1
|
Dar KB, Bhat AH, Amin S, Reshi BA, Zargar MA, Masood A, Ganie SA. Elucidating Critical Proteinopathic Mechanisms and Potential Drug Targets in Neurodegeneration. Cell Mol Neurobiol 2020; 40:313-345. [PMID: 31584139 DOI: 10.1007/s10571-019-00741-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aβ) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer's, Parkinson's and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aβ, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood-brain barrier.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India.
| |
Collapse
|
2
|
Wu M, Kim SH, Datta I, Levin A, Dyson G, Li J, Kaypee S, Swamy MM, Gupta N, Kwon HJ, Menon M, Kundu TK, Reddy GPV. Hydrazinobenzoylcurcumin inhibits androgen receptor activity and growth of castration-resistant prostate cancer in mice. Oncotarget 2016; 6:6136-50. [PMID: 25704883 PMCID: PMC4467427 DOI: 10.18632/oncotarget.3346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/20/2015] [Indexed: 01/09/2023] Open
Abstract
There is a critical need for therapeutic agents that can target the amino-terminal domain (NTD) of androgen receptor (AR) for the treatment of castration-resistant prostate cancer (CRPC). Calmodulin (CaM) binds to the AR NTD and regulates AR activity. We discovered that Hydrazinobenzoylcurcumin (HBC), which binds exclusively to CaM, inhibited AR activity. HBC abrogated AR interaction with CaM, suppressed phosphorylation of AR Serine81, and blocked the binding of AR to androgen-response elements. RNA-Seq analysis identified 57 androgen-regulated genes whose expression was significantly (p ≤ 0.002) altered in HBC treated cells as compared to controls. Oncomine analysis revealed that genes repressed by HBC are those that are usually overexpressed in prostate cancer (PCa) and genes stimulated by HBC are those that are often down-regulated in PCa, suggesting a reversing effect of HBC on androgen-regulated gene expression associated with PCa. Ingenuity Pathway Analysis revealed a role of HBC affected genes in cellular functions associated with proliferation and survival. HBC was readily absorbed into the systemic circulation and inhibited the growth of xenografted CRPC tumors in nude mice. These observations demonstrate that HBC inhibits AR activity by targeting the AR NTD and suggest potential usefulness of HBC for effective treatment of CRPC.
Collapse
Affiliation(s)
- Min Wu
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Sahn-Ho Kim
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Indrani Datta
- Bioinformatics Core, Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Albert Levin
- Bioinformatics Core, Public Health Sciences, Henry Ford Hospital, Detroit, MI, USA
| | - Gregory Dyson
- Biostatistics Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Jing Li
- Pharmacology Core, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore, Karnataka, India
| | - M Mahadeva Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore, Karnataka, India
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Ho Jeong Kwon
- Department of Biotechnology, Translational Research Center for Protein Function Control, Yonsei University, Seoul, Republic of Korea
| | - Mani Menon
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, JNCASR, Bangalore, Karnataka, India
| | | |
Collapse
|
3
|
Chu D, Tan J, Xie S, Jin N, Yin X, Gong CX, Iqbal K, Liu F. GSK-3β is Dephosphorylated by PP2A in a Leu309 Methylation-Independent Manner. J Alzheimers Dis 2015; 49:365-75. [DOI: 10.3233/jad-150497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dandan Chu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, PR China
| | - Jianxin Tan
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, PR China
| | - Shutao Xie
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, PR China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Nana Jin
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, PR China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Xiaomin Yin
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, PR China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, PR China
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
4
|
Arif M, Wei J, Zhang Q, Liu F, Basurto-Islas G, Grundke-Iqbal I, Iqbal K. Cytoplasmic retention of protein phosphatase 2A inhibitor 2 (I2PP2A) induces Alzheimer-like abnormal hyperphosphorylation of Tau. J Biol Chem 2014; 289:27677-91. [PMID: 25128526 PMCID: PMC4183805 DOI: 10.1074/jbc.m114.565358] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/11/2014] [Indexed: 12/22/2022] Open
Abstract
Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2 (PP2A)). In AD brain, I2 (PP2A) is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2 (PP2A) containing a conserved basic motif, (179)RKR(181), which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2 (PP2A) in which the NLS was inactivated by (179)RKR(181) → AAA along with (168)KR(169) → AA mutations. In this model, the mutant NLS (mNLS)-I2 (PP2A) (I2 (PP2A)AA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2 (PP2A) activated CAMKII and GSK-3β, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2 (PP2A) with PP2A and GSK-3β but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2 (PP2A)-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology.
Collapse
Affiliation(s)
- Mohammad Arif
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Jianshe Wei
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Qi Zhang
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Fei Liu
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Gustavo Basurto-Islas
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Inge Grundke-Iqbal
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| | - Khalid Iqbal
- From the Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314
| |
Collapse
|
5
|
Tao G, Zhang J, Zhang L, Dong Y, Yu B, Crosby G, Culley DJ, Zhang Y, Xie Z. Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice. Anesthesiology 2014; 121:510-27. [PMID: 24787352 PMCID: PMC4165789 DOI: 10.1097/aln.0000000000000278] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Children with multiple exposures to anesthesia and surgery may have an increased risk of developing cognitive impairment. Sevoflurane is a commonly used anesthetic in children. Tau phosphorylation contributes to cognitive dysfunction. The authors therefore assessed the effects of sevoflurane on Tau phosphorylation and the underlying mechanisms in young mice. METHODS Six-day-old wild-type and Tau knockout mice were exposed to sevoflurane. The authors determined the effects of sevoflurane anesthesia on Tau phosphorylation, levels of the kinases and phosphatase related to Tau phosphorylation, interleukin-6 and postsynaptic density protein-95 in hippocampus, and cognitive function in both young wild-type and Tau knockout mice. RESULTS Anesthesia with 3% sevoflurane 2 h daily for 3 days induced Tau phosphorylation (257 vs. 100%, P = 0.0025, n = 6) and enhanced activation of glycogen synthase kinase 3β, which is the kinase related to Tau phosphorylation in the hippocampus of postnatal day-8 wild-type mice. The sevoflurane anesthesia decreased hippocampus postsynaptic density protein-95 levels and induced cognitive impairment in the postnatal day-31 mice. Glycogen synthase kinase 3β inhibitor lithium inhibited the sevoflurane-induced glycogen synthase kinase 3β activation, Tau phosphorylation, increased levels of interleukin-6, and cognitive impairment in the wild-type young mice. Finally, the sevoflurane anesthesia did not induce an increase in interleukin-6 levels, reduction in postsynaptic density protein-95 levels in hippocampus, or cognitive impairment in Tau knockout young mice. CONCLUSIONS These data suggested that sevoflurane induced Tau phosphorylation, glycogen synthase kinase 3β activation, increase in interleukin-6 and reduction in postsynaptic density protein-95 levels in hippocampus of young mice, and cognitive impairment in the mice. Future studies will dissect the cascade relation of these effects.
