1
|
Budini F, Christova M, Gallasch E, Rafolt D, Tilp M. Soleus H-Reflex Inhibition Decreases During 30 s Static Stretching of Plantar Flexors, Showing Two Recovery Steps. Front Physiol 2018; 9:935. [PMID: 30061844 PMCID: PMC6054967 DOI: 10.3389/fphys.2018.00935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 11/22/2022] Open
Abstract
During the period when the ankle joint is kept in a dorsiflexed position, the soleus (SOL) H-reflex is inhibited. The nature of this inhibition is not fully understood. One hypothesis is that the decrease in spinal excitability could be attributed to post-activation depression of muscle spindle afferents due to their higher firing rate during the stretch-and-hold procedure. As the static stretching position is maintained though, a partial restoration of the neurotransmitter is expected and should mirror a decrease in H-reflex inhibition. In the present study, we explored the time course of spinal excitability during a period of stretching. SOL H-reflex was elicited during a passive dorsiflexion movement, at 3, 6, 9, 12, 18, 21, and 25 s during maximal ankle dorsiflexion, during plantar flexion (PF) and after stretching, in 12 healthy young individuals. Measurements during passive dorsiflexion, PF and after stretching were all performed with the ankle at 100° angle; measurements during static stretching were performed at individual maximal dorsiflexion. H-reflex was strongly inhibited during the dorsiflexion movement and at maximal dorsiflexion (p < 0.0001) but recovered during PF and after stretching. During stretching H-reflex showed a recovery pattern (r = 0.836, P = 0.019) with two distinct recovery steps at 6 and 21 s into stretching. It is hypothesized that the H-reflex inhibition observed until 18 s into stretching is the result of post-activation depression of Ia afferent caused by the passive dorsiflexion movement needed to move the ankle into testing position. From 21 s into stretching, the lower inhibition could be caused by a weaker post-activation depression, inhibition from secondary afferents or post-synaptic inhibitions.
Collapse
Affiliation(s)
- Francesco Budini
- Institute of Sport Sciences, University of Graz, Graz, Austria.,Institute of Physiotherapy, FH Joanneum - University of Applied Sciences, Graz, Austria
| | - Monica Christova
- Institute of Physiotherapy, FH Joanneum - University of Applied Sciences, Graz, Austria.,Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria
| | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Tilp
- Institute of Sport Sciences, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Moyne-Bressand S, Dhieux C, Decherchi P, Dousset E. Effectiveness of Foot Biomechanical Orthoses to Relieve Patients' Knee Pain: Changes in Neural Strategy After 9 Weeks of Treatment. J Foot Ankle Surg 2018; 56:1194-1204. [PMID: 29079236 DOI: 10.1053/j.jfas.2017.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Indexed: 02/03/2023]
Abstract
Knee pain is one of the most common lower leg complaints. It is often treated with plantar orthoses to provide cushioning and correct locomotion, imbalances of the foot, and postural deficits. However, the published scientific data are poor concerning the mechanisms involved in pain reduction after wearing foot orthoses, and, to the best of our knowledge, no trial has investigated the mid-term effectiveness. The aim of the present study was to evaluate the effectiveness of foot orthoses according to sound biomechanical principles in the treatment of knee pain. Attention was mainly focused on changes in the central control strategies. Fifteen subjects were included in the protocol. The patients with knee pain were compared with healthy participants (control group) exhibiting no knee pain. In the patients with knee pain, pain perception, dynamic analysis of the gait, stabilometry, the soleus Hoffmann reflex at rest and during voluntary contraction, and V-wave were measured before and 3, 6, and 9 weeks after wearing orthoses. In the control group (n = 5), the same parameters were recorded at 0, 3, 6, and 9 weeks, but the subjects had not worn orthoses. In the patient group (n = 10), the results indicated that pain had significantly decreased from the third week onward, although the parameters of gait and stabilometry remained unchanged. From the sixth week, the soleus Hoffmann reflex during voluntary contraction wave was significantly reduced, suggesting an increase in motoneuronal presynaptic inhibition by non-nociceptive afferents. The V-wave amplitude increased throughout the 9 weeks of the experiment, suggesting a progressive increase in corticospinal and/or extrapyramidal descending pathway inputs, probably due to pain reduction. In the control group, no change was observed throughout the experimental sessions. Our data indicated that foot orthoses relieved patients' knee pain and reduced the descending motor inhibition. Changes in spinal modulation could contribute to a better quality of life. However, this treatment failed to change the altered gait, despite changes in spinal and supraspinal modulation.
