify the influence of intestinal microbiota on cerebral metabolism. We analyzed the cerebral metabolome of germ-free (GF) mice and Ex-GF mice, which were inoculated with suspension of feces obtained from specific pathogen-free mice, using capillary electrophoresis with time-of-flight mass spectrometry (CE-TOFMS). CE-TOFMS identified 196 metabolites from the cerebral metabolome in both GF and Ex-GF mice. The concentrations of 38 metabolites differed significantly (p < 0.05) between GF and Ex-GF mice. Approximately 10 of these metabolites are known to be involved in brain function, whilst the functions of the remainder are unclear. Furthermore, we observed a novel association between cerebral glycolytic metabolism and intestinal microbiota. Our work shows that cerebral metabolites are influenced by normal intestinal microbiota through the microbiota-gut-brain axis, and indicates that normal intestinal microbiota closely connected with brain health and disease, development, attenuation, learning, memory, and behavior.
Collapse
Affiliation(s)
- Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co. Ltd. Hinode-machi, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Hua Y, Qiu Y, Zhao A, Wang X, Chen T, Zhang Z, Chi Y, Li Q, Sun W, Li G, Cai Z, Zhou Z, Jia W. Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation. J Proteome Res 2011; 10:3513-21. [PMID: 21661735 DOI: 10.1021/pr200147g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
While extensive evidence indicates that tumor cells shift their global metabolic programs, the molecular details of the metabolic transformation in tumor invasion, progression, and metastasis remain largely unknown. Characterization of the time-dependent metabolic shift during the tumor invasion, development, and metastasis will describe an important aspect of tumor phenotypes and potentially allow us to design therapies that inhibit tumor cell movement. In this study, a metabonomic study was performed to characterize the global metabolic changes during the process of tumor invasion and metastasis to lung in a mouse model with subcutaneous transplantation of murine osteosarcoma cell line (LM8). The serum metabolic profiling revealed that many key metabolites in glycolysis and tricarboxylic acid (TCA) cycle, as well as most of the amino acids were elevated at rapidly growing stage of tumor, presumably resulting from a high energy demand and turnover of anabolic metabolism during the tumor cell proliferation. Serum levels of succinic acid and proline significantly increased (with fold change FC = 10.75 and 4.43, relative to controls) among all the metabolites in the third week. The serum metabolic profile of lung metastasis at week 4 was different from that at week 3, in that most of previously increased serum metabolites were found decreased, except for cholesterol and several free fatty acids, suggesting lowered carbohydrate and amino acids metabolism, but an elevated lipid metabolism associated with tumor metastasis.
Collapse
Affiliation(s)
- Yingqi Hua
- Musculoskeletal Oncology Center, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kanno T, Nishizaki T. Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase-3/-9 via a mitochondrial pathway linked to SDK/14-3-3 protein/Bax/cytochrome c. J Cell Physiol 2011; 226:2329-37. [DOI: 10.1002/jcp.22571] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog Lipid Res 2007; 46:328-75. [PMID: 17765976 DOI: 10.1016/j.plipres.2007.07.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/13/2007] [Accepted: 07/02/2007] [Indexed: 12/01/2022]
Abstract
Nowadays, about 200 natural allenic metabolites, more than 2700 synthetic allenic compounds, and about 1300 cumulenic structures are known. The present review describes research on natural as well as some biological active allenic and cumulenic lipids and related compounds isolated from different sources. Intensive searches for new classes of pharmacologically potent agents produced by living organisms have resulted in the discovery of dozens of such compounds possessing high anticancer, cytotoxic, antibacterial, antiviral, and other activities. Known allenic and cumulenic compounds can be subdivided on several structural classes: fatty acids, hydrocarbons, terpenes, steroids, carotenoids, marine bromoallenes, peptides, aromatic, cumulenic, and miscellaneous compounds. This review emphasizes the role of natural and synthetic allenic and cumulenic lipids and other related compounds as an important source of leads for drug discovery.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, P.O. Box 12065, Hebrew University, Jerusalem 91120, Israel.