Collapse
Affiliation(s)
- Guorong Tao
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China 200025
| | - Jie Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R China 430030
| | - Lei Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060. Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Yuanlin Dong
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China 200025
| | - Gregory Crosby
- Department of Anesthesia, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Deborah J. Culley
- Department of Anesthesia, Brigham & Women’s Hospital and Harvard Medical School Boston, MA 02115
| | - Yiying Zhang
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129-2060
| |
Collapse
|
6
|
Amyloid Beta and tau proteins as therapeutic targets for Alzheimer's disease treatment: rethinking the current strategy. Int J Alzheimers Dis 2012; 2012:630182. [PMID: 22482074 PMCID: PMC3310047 DOI: 10.1155/2012/630182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/18/2011] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ) and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment.
Collapse
|
7
|
Qian W, Yin X, Hu W, Shi J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX, Liu F. Activation of protein phosphatase 2B and hyperphosphorylation of Tau in Alzheimer's disease. J Alzheimers Dis 2012; 23:617-27. [PMID: 21157033 DOI: 10.3233/jad-2010-100987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein phosphatase 2B (PP2B) is one of the major brain phosphatases and can dephosphorylate tau at several phosphorylation sites in vitro. Previous studies that measured PP2B activity in human brain crude extracts showed that PP2B activity was either unchanged or decreased in Alzheimer's disease (AD) brain. These results led to the speculation that PP2B might regulate tau phosphorylation and that a down-regulation of PP2B might contribute to abnormal hyperphosphorylation of tau. In this study, we immunoprecipitated PP2B from brains of six AD subjects and seven postmortem- and age-matched controls and then measured the phosphatase activity. We found a three-fold increase in PP2B activity in AD brain as compared with control brains. The activation was due to the partial cleavage of PP2B by calpain I that was activated in AD brain. The truncation of PP2B appeared to alter its intracellular distribution in the brain. In human brains, PP2B activity correlated positively, rather than negatively, to the levels of tau phosphorylation at several sites that can be dephosphorylated by PP2B in vitro. Truncation of PP2B in the frontal cortex was more than in the temporal cortex, and tau phosphorylation was also more in the frontal cortex. Taken together, these results indicate that truncation of PP2B by calpain I elevates its activity but does not counteract the abnormal hyperphosphorylation tau in AD brain.
Collapse
Affiliation(s)
- Wei Qian
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Clarke NA, Hartmann T, Jones EL, Ballard CG, Francis PT. Antipsychotic medication is associated with selective alterations in ventricular cerebrospinal fluid Aβ 40 and tau in patients with intractable unipolar depression. Int J Geriatr Psychiatry 2011; 26:1283-91. [PMID: 21308788 DOI: 10.1002/gps.2678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/29/2010] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Alterations in plasma and in lumbar cerebrospinal fluid amyloid-B peptide (Aβ) levels have been reported in Alzheimer's disease. Studies have also suggested similar changes in depressed patients. No information is available on the impact of psychotropic drugs on this in patients with depression. We therefore quantified Aβ in ventricular cerebrospinal fluid (CSF) in a population of patients with treatment-resistant depression, with and without antipsychotic medication. METHOD A cross-sectional study of 32 patients undergoing subcaudate tractotomy for major (unipolar) depressive disorder. Ventricular CSF concentrations of Aβ peptide 1-40 and 1-42, also p-tau and total tau were determined by Western blotting or enzyme-linked immunosorbent assay. RESULTS Patients taking antipsychotic medication in the 2 weeks prior to surgery demonstrated significantly higher levels of Aβ 1-40 (mean ± SD: 727.3 ± 382.3 vs. 440.9 ± 337.2 pg/ml; p = 0.032, Student's t-test) but unaltered Aβ 1-42 (mean 72.1 ± 67.5 vs. 60.0 ± 56.7 pg/ml; p = 0.587) compared to a matched sample not treated with antipsychotic drugs. The same group demonstrated elevated total tau (mean 945.0 ± 422.2 vs. 534.3 ± 388.3 pg/ml; p = 0.010) but not p-tau (mean 98.6 ± 71.5 vs. 88.1 ± 70.5 pg/ml; p = 0.694). No similar effect was found with lithium, antidepressants, carbamazepine or benzodiazepines. CONCLUSIONS This preliminary study suggests antipsychotic drugs, widely used in patients with severe depression across all age ranges, may be associated with alteration of Aβ 1-40 and total tau, indices strongly linked with progressive organic brain disease. Further confirmatory work is needed.
Collapse
Affiliation(s)
- Nicholas A Clarke
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
| | | | | | | | | |
Collapse
|
9
|
Frisoni GB, Prestia A, Geroldi C, Adorni A, Ghidoni R, Amicucci G, Bonetti M, Soricelli A, Rasser PE, Thompson PM, Giannakopoulos P. Alzheimer's CSF markers in older schizophrenia patients. Int J Geriatr Psychiatry 2011; 26:640-8. [PMID: 20872913 DOI: 10.1002/gps.2575] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/24/2010] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Cognitive impairment is prevalent in older schizophrenia patients but its biological basis is unknown. Neuropathological studies have not revealed Alzheimer disease (AD) lesion burden but in vivo data are lacking. METHOD We investigated the concentrations of CSF biomarkers of brain amyloidosis (Abeta42) and neurodegeneration (total and p-tau) in a group of older schizophrenia patients and related them to cognitive and MRI measures. Older schizophrenia (n = 11), AD patients (n = 20) and elderly controls (n = 6) underwent cognitive testing, lumbar puncture, and MRI scanning. Abeta42 and total and p-tau concentrations were assayed in the CSF. MRI volumes were assessed using both voxel-based (cortical pattern matching) and region-of-interest analyses. RESULTS CSF tau concentration in older schizophrenia patients was within normal limits (total tau 171 ± 51 pg/ml, p-tau 32 ± 8 pg/ml), while CSF Abeta42 (465 ± 112 pg/ml) levels were significantly lower compared to healthy elders (638 ± 130 pg/ml) but higher than in AD patients (352 ± 76 pg/ml). There was a strong positive relationship between CSF total or p-tau levels and MMSE scores in schizophrenia patients but not in AD, where higher concentrations of total tau were correlated with higher volumes in the occipital cortex (r = 0.63, p = 0.036), while in AD a significant correlation was found between lower Abeta42 concentrations and lower gray matter volume in the cingulate and lateral orbital cortices (r > 0.46, p < 0.05). CONCLUSIONS Older schizophrenia patients show a peculiar pattern of CSF Abeta42 and tau concentrations that relates to cognitive and structural markers but is not consistent with neurodegeneration and could be secondary to neurodevelopmental or drug treatment effects.