Collapse
Affiliation(s)
- Sébastien Moyne-Bressand
- Podiatrist, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France
| | - Carole Dhieux
- Podiatrist, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France
| | - Patrick Decherchi
- Professor, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France.
| | - Erick Dousset
- Assistant Professor, Aix-Marseille Université, Centre National de la Recherche Scientifique, L'Institut des Sciences du Mouvement Etienne-Jules Marey est une Unité Mixte de Recherche (UMR 7287), Equipe "Plasticité des Systèmes Nerveux et Musculaire" (PSNM), Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, Marseille, France
| |
Collapse
|
3
|
Budini F, Christova M, Gallasch E, Kressnik P, Rafolt D, Tilp M. Transient Increase in Cortical Excitability Following Static Stretching of Plantar Flexor Muscles. Front Physiol 2018; 9:530. [PMID: 29942261 PMCID: PMC6004398 DOI: 10.3389/fphys.2018.00530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
Spinal excitability in humans is inhibited by both passively holding a static position with the muscle lengthened (static stretching) and by a single non-active lengthening movement. However, whilst immediately after a passive lengthening movement the inhibition persists for several seconds, there seem to be an immediate recovery following static stretching. This result is counter intuitive and could be attributed to methodological procedures. Indeed, differently to what has been done until now, in order to study whether static stretching has a transient effect on the neuromuscular pathway, the procedure should be repeated many times and measurements collected at different time points after stretching. In the present study we repeated 60 times 30 s static stretching of ankle plantar flexors and measured tap reflex (T-reflex), Hoffman reflex (H-reflex), and motor evoked potentials (MEPs) from the Soleus muscle at several time points, starting from immediately after until 30 s following the procedure. T-reflex was strongly inhibited (range 31–91%, p = 0.005) and the inhibition persisted for 30 s showing a slow recovery (r = 0.541, p = 0.037). H-reflex was not affected by the procedure. Stretching increased the size of the MEPs (p < 0.0001), differences at times 0 and 2 s after stretching (p = 0.015 and p = 0.047, respectively). These results confirm that static stretching reduces muscle spindle sensitivity. Moreover it is suggested that post-activation depression of Ia afferents, which is commonly considered the cause of H-reflex depression during both dorsiflexion and static stretching, vanished immediately following stretching or is counteracted by an increased corticospinal excitability.
Collapse
Affiliation(s)
| | - Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria.,Institute of Physiotherapy, Institute of Applied Sciences FH-Joanneum, Graz, Austria
| | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Graz, Austria
| | - Paul Kressnik
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Dietmar Rafolt
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Markus Tilp
- Institute for Sport Science, Graz University, Graz, Austria
| |
Collapse
|
4
|
Budini F, Tilp M. Changes in H-reflex amplitude to muscle stretch and lengthening in humans. Rev Neurosci 2018; 27:511-22. [PMID: 27089411 DOI: 10.1515/revneuro-2016-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/10/2016] [Indexed: 11/15/2022]
Abstract
Spinal reflex excitability is traditionally assessed to investigate neural adjustments that occur during human movement. Different experimental procedures are known to condition spinal reflex excitability. Among these, lengthening movements and static stretching the human triceps have been investigated over the last 50 years. The purpose of this review is to shed light on several apparent incongruities in terms of magnitude and duration of the reported results. In the present review dissimilarities in neuro-spinal changes are examined in relation to the methodologies applied to condition and measure them. Literature that investigated three different conditioning procedures was reviewed: passive dorsiflexion, active dorsiflexion through antagonists shortening and eccentric plantar-flexors contractions. Measurements were obtained before, during and after lengthening or stretching. Stimulation intensities and time delays between conditioning procedures and stimuli varied considerably. H-reflex decreases immediately as static stretching is applied and in proportion to the stretch degree. During dorsiflexions the inhibition is stronger with greater dorsiflexion angular velocity and at lower nerve stimulation intensities, while it is weaker if any concomitant muscle contraction is performed. Within 2 s after a single passive dorsiflexion movement, H-reflex is strongly inhibited, and this effect disappears within 15 s. Dorsiflexions repeated over 1 h and prolonged static stretching training induce long-lasting inhibition. This review highlights that the apparent disagreement between studies is ascribable to small methodological differences. Lengthening movements and stretching can strongly influence spinal neural pathways. Results interpretation, however, needs careful consideration of the methodology applied.