| | | |
Collapse
|
20
|
Moulin M, Deleu C, Larher F, Bouchereau A. The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:474-82. [PMID: 17023168 DOI: 10.1016/j.plaphy.2006.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 07/25/2006] [Indexed: 05/12/2023]
Abstract
Higher plant responses to abiotic stresses are associated with physiological and biochemical changes triggering a number of metabolic adjustments. We focused on L-lysine catabolism, and have previously demonstrated that degradation of this amino acid is osmo-regulated at the level of lysine-ketoglutarate reductase (LKR, EC 1.5.1.8) and saccharopine dehydrogenase (SDH, EC 1.5.1.9) in Brassica napus. LKR and SDH activities are enhanced by decreasing osmotic potential and decrease when the upshock osmotic treatment is followed by a downshock osmotic one. Moreover we have shown that the B. napus LKR/SDH gene is up-regulated in osmotically-stressed tissues. The LKR/SDH activity produces alpha-aminoadipate semialdehyde which could be further converted into alpha-aminoadipate and acetyl CoA. Alternatively alpha-aminoadipate could behave as a precursor for pipecolic acid. Pipecolic acid is described as an osmoprotectant in bacteria and is co-accumulated with proline in halophytic plants. We suggest that osmo-induction of the LKR/SDH activity could be partly responsible for pipecolic acid accumulation. This proposal has been assessed in this study through pipecolic acid amounts determination in rape leaf discs subjected to various upshift and downshift osmotic treatments. Changes in pipecolic acid level actually behave as those observed for LKR and SDH activities, since it increases or decreases in rape leaf discs treated under hyper- or hypo-osmotic conditions, respectively. In addition we show that pipecolic acid level is positively correlated with the external osmotic potential as well as with the duration of the applied treatment. On the other hand pipecolic acid level is related to the availability of L-lysine and not to that of D-lysine. Collectively the results obtained demonstrate that lysine catabolism through LKR/SDH activity is involved in osmo-induced synthesis of pipecolic acid.
Collapse
Affiliation(s)
- M Moulin
- Plant Metabolism, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
21
|
Peduto A, Baumgartner MR, Verhoeven NM, Rabier D, Spada M, Nassogne MC, Poll-The BTT, Bonetti G, Jakobs C, Saudubray JM. Hyperpipecolic acidaemia: a diagnostic tool for peroxisomal disorders. Mol Genet Metab 2004; 82:224-30. [PMID: 15234336 DOI: 10.1016/j.ymgme.2004.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 03/12/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
Peroxisomal disorders include a complex spectrum of diseases, characterized by a high heterogeneity from both the clinical and the biochemical points of view. Specific assays are required for the study of peroxisome metabolism. Among these, pipecolic acid evaluation is considered as a supplementary test. We have established the diagnostic role of pipecolic acid in 30 patients affected by a peroxisomal defect (5 Zellweger syndromes, 10 Infantile Refsum diseases, 1 neonatal adrenoleukodystrophy, 6 patients affected by a peroxisomal biogenesis disorder with unclassified phenotype, 1 case of rhizomelic chondrodysplasia punctata (RCDP), 2 acyl-CoA oxidase deficiencies, 2 bifunctional enzyme deficiencies, 2 Refsum diseases, and 1 beta-oxidation deficiency). Pipecolic acid was increased in all generalized peroxisomal disorders, while normal pipecolic acid with abnormal very long chain fatty acid concentrations was strong evidence for a single peroxisomal enzyme deficiency. Unexpectedly, hyperpipecolic acidaemia was found also in a child affected by RCDP and in two patients with Refsum disease. In six patients the suggestion of a peroxisomal disorder was raised by the fortuitous finding of a pipecolic acid peak in amino acid chromatography, routinely performed as a general metabolic screening. For all patients, pipecolic acid proved to be a useful parameter in the biochemical classification of peroxisomal disorders.
Collapse
|