Collapse
Affiliation(s)
- Giovanni B Frisoni
- LENITEM-Laboratory of Epidemiology Neuroimaging and Telemedicine, Italy; Psychogeriatric Ward, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dresner E, Agam G, Gozes I. Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharmacol 2011; 21:355-61. [PMID: 20598862 DOI: 10.1016/j.euroneuro.2010.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/12/2010] [Accepted: 06/12/2010] [Indexed: 02/01/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) and the homologous protein ADNP2 provide cell protection. ADNP is essential for brain formation, proper brain development and neuronal plasticity, all reported to be impaired in the schizophrenia patient brains. Furthermore, reduction in ADNP expression affects social interactions, a major hallmark of schizophrenia. To evaluate a possible involvement of ADNP and ADNP2 in the pathophysiology of schizophrenia in humans, we measured relative brain mRNA transcripts of both proteins compared with control subjects. Quantitative real time polymerase chain reaction in postmortem hippocampal specimens from normal control subjects exhibited a significant ADNP to ADNP2 transcript level correlation (r=0.931, p<0.001), also apparent in a neuroglial model system. In contrast, in the hippocampus of matched schizophrenia patients, this correlation (r=0.637, p=0.014) was drastically decreased in a statistically significant manner (p=0.03), mirroring disease-associated increased ADNP2 transcripts. In the prefrontal cortex of schizophrenia patients the correlation between ADNP and ADNP2 mRNA levels was apparently higher than in the hippocampus (r=0.854, p<0.001), but did not reach a significant difference (p=0.25). Thus, imbalance in ADNP/ADNP2 expression in the brain may impact disease progression in schizophrenia.
Collapse
Affiliation(s)
- Efrat Dresner
- Adams Super Center for Brain Studies, and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
11
|
Merenlender-Wagner A, Pikman R, Giladi E, Andrieux A, Gozes I. NAP (davunetide) enhances cognitive behavior in the STOP heterozygous mouse--a microtubule-deficient model of schizophrenia. Peptides 2010; 31:1368-73. [PMID: 20417241 DOI: 10.1016/j.peptides.2010.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/19/2022]
Abstract
NAP (generic name, davunetide) is an active fragment of activity-dependent neuroprotective protein (ADNP). ADNP-/- embryos exhibit CNS dysgenesis and die in utero. ADNP+/- mice survive but demonstrate cognitive dysfunction coupled with microtubule pathology. NAP treatment ameliorates, in part, ADNP-associated dysfunctions. The microtubule, stable tubule-only polypeptide (STOP) knockout mice were shown to provide a reliable model for schizophrenia. Here, STOP-/- as well as STOP+/- showed schizophrenia-like symptoms (hyperactivity) that were ameliorated by chronic treatment with the antipsychotic drug, clozapine. Daily intranasal NAP treatment significantly decreased hyperactivity in the STOP+/- mice and protected visual memory.
Collapse
Affiliation(s)
- Avia Merenlender-Wagner
- The Adams Super Center for Brain Studies, The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
12
|
Communication breaks-Down: from neurodevelopment defects to cognitive disabilities in Down syndrome. Prog Neurobiol 2010; 91:1-22. [PMID: 20097253 DOI: 10.1016/j.pneurobio.2010.01.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 12/31/2022]
Abstract
Down syndrome (DS) is the leading cause of genetically-defined intellectual disability and congenital birth defects. Despite being one of the first genetic diseases identified, only recently, thanks to the phenotypic analysis of DS mouse genetic models, we have begun to understand how trisomy may impact cognitive function. Cognitive disabilities in DS appear to result mainly from two pathological processes: neurogenesis impairment and Alzheimer-like degeneration. In DS brain, suboptimal network architecture and altered synaptic communication arising from neurodevelopmental impairment are key determinants of cognitive defects. Hypocellularity and hypoplasia start at early developmental stages and likely depend upon impaired proliferation of neuronal precursors, resulting in reduction of numbers of neurons and synaptic contacts. The impairment of neuronal precursor proliferation extends to adult neurogenesis and may affect learning and memory. Neurodegenerative mechanisms also contribute to DS cognitive impairment. Early onset Alzheimer disease occurs with extremely high incidence in DS patients and is causally-related to overexpression of beta-amyloid precursor protein (betaAPP), which is one of the triplicated genes in DS. In this review, we will survey the available findings on neurodevelopmental and neurodegenerative changes occurring in DS throughout life. Moreover, we will discuss the potential mechanisms by which defects in neurogenesis and neurodegenerative processes lead to altered formation of neural circuits and impair cognitive function, in connection with findings on pharmacological treatments of potential benefit for DS.