Collapse
|
5
|
Miyaguchi S, Onishi H, Kojima S, Sugawara K, Tsubaki A, Kirimoto H, Tamaki H, Yamamoto N. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement. Brain Res 2013; 1529:83-91. [DOI: 10.1016/j.brainres.2013.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 12/01/2022]
|
6
|
König N, Reschke A, Wolter M, Müller S, Mayer F, Baur H. Plantar pressure trigger for reliable nerve stimulus application during dynamic H-reflex measurements. Gait Posture 2013; 37:637-9. [PMID: 23102673 DOI: 10.1016/j.gaitpost.2012.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/12/2012] [Accepted: 09/27/2012] [Indexed: 02/02/2023]
Abstract
In dynamic H-reflex measurements, the standardisation of the nerve stimulation to the gait cycle is crucial to avoid misinterpretation due to altered pre-synaptic inhibition. In this pilot study, a plantar pressure sole was used to trigger the stimulation of the tibialis nerve with respect to the gait cycle. Consequently, the intersession reliability of the soleus muscle H-reflex during treadmill walking was investigated. Seven young participants performed walking trials on a treadmill at 5 km/h. The stimulating electrode was placed on the tibial nerve in the popliteal fossa. An EMG was recorded from the soleus muscle. To synchronize the stimulus to the gait cycle, initial heel strike was detected with a plantar pressure sole. Maximum H-reflex amplitude and M-wave amplitude were obtained and the Hmax/Mmax ratio was calculated. Data reveals excellent reliability, ICC=0.89. Test-retest variability was 13.0% (±11.8). The Bland-Altman analysis showed a systematic error of 2.4%. The plantar pressure sole was capable of triggering the stimulation of the tibialis nerve in a reliable way and offers a simple technique for the evaluation of reflex activity during walking.
Collapse
Affiliation(s)
- Niklas König
- University Outpatient Clinic, Sports Medicine and Sports Orthopaedics, University of Potsdam, Am Neuen Palais 10, Haus 12, 14469 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
7
|
Robertson CT, Kitano K, Koceja DM, Riley ZA. Temporal depression of the soleus H-reflex during passive stretch. Exp Brain Res 2012; 219:217-25. [PMID: 22466411 DOI: 10.1007/s00221-012-3080-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/15/2012] [Indexed: 12/01/2022]
Abstract
Synaptic efficacy associated with muscle spindle feedback is regulated via depression at the Ia-motoneurone synapse. The inhibitory effects of repetitive Ia afferent discharge on target motoneurones of different sizes were investigated during a passive stretch of ankle extensors in humans. H-reflex recruitment curves were collected from the soleus muscle for two conditions in ten subjects. H-reflexes were elicited during passive stretch at latencies of 50, 100, 300, and 500 ms after a slow (20°/s) dorsiflexion about the right ankle (from 100 to 90°). Control H-reflexes were recorded at corresponding static (without movement) ankle angles of 99, 98, 94, and 90° of flexion. The slope of the H-reflex recruitment curves (Hslp) was then calculated for both conditions. H-reflex values were similar for the static and passive stretch conditions prior to 50-100 ms, not showing the early facilitation typical of increased muscle spindle discharge rates. However, the H-reflex was significantly depressed by 300 ms and persisted through 500 ms. Furthermore, less than 300 ms into the stretch, there was significantly greater H-reflex depression with a lower stimulus intensity (20 % Mmax) versus a higher stimulus intensity (Hmax), though the effects begin to converge at later latencies (>300 ms). This suggests there is a distinct two-stage temporal process in the depression observed in the Ia afferent pathway for all motoneurones during a passive stretch. Additionally, there is not a single mechanism responsible for the depression, but rather both heterosynaptic presynaptic inhibition and homosynaptic post-activation depression are independently influencing the Ia-motoneurone pathway temporally during movement.