Collapse
|
13
|
Yin Y, Xie M, Wu H, Jiang M, Zheng J, Wei Q. Interaction of calcineurin with its activator, chlorogenic acid revealed by spectroscopic methods. Biochimie 2009; 91:820-5. [DOI: 10.1016/j.biochi.2009.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/17/2009] [Indexed: 11/25/2022]
|
14
|
Gupta N, Fong J, Ang LC, Yücel YH. Retinal tau pathology in human glaucomas. CANADIAN JOURNAL OF OPHTHALMOLOGY 2008; 43:53-60. [PMID: 18219347 DOI: 10.3129/i07-185] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Tau protein is a microtubule-associated protein critical to neuron structure and integrity. The abnormal hyperphosphorylated tau protein AT8 disrupts microtubules, interferes with axonal transport, and is associated with neuron injury in neurodegenerative diseases such as Alzheimer's disease. The purpose of this study was to assess the presence of tau protein and abnormal tau protein AT8 in human glaucomas and to determine whether abnormal tau protein plays a role in glaucomatous neural degeneration. METHODS Sections from 11 surgical eye specimens with glaucoma from elevated intraocular pressure causes and 10 age-matched control eye specimens were immunostained for normal tau protein (BT2) and hyperphosphorylated tau protein (AT8). Postmortem specimens with incidental open-angle glaucoma (n = 6) were compared with controls (n = 3). Measurements of immunofluorescence intensity in glaucoma retinas were compared with those in control retinas. Abnormal tau AT8 and parvalbumin, a horizontal cell-specific marker, were studied with double-immunofluorescence techniques to determine colocalization. RESULTS In surgical glaucoma specimens, normal tau protein was decreased in both the optic nerve and retina compared with age-matched controls. Abnormal tau AT8 was evident within the posterior retina, predominantly at the outer border of the inner nuclear layer in surgical glaucoma specimens, and this was not observed in controls or incidental glaucoma cases. Quantitative immunofluorescence techniques demonstrated significantly increased abnormal tau AT8 in surgical glaucoma specimens compared with controls. Abnormal tau AT8 colocalized with parvalbumin in horizontal cells of the retina. INTERPRETATION Abnormal tau AT8, a marker of injury in various neurological diseases, is present in human glaucomas with uncontrolled intraocular pressure. The finding of abnormal tau protein in retinal horizontal cells may relate to elevated intraocular pressure and (or) neural degeneration in glaucoma. Tau protein abnormality in glaucoma underscores shared pathways with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Neeru Gupta
- Department of Ophthalmology & Vision Sciences, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
15
|
Liu F, Liang Z, Shi J, Yin D, El-Akkad E, Grundke-Iqbal I, Iqbal K, Gong CX. PKA modulates GSK-3beta- and cdk5-catalyzed phosphorylation of tau in site- and kinase-specific manners. FEBS Lett 2006; 580:6269-74. [PMID: 17078951 PMCID: PMC1828604 DOI: 10.1016/j.febslet.2006.10.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 10/24/2022]
Abstract
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
- Jiangsu Province Key Laboratory of Neuronal Regeneration, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Zhihou Liang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Jianhua Shi
- Jiangsu Province Key Laboratory of Neuronal Regeneration, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Dongmei Yin
- Jiangsu Province Key Laboratory of Neuronal Regeneration, Nantong University, Nantong, Jiangsu 226001, P. R. China
| | - Ezzat El-Akkad
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Inge Grundke-Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| |
Collapse
|
16
|
García E, Stracher A, Jay D. Calcineurin dephosphorylates the C-terminal region of filamin in an important regulatory site: A possible mechanism for filamin mobilization and cell signaling. Arch Biochem Biophys 2006; 446:140-50. [PMID: 16442073 DOI: 10.1016/j.abb.2005.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 12/07/2005] [Accepted: 12/11/2005] [Indexed: 11/29/2022]
Abstract
Filamin is a phosphoprotein that organizes actin filaments into networks. We report that a purified C-terminal recombinant region of filamin is a suitable substrate for calcineurin in vitro. Furthermore, 1 microM cyclosporin A (CsA), a specific calcineurin inhibitor, reduced the dephosphorylation of the recombinant fragment in 293FT cells. Mutagenesis analysis showed that a dephosphorylation step occurred in Ser 2152, which was previously shown to provide resistance to calpain cleavage when endogenous PKA is activated. In contrast, phosphorylation of Ser 2152 was recently reported to be necessary for membrane dynamic changes. In this regard, we found that CsA protects filamin in platelets from calpain degradation. Results could be combined with available information in a single model, assuming that some of the peptide fragments released by calcineurin-regulated calpain action could mediate actions in downstream pathways, which may help to resolve the controversies reported on the role of filamin phosphorylation in actin dynamics.
Collapse
Affiliation(s)
- Elizabeth García
- Departamento de Biomedicina Molecular Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico DF 14080, Mexico
| | | | | |
Collapse
|
17
|
Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005; 22:1942-50. [PMID: 16262633 DOI: 10.1111/j.1460-9568.2005.04391.x] [Citation(s) in RCA: 543] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal hyperphosphorylation of tau is believed to lead to neurofibrillary degeneration in Alzheimer's disease (AD) and other tauopathies. Recent studies have shown that protein phosphatases (PPs) PP1, PP2A, PP2B and PP5 dephosphorylate tau in vitro, but the exact role of each of these phosphatases in the regulation of site-specific phosphorylation of tau in the human brain was unknown. Hence, we investigated the contributions of these PPs to the regulation of tau phosphorylation quantitatively. We found that these four phosphatases all dephosphorylated tau at Ser199, Ser202, Thr205, Thr212, Ser214, Ser235, Ser262, Ser396, Ser404 and Ser409, but with different efficiencies toward different sites. The K(m) values of tau dephosphorylation catalysed by PP1, PP2A and PP5 were 8-12 microm, similar to the intraneuronal tau concentration of human brain, whereas the K(m) of PP2B was fivefold higher. PP2A, PP1, PP5 and PP2B accounted for approximately 71%, approximately 11%, approximately 10% and approximately 7%, respectively, of the total tau phosphatase activity of human brain. The total phosphatase activity and the activities of PP2A and PP5 toward tau were significantly decreased, whereas that of PP2B was increased in AD brain. PP2A activity negatively correlated to the level of tau phosphorylation at the most phosphorylation sites in human brains. Our findings indicate that PP2A is the major tau phosphatase that regulates its phosphorylation at multiple sites in human brain. The abnormal hyperphosphorylation of tau is partially due to a downregulation of PP2A activity in AD brain.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA.