Collapse
Affiliation(s)
- Christopher T Robertson
- Department of Sport and Exercise Science, Jacksonville University, Jacksonville, FL 32211, USA
| | | | | | | |
Collapse
|
8
|
Chen YS, Zhou S. Soleus H-reflex and its relation to static postural control. Gait Posture 2011; 33:169-78. [PMID: 21211976 DOI: 10.1016/j.gaitpost.2010.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 11/19/2010] [Accepted: 12/09/2010] [Indexed: 02/02/2023]
Abstract
The Hoffmann reflex (H-reflex) test has been extensively used to investigate the responsiveness of Ia afferent spinal loop in animal and human studies. The H-reflex response is influenced by multiple neural pathways and the assessment of H-reflex variation is a useful tool in understanding the neural mechanisms in control of movement. Recently, several studies have examined the relationship between the H-reflex modulation and postural stability. For example, it has been reported that the amplitude of soleus (SOL) H-reflex is depressed in relation to increased body sway during upright standing on a soft surface compared to that on a solid surface. It has been suggested that the SOL H-reflex modulation under such condition is predominately affected by the presynaptic inhibitory mechanisms for avoiding oversaturation of the spinal motoneurons. It has also been reported that after balance training, the SOL H-reflex amplitude is down-modulated in parallel with improvement in balance control, suggesting a functional adaptation at the supraspinal levels. The aim of this review is to examine the current literature on the relationship between H-reflex modulation and postural control for a better understanding of the physiological mechanisms involved in control of posture in humans.
Collapse
Affiliation(s)
- Yung-Sheng Chen
- School of Health and Human Sciences, Southern Cross University, Lismore, New South Wales, Australia
| | | |
Collapse
|
9
|
Bhatia BD, Kumar A, Prakash U. Effect of prematurity and intrauterine growth restriction on H-reflex recovery cycle in neonates. Neurosci Lett 2011; 488:107-11. [PMID: 20816919 DOI: 10.1016/j.neulet.2010.08.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/27/2010] [Accepted: 08/28/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The purpose of this work was to assess the effects of prematurity and intrauterine growth restriction on spinal cord synapses using H-reflex. METHODS 33 babies were investigated at birth. 14 were full term appropriate for gestational age (FT AGA), 10 were full term intrauterine growth restricted (FT IUGR) and 9 were preterm appropriate for gestational age (PT AGA). The maximum amplitude of H-reflex (Hmax), H-reflex latency (HRL), H/M ratio, H-reflex conduction velocity (HRCV), and H-reflex response to double stimuli (conditioning and test) for H-reflex recovery cycle (HRRC) were recorded in right lower limb (soleus muscle) in all the three groups. RESULTS Percentage recovery values of H-reflex were significantly higher in FT AGA and FT IUGR babies compared to PT AGA neonates for most of inter-stimulus intervals. No significant differences were observed in H-reflex parameters between FT AGA and FT IUGR groups, but HRL and HRCV were significantly affected in PT AGA group. CONCLUSIONS Delayed H-reflex recovery in preterms may be due to a prolonged state of neurotransmitter delay in Ia terminals following initial activation by the conditioning stimuli. The cause of such prolonged depletion of neurotransmitters could be attributed to a poor neurotransmitter store in synaptic vesicles of spinal cord in preterm neonates.