| | | | | | | |
Collapse
|
18
|
Liu F, Grundke-Iqbal I, Iqbal K, Oda Y, Tomizawa K, Gong CX. Truncation and Activation of Calcineurin A by Calpain I in Alzheimer Disease Brain. J Biol Chem 2005; 280:37755-62. [PMID: 16150694 DOI: 10.1074/jbc.m507475200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A disturbance of calcium homeostasis is believed to play an important role in the neurodegeneration of the brains of Alzheimer disease (AD) patients, but the molecular pathways by which it contributes to the disease are not well understood. Here we studied the activation of two major Ca(2+)-regulated brain proteins, calpain and calcineurin, in AD brain. We found that calpain I is activated, which in turn cleaves and activates calcineurin in AD brain. Mass spectrometric analysis indicated that the cleavage of calcineurin by calpain I is at lysine 501, a position C-terminal to the autoinhibitory domain, which produces a 57-kDa truncated form. The 57-kDa calcineurin maintains its Ca(2+)/calmodulin dependence of the phosphatase activity, but the phosphatase activity is remarkably activated upon truncation. The cleavage and activation of calcineurin correlate to the number of neurofibrillary tangles in human brains. These findings suggest that the overactivation of calpain I and calcineurin may mediate the role of calcium homeostatic disturbance in the neurodegeneration of AD.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, 10314, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX. Dephosphorylation of Tau by Protein Phosphatase 5. J Biol Chem 2005; 280:1790-6. [PMID: 15546861 DOI: 10.1074/jbc.m410775200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase (PP) 5 is highly expressed in the mammalian brain, but few physiological substrates have yet been identified. Here, we investigated the kinetics of dephosphoryation of phospho-tau by PP5 and found that PP5 had a K(m) of 8-13 microm toward tau, which is similar to that of PP2A, the major known tau phosphatase. This K(m) value is within the range of intraneuronal tau concentration in human brain, suggesting that tau could be a physiological substrate of both PP5 and PP2A. PP5 dephosphorylated tau at all 12 Alzheimer's disease (AD)-associated abnormal phosphorylation sites studied, with different efficiency toward each site. Thr(205), Thr(212), and Ser(409) of tau were the most favorable sites; Ser(199), Ser(202), Ser(214), Ser(396), and Ser(404) were less favorable sites; and Ser(262) was the poorest site for PP5. Overexpression of PP5 in PC12 cells resulted in dephosphorylation of tau at multiple phosphorylation sites. The activity but not the protein level of PP5 was found to be decreased by approximately 20% in AD neocortex. These results suggest that tau is probably a physiological substrate of PP5 and that the abnormal hyperphosphorylation of tau in AD might result in part from the decreased PP5 activity in the diseased brains.
Collapse
Affiliation(s)
- Fei Liu
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | |
Collapse
|
20
|
Haque N, Gong CX, Sengupta A, Iqbal K, Grundke-Iqbal I. Regulation of microtubule-associated proteins, protein kinases and protein phosphatases during differentiation of SY5Y cells. ACTA ACUST UNITED AC 2004; 129:163-70. [PMID: 15469892 DOI: 10.1016/j.molbrainres.2004.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2004] [Indexed: 10/26/2022]
Abstract
Regulation of expression and function of microtubule-associated proteins (MAPs) is critical for neurons to maintain normal cytoskeletal architecture and functions. We have shown previously that in differentiated human neuroblastoma SY5Y cells, the expression of tau, a major neuronal MAP, is dramatically increased, and tau phosphorylation is differentially regulated. In the present study, we investigated the expression, the subcellular distribution and the microtubule-binding activities of several MAPs in SY5Y cells upon differentiation. We also studied the activities of protein kinases and phosphatases that are involved in regulation of tau phosphorylation during cell differentiation. We found that the expression of MAP1b in addition to tau was upregulated upon differentiation. Tau, MAP1a, MAP1b and MAP2 had distinct immunocytochemical staining patterns in differentiated SY5Y cells, suggesting differential biological functions. The microtubule-binding activity of tau increased after cell differentiation, whereas the activities of MAP1a and MAP2 decreased. Upon differentiation, the phosphorylation of tau at Ser198/Ser199/Ser202 and Ser396/Ser404 was increased, but that at Ser262/Ser356 was decreased. These changes in tau phosphorylation were accompanied by an upregulation of activities of several protein kinases (cdk5, MAPK, PKC and CK-1) as well as protein phosphatases PP-1 and PP-2A. These results suggest that the expression, post-translational modifications and biological activities of various MAPs are differentially regulated to meet the biological needs during cell differentiation.
Collapse
Affiliation(s)
- Niloufar Haque
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | | | | | | | | |
Collapse
|
21
|
Gong CX, Liu F, Wu G, Rossie S, Wegiel J, Li L, Grundke-Iqbal I, Iqbal K. Dephosphorylation of microtubule-associated protein tau by protein phosphatase 5. J Neurochem 2004; 88:298-310. [PMID: 14690518 DOI: 10.1111/j.1471-4159.2004.02147.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Protein phosphatase 5 (PP5) is a 58-kDa novel phosphoseryl/phosphothreonyl protein phosphatase. It is ubiquitously expressed in all mammalian tissues examined, with a high level in the brain, but little is known about its physiological substrates. We found that this phosphatase dephosphorylated recombinant tau phosphorylated with cAMP-dependent protein kinase and glycogen synthase kinase-3beta, as well as abnormally hyperphosphorylated tau isolated from brains of patients with Alzheimer's disease. The specific activity of PP5 toward tau was comparable to those reported with other protein substrates examined to date. The PP5 activity toward tau was stimulated by arachidonic acid by 30- to 45-fold. Immunostaining demonstrated that PP5 was primarily cytoplasmic in PC12 cells and in neurons of postmortem human brain tissue. A small pool of PP5 associated with microtubules. Expression of active PP5 in PC12 cells resulted in reduced phosphorylation of tau, suggesting that PP5 can also dephosphorylate tau in cells. These results suggest that PP5 plays a role in the dephosphorylation of tau and might be involved in the molecular pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Cheng-Xin Gong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pei JJ, Gong CX, An WL, Winblad B, Cowburn RF, Grundke-Iqbal I, Iqbal K. Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:845-58. [PMID: 12937126 PMCID: PMC1868262 DOI: 10.1016/s0002-9440(10)63445-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Alzheimer's disease (AD) brain the activity of protein phosphatase (PP)-2A is compromised and that of the extracellular signal-regulated protein kinase (ERK1/2) of the mitogen-activated protein kinase (MAPK) family, which can phosphorylate tau, is up-regulated. We investigated whether a decrease in PP-2A activity could underlie the activation of these kinases and the abnormal hyperphosphorylation of tau. Rat brain slices, 400-microm-thick, kept under metabolically active conditions in oxygenated (95% O(2), 5% CO(2)) artificial CSF were treated with 1.0 micromol/L okadaic acid (OA) for 1 hour at 33 degrees C. Under this condition, PP-2A activity was decreased to approximately 35% of the vehicle-treated control slices, and activities of PP-1 and PP-2B were not affected. In the OA-treated slices, we observed a dramatic increase in the phosphorylation/activation of ERK1/2, MEK1/2, and p70 S6 kinase both immunohistochemically and by Western blots using phosphorylation-dependent antibodies against these kinases. Treatment of 6-microm sections of the OA-treated slices with purified PP-2A reversed the phosphorylation/activation of these kinases. Hyperphosphorylation of tau at several abnormal hyperphosphorylation sites was also observed, as seen in AD brain. These results suggest 1) that PP-2A down-regulates ERK1/2, MEK1/2, and p70 S6 kinase activities through dephosphorylation at the serine/threonine residues of these kinases, and 2) that in AD brain the decrease in PP-2A activity could have caused the activation of ERK1/2, MEK1/2, and p70 S6 kinase, and the abnormal hyperphosphorylation of tau both via an increase in its phosphorylation and a decrease in its dephosphorylation.