Collapse
Affiliation(s)
- B D Bhatia
- Department of Pediatrics, Unit of Neonatology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India. baldev
| | | | | |
Collapse
|
10
|
Palmieri RM, Ingersoll CD. INTERSESSION RELIABILITY OF A PROTOCOL TO ASSESS REFLEX ACTIVATION HISTORY IN THE VASTUS MEDIALIS. Int J Neurosci 2009; 115:735-40. [PMID: 15823938 DOI: 10.1080/00207450590523404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of this study was to determine the reliability of a protocol to assess reflex activation history in the vastus medialis. Eight subjects reported to the laboratory on two occasions. Reflex activation history was assessed by delivering two stimuli of the same intensity 80 ms apart. The dependent variable evaluated was the percentage of the unconditioned reflex amplitude. Eight trials were elicited and averaged on each day. An intraclass correlation coefficient (ICC 2,1) was used to estimate intersession reliability. The ICC for the protocol was found to be 0.9647. The results of this investigation indicate that this technique can reliably estimate reflex activation history in the vastus medialis.
Collapse
Affiliation(s)
- Riann M Palmieri
- Neuromuscular Research Laboratory, Division of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109-2214, USA.
| | | |
Collapse
|
11
|
Comparison of Single Bout Effects of Bicycle Training Versus Locomotor Training on Paired Reflex Depression of the Soleus H-Reflex After Motor Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2009; 90:1218-28. [DOI: 10.1016/j.apmr.2009.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
|
12
|
McNulty PA, Jankelowitz SK, Wiendels TM, Burke D. Postactivation Depression of the Soleus H Reflex Measured Using Threshold Tracking. J Neurophysiol 2008; 100:3275-84. [PMID: 18922951 DOI: 10.1152/jn.90435.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interpretation of changes in the soleus H reflex is problematic in the face of reflex gain changes, a nonlinear input/output relationship for the motoneuron pool, and a nonhomogeneous response of different motoneurons to afferent inputs. By altering the stimulus intensity to maintain a constant reflex output, threshold tracking allows a relatively constant population of α-motoneurons to be studied. This approach was used to examine postactivation (“homosynaptic”) depression of the H reflex (HD) in 23 neurologically healthy subjects. The H reflex was elicited by tibial nerve stimulation at 0.05, 0.1, 0.3, 1, and 2 Hz at rest and during voluntary plantar flexion at 2.5, 5, and 10% of maximum. A computerized threshold tracking procedure was used to set the current needed to generate a target H reflex 10% of Mmax. The current needed to produce the target reflex increased with stimulus rate but not significantly beyond 1 Hz. In three subjects, the current needed to produce H reflexes of 5, 10, 15, and 20% Mmax at 0.3, 1, and 2 Hz increased with rate and with the size of the test H reflex. HD was significantly reduced during voluntary contractions. Using threshold tracking, HD was maximal at lower frequencies than previously emphasized, probably because HD is greater the larger the test H reflex. This would reinforce the greater sensitivity of small motoneurons to reflex inputs.
Collapse
|
13
|
Corticospinal Facilitation Following Prolonged Proprioceptive Stimulation by Means of Passive Wrist Movement. J Clin Neurophysiol 2008; 25:202-9. [DOI: 10.1097/wnp.0b013e31817da170] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Duclay J, Robbe A, Pousson M, Martin A. Effect of angular velocity on soleus and medial gastrocnemius H-reflex during maximal concentric and eccentric muscle contraction. J Electromyogr Kinesiol 2008; 19:948-56. [PMID: 18555699 DOI: 10.1016/j.jelekin.2008.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/07/2008] [Accepted: 04/28/2008] [Indexed: 11/25/2022] Open
Abstract
At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.
Collapse
Affiliation(s)
- Julien Duclay
- INSERM U887, Faculté des Sciences du Sport, BP 27 877, Dijon F-21078, France.
| | | | | | | |
Collapse
|
15
|
DUCLAY JULIEN, MARTIN ALAIN, ROBBE ALICE, POUSSON MICHEL. Spinal Reflex Plasticity during Maximal Dynamic Contractions after Eccentric Training. Med Sci Sports Exerc 2008; 40:722-34. [DOI: 10.1249/mss.0b013e31816184dc] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 2008; 171:1-12. [PMID: 18394711 DOI: 10.1016/j.jneumeth.2008.02.012] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 11/30/2022]
Abstract
The Hoffmann (or H) reflex is considered a major probe for non-invasive study of sensorimotor integration and plasticity of the central nervous system in humans. The first section of this paper reviews the neurophysiological properties of the H-reflex, which if ignored create serious pitfalls in human experimental studies. The second section reviews the spinal inhibitory circuits and neuronal pathways that can be indirectly assessed in humans using the H-reflex. The most confounding factor is that reciprocal, presynaptic, and Ib inhibition do not act in isolation during movement. Therefore, characterization of these spinal circuits should be more comprehensive, especially in cases of a neurological injury because neurophysiological findings are critical for the development of successful rehabilitation protocols. To conclude, the H-reflex is a highly sensitive reflex with an amplitude that is the result of complex neural mechanisms that act synchronously. If these limitations are recognized and addressed, the H-reflex constitutes one of the major probes to assess excitability of interneuronal circuits at rest and during movement in humans.
Collapse
Affiliation(s)
- Maria Knikou
- Health Sciences Doctoral Programs, City University of New York, Staten Island, NY 10314, USA.
| |
Collapse
|
17
|
NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics. J Biomech 2008; 41:1659-67. [DOI: 10.1016/j.jbiomech.2008.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/14/2008] [Accepted: 03/16/2008] [Indexed: 11/24/2022]
|
18
|
Avela J, Finni J, Komi PV. Excitability of the soleus reflex arc during intensive stretch-shortening cycle exercise in two power-trained athlete groups. Eur J Appl Physiol 2006; 97:486-93. [PMID: 16763835 DOI: 10.1007/s00421-006-0209-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2006] [Indexed: 10/24/2022]
Abstract
In several explosive types of sport events the leg extensor muscles are subjected to very high impact loads. Thus, extreme requirements exist for the neuromuscular system to develop sufficient muscle stiffness in the lower extremities in order to tolerate these high impact loads. Therefore, it would be challenging to measure reflex modulation during high impact activities, and with different athlete populations. In the present experiment, H-reflex and short latency reflex (M1) sensitivity was measured during drop jump exercises among high jumpers and sprinters. The changes in both reflex peak-to-peak amplitudes showed a significant (P < 0.05) reduction towards the end of the exercise for the sprinters. In addition, the same subject group showed a remarkable increase in serum creatine kinase (CK) activity 2 h after the jumps. Similar changes could not be observed for the high jumpers. These results clearly indicate different neural adaptation strategies for the two athlete groups. Reduction in H-reflex sensitivity and an increase in CK-activity in sprinters were taken as evidence for presynaptic inhibition, probably induced by substances related to muscle damage. Since high jump training includes more high impact loading, it was assumed that it could lead to some structural adaptation and, thus, prevents exercise induced reflex modification to a certain extent.
Collapse
Affiliation(s)
- Janne Avela
- Neuromuscular Research Center, Department of Biology of Physical Activity, University of Jyväskylä, 40100 Jyvaskyla, Finland.
| | | | | |
Collapse
|
19
|
Duclay J, Martin A. Evoked H-Reflex and V-Wave Responses During Maximal Isometric, Concentric, and Eccentric Muscle Contraction. J Neurophysiol 2005; 94:3555-62. [PMID: 16049144 DOI: 10.1152/jn.00348.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to investigate the modulations of H-reflex and V-wave responses during passive and maximal active dynamic actions. Experiments were performed on 16 healthy males [age: 24 ± 4 (SD) yr]. Maximal H-reflexes ( Hmax) and M-waves ( MmaxR) were evoked at the same muscle length