Collapse
Affiliation(s)
- Jin-Jing Pei
- Division of Experimental Geriatrics, Karolinska Institutet, NEUROTEC, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Pijnenburg YAL, Sampson EL, Harvey RJ, Fox NC, Rossor MN. Vulnerability to neuroleptic side effects in frontotemporal lobar degeneration. Int J Geriatr Psychiatry 2003; 18:67-72. [PMID: 12497558 DOI: 10.1002/gps.774] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Frontotemporal lobar degeneration (FTLD) is commonly associated with behavioural disturbances such as disinhibition and aggression; these often result in the use of neuroleptic medication. METHODS All available case notes of patients attending a specialist cognitive disorders clinic with a diagnosis of FTLD were selected. This gave 100 subjects (62 male, 38 female). RESULTS In 61 patients significant behavioural disturbances were present. Of these patients, 24 had been prescribed neuroleptics. Significant extrapyramidal side effects were reported in eight patients (33%); in five patients these were severe enough to cause severe mobility problems and in one patient resulted in impaired consciousness. In some instances the extrapyramidal side effects took weeks to wear off. CONCLUSION These results suggest that patients with FTLD may, as in Lewy body dementia, be particularly sensitive to the extrapyramidal side effects of neuroleptics. We suggest that neuroleptics should be used cautiously in FTLD and treatment should be started at low doses avoiding depot preparations until further prospective studies have been performed.
Collapse
Affiliation(s)
- Y A L Pijnenburg
- Department of Clinical Neurology, Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
24
|
Kontkanen O, Törönen P, Lakso M, Wong G, Castrén E. Antipsychotic drug treatment induces differential gene expression in the rat cortex. J Neurochem 2002; 83:1043-53. [PMID: 12437575 DOI: 10.1046/j.1471-4159.2002.01213.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antipsychotic drug treatment is known to modulate gene expression in experimental animals. In this study, candidate target genes for antipsychotic drug action were searched using microarrays after acute clozapine treatment (1, 6 and 24 h) in the rat prefrontal cortex. Microarray data clustering with a self-organizing map algorithm revealed differential expression of genes involved in presynaptic function following acute clozapine treatment. The differential expression of 35 genes most profoundly regulated in expression arrays was further examined using in situ hybridization following acute clozapine, and chronic clozapine and haloperidol treatments. Acute administration of clozapine regulated the expression of chromogranin A, synaptotagmin V and calcineurin A mRNAs in the cortex. Chronic clozapine treatment induced differential cortical expression of chromogranin A, son of sevenless (SoS) and Sec-1. Chronic treatment with haloperidol regulated the mRNA expression of inhibitor of DNA-binding 2 (ID-2) and Rab-12. Furthermore, the expression of visinin-like proteins-1, -2 and -3 was regulated by chronic drug treatments in various brain regions. Our data suggest that acute and chronic treatments with haloperidol and clozapine modulate the expression of genes involved in synaptic function and in regulation of intracellular Ca2+ in cortex.
Collapse
Affiliation(s)
- Outi Kontkanen
- A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland Department of Psychiatry, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
25
|
Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3beta. FEBS Lett 2002; 530:209-14. [PMID: 12387894 DOI: 10.1016/s0014-5793(02)03487-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microtubule-associated protein tau is abnormally hyperphosphorylated, glycosylated, and aggregated in affected neurons in the brains of individuals with Alzheimer's disease (AD). We recently found that the glycosylation might precede hyperphosphorylation of tau in AD. In this study, we investigated the effect of glycosylation on phosphorylation of tau catalyzed by cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3beta (GSK-3beta). The phosphorylation of the longest isoform of recombinant human brain tau, tau(441), at various sites was detected by Western blots and by radioimmuno-dot-blot assay with phosphorylation-dependent and site-specific tau antibodies. We found that cdk5 phosphorylated tau(441) at Thr-181, Ser-199, Ser-202, Thr-205, Thr-212, Ser-214, Thr-217, Thr-231, Ser-235, Ser-396, and Ser-404, but not at Ser-262, Ser-400, Thr-403, Ser-409, Ser-413, or Ser-422. GSK-3beta phosphorylated all the cdk5-catalyzed sites above except Ser-235. Deglycosylation by glycosidases depressed the subsequent phosphorylation of AD-tau (i) with cdk5 at Thr-181, Ser-199, Ser-202, Thr-205, and Ser-404, but not at Thr-212; and (ii) with GSK-3beta at Thr-181, Ser-202, Thr-205, Ser-217, and Ser-404, but not at Ser-199, Thr-212, Thr-231, or Ser-396. These data suggest that aberrant glycosylation of tau in AD might be involved in neurofibrillary degeneration by promoting abnormal hyperphosphorylation by cdk5 and GSK-3beta.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island 10314, USA
| | | | | | | |
Collapse
|
26
|
Pérez M, Hernández F, Gómez-Ramos A, Smith M, Perry G, Avila J. Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1484-9. [PMID: 11874463 DOI: 10.1046/j.1432-1033.2002.02794.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we show, for the first time, the in vitro formation of filamentous aggregates of phosphorylated tau protein in SH-SY5Y human neuroblastoma cells. The formation of such aberrant aggregates, similar to those occurring in vivo in Alzheimer's disease and other tauopathies, requires okadaic acid, a phosphatase inhibitor, to increase the level of phosphorylated tau, and hydroxynonenal, a product of oxidative stress that selectively adducts and modifies phosphorylated tau. Our findings suggest that both phosphorylation and oxidative modification are required for tau filament formation. Importantly, the in vitro formation of intracellular tau aggregates could be used as a model of tau polymerization and facilitate the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Mar Pérez
- Centro de Biología Molecular (CSIC/UAM), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Niizato K, Genda K, Nakamura R, Iritani S, Ikeda K. Cognitive decline in schizophrenics with Alzheimer's disease: a mini-review of neuropsychological and neuropathological studies. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:1359-66. [PMID: 11513351 DOI: 10.1016/s0278-5846(01)00191-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cognitive decline in elderly schizophrenic patients is an important clinical symptom, but it is often difficult to analyze in detail due to the patient's original residual psychotic symptoms. In this article, the authors provide neuropsychological and neuropathological research information about cognitive decline in elderly schizophrenic patients, especially with reference to Alzheimer's disease (AD). Neuropsychological and neuropathological reports about cognitive impairments are reviewed. The effect of long-term antipsychotic medication upon cognitive function is also discussed. As a result, it is apparent that elderly schizophrenic patients often show cognitive impairments, however, such impairments do not have the characteristics of progressive degenerative illnesses such as AD, and the speed of their progress is very slow. Neuropathological studies have shown that AD brain pathology appears no more frequently among schizophrenic patients than in the normal population. Since making a diagnosis of AD means that the progressive deterioration not only of cognitive function, but also of physical ability, paralleling the degeneration of the central nervous system, can be expected within a few years and appropriate care will be required. One should be very cautious in adding a diagnosis of AD to elderly schizophrenic patients with cognitive impairments.
Collapse
Affiliation(s)
- K Niizato
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Japan.
| | | | | | | | | |
Collapse
|
28
|
Ryan M, Starkey M, Faull R, Emson P, Bahn S. Indexing-based differential display--studies on post-mortem Alzheimer's brains. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:199-202. [PMID: 11295249 DOI: 10.1016/s0169-328x(01)00007-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we demonstrate for the first time that a novel indexing-based differential display technique generates valid and reproducible results when applied to human post-mortem tissue. We studied expression profiles in prefrontal cortex tissue derived from Alzheimer's disease (AD) and control brains, respectively, and found robust changes in several expressed genes, some of which have a known association with the disease process in AD. These included the dramatic reduction of calcineurin (known to be involved in tau phosphorylation) and GAP-43 (associated with synapse remodelling). Differential display results were confirmed by semi-quantitative RT-PCR on a larger number of brains.
Collapse
Affiliation(s)
- M Ryan
- Department of Neurobiology, Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | |
Collapse
|
29
|
Noh JS, Kang HJ, Kim EY, Sohn S, Chung YK, Kim SU, Gwag BJ. Haloperidol-induced neuronal apoptosis: role of p38 and c-Jun-NH(2)-terminal protein kinase. J Neurochem 2000; 75:2327-34. [PMID: 11080184 DOI: 10.1046/j.1471-4159.2000.0752327.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined patterns and mechanisms of cell death induced by haloperidol. Cortical cell cultures exposed to 10-100 microM: haloperidol for 24 h underwent neuronal death without injuring glia. The degenerating neurons showed hallmarks of apoptosis, featuring cell body shrinkage, nuclear chromatin condensation and aggregation, nuclear membrane disintegration with intact plasma membrane, and prominent internucleosomal DNA fragmentation. Neither glutamate antagonists nor antioxidants prevented the haloperidol-induced neuronal apoptosis. The c-Jun-NH(2)-terminal protein kinase and p38 mitogen-activated protein kinase were activated within 1 h and were sustained over the next 3 h following exposure of cortical neurons to 30 microM haloperidol. Haloperidol-induced neuronal apoptosis was partially attenuated by 10-30 microM PD169316, a selective inhibitor of p38 mitogen-activated protein kinase. Inclusion of 1 microg/ml cycloheximide, a protein synthesis inhibitor, or 100 ng/ml insulin prevented activation of both kinases and subsequent neuronal death. The present study demonstrates that cortical neurons exposed to haloperidol undergo apoptosis depending on activation of p38 mitogen-activated protein kinase and c-Jun-NH(2)-terminal protein kinase sensitive to cycloheximide and insulin.
Collapse
Affiliation(s)
- J S Noh
- Department of Psychiatry and Behavioral Sciences, Institute for Medical Sciences, Ajou University School of Medicine, Kyungkido, Korea.
| | | | | | | | | | | | | |
Collapse
|
30
|
Takahashi M, Tomizawa K, Ishiguro K. Distribution of tau protein kinase I/glycogen synthase kinase-3beta, phosphatases 2A and 2B, and phosphorylated tau in the developing rat brain. Brain Res 2000; 857:193-206. [PMID: 10700568 DOI: 10.1016/s0006-8993(99)02424-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
When trying to elucidate the role played by tau protein kinase I/glycogen synthase kinase-3beta (TPKI/GSK-3beta) in tau phosphorylation, it is important to consider the balance that exists between the various kinases and phosphatases that are involved in vivo. We studied developmental changes in the expressions of TPKI/GSK-3beta and phosphatases 2A and 2B in rat brains using immunoblot analysis. The expression of the kinase peaked postnatally at days 8-11 and returned then to low level after 5 weeks. Phosphatase 2A showed a similar pattern, increasing postnatally until day 14 and decreasing thereafter. On the other hand, phosphatase 2B was undetectable at the juvenile stage, but later its presence increased rapidly to peak at 5 weeks after birth, after which it was maintained at high levels throughout the adult stage. Immunohistochemical studies using the PAP method revealed details of the distribution of TPKI/GSK-3beta. At postnatal days 3-21 both gray and white matter were immunoreactive. Later, after 5 weeks, the immunoreactivity became more restricted to the gray matter. The staining of tau phosphorylated at Ser 199, Ser 396, and Ser 413 followed mostly the pattern of the kinase distribution throughout all stages of development. These data, therefore, confirm that TPKI/GSK-3beta is expressed primarily in neurons and especially in neurites until postnatal day 21, whereafter the distribution is concentrated mostly in the cell soma and the proximal neurite region.
Collapse
Affiliation(s)
- M Takahashi
- Project 8, Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo, Japan.
| | | | | |
Collapse
|
31
|
Gong CX, Lidsky T, Wegiel J, Zuck L, Grundke-Iqbal I, Iqbal K. Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer's disease. J Biol Chem 2000; 275:5535-44. [PMID: 10681533 DOI: 10.1074/jbc.275.8.5535] [Citation(s) in RCA: 303] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hyperphosphorylated tau, which is the major protein of the neurofibrillary tangles in Alzheimer's disease brain, is most probably the result of an imbalance of tau kinase and phosphatase activities in the affected neurons. By using metabolically competent rat brain slices as a model, we found that selective inhibition of protein phosphatase 2A by okadaic acid induced an Alzheimer-like hyperphosphorylation and accumulation of tau. The hyperphosphorylated tau had a reduced ability to bind to microtubules and to promote microtubule assembly in vitro. Immunocytochemical staining revealed hyperphosphorylated tau accumulation in pyramidal neurons in cornu ammonis and in neocortical neurons. The topography of these changes recalls the distribution of neurofibrillary tangles in Alzheimer's disease brain. Selective inhibition of protein phosphatase 2B with cyclosporin A did not have any significant effect on tau phosphorylation, accumulation, or function. These studies suggest that protein phosphatase 2A participates in regulation of tau phosphorylation, processing, and function in vivo. A down-regulation of protein phosphatase 2A activity can lead to Alzheimer-like abnormal hyperphosphorylation of tau.
Collapse
Affiliation(s)
- C X Gong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314-6399, USA
| | | | | | | | | | | |
Collapse
|
32
|
Gong CX, Wegiel J, Lidsky T, Zuck L, Avila J, Wisniewski HM, Grundke-Iqbal I, Iqbal K. Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain. Brain Res 2000; 853:299-309. [PMID: 10640627 DOI: 10.1016/s0006-8993(99)02294-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The function of the neuronal high molecular weight microtubule-associated proteins (MAPs) MAP1b and MAP2 is regulated by the degree of their phosphorylation, which in turn is controlled by the activities of protein kinases and protein phosphatases (PP). To investigate the role of PP in the regulation of the phosphorylation of MAP1b and MAP2, we used okadaic acid and cyclosporin A to selectively inhibit PP2A and PP2B activities, respectively, in metabolically competent rat brain slices. The alteration of the phosphorylation levels of MAP1b and MAP2 was examined by Western blots using several phosphorylation-dependent antibodies to these proteins. The inhibition of PP2A, and to a lesser extent of PP2B, was found to induce an increased phosphorylation of MAP1b and inhibit its microtubule binding activity. Immunocytochemically, a marked increase in neuronal staining in inhibitor-treated tissue was observed with antibodies to the phosphorylated MAP1b. The inhibition of PP2A but not of PP2B also induced phosphorylation of MAP2 at multiple sites and impaired its microtubule binding activity. These results suggest that PP2A might be the major PP that participates in regulation of the phosphorylation of MAP1b and MAP2 and their biological activities.
Collapse
Affiliation(s)
- C X Gong
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stabler SM, Ostrowski LL, Janicki SM, Monteiro MJ. A myristoylated calcium-binding protein that preferentially interacts with the Alzheimer's disease presenilin 2 protein. J Cell Biol 1999; 145:1277-92. [PMID: 10366599 PMCID: PMC2133148 DOI: 10.1083/jcb.145.6.1277] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Revised: 04/23/1999] [Indexed: 01/01/2023] Open
Abstract
It is well established that mutations in the presenilin 1 and 2 genes cause the majority of early onset Alzheimer's disease (AD). However, our understanding of the cellular functions of the proteins they encode remains rudimentary. Knowledge of proteins with which the presenilins interact should lead to a better understanding of presenilin function in normal and disease states. We report here the identification of a calcium-binding protein, calmyrin, that interacts preferentially with presenilin 2 (PS2). Calmyrin is myristoylated, membrane-associated, and colocalizes with PS2 when the two proteins are overexpressed in HeLa cells. Yeast two-hybrid liquid assays, affinity chromatography, and coimmunoprecipitation experiments confirm binding between PS2 and calmyrin. Functionally, calmyrin and PS2 increase cell death when cotransfected into HeLa cells. These results allude to several provocative possibilities for a dynamic role of calmyrin in signaling, cell death, and AD.
Collapse
Affiliation(s)
- S M Stabler
- Medical Biotechnology Center and Department of Neurology, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Lee SJ, Stull JT. Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase. J Biol Chem 1998; 273:27430-7. [PMID: 9765272 DOI: 10.1074/jbc.273.42.27430] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal and endothelial nitric-oxide synthases depend upon Ca2+/calmodulin for activation, whereas the activity of the inducible nitric-oxide synthase is Ca2+-independent, presumably due to tightly bound calmodulin. To study these different mechanisms, a series of chimeras derived from neuronal and inducible nitric- oxide synthases were analyzed. Chimeras containing only the oxygenase domain, calmodulin-binding region, or reductase domain of inducible nitric-oxide synthase did not confer significant Ca2+-independent activity. However, each chimera was more sensitive to Ca2+ than the neuronal isoform. The calmodulin-binding region of inducible nitric-oxide synthase with either its oxygenase or reductase domains resulted in significant, but not total, Ca2+-independent activity. Co-immunoprecipitation experiments showed no calmodulin associated with the former chimera in the absence of Ca2+. Trifluoperazine also inhibited this chimera in the absence of Ca2+. The combined interactions of calmodulin bound to inducible nitric-oxide synthase calmodulin-binding region with the oxygenase domain may be weaker than with the reductase domain. Thus, Ca2+-independent activity of inducible nitric-oxide synthase appears to result from the concerted interactions of calmodulin with both the oxygenase and reductase domains in addition to the canonical calmodulin-binding region. The neuronal isoform is not regulated by a unique autoinhibitory element in its reductase domain.
Collapse
Affiliation(s)
- S J Lee
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235, USA
| | | |
Collapse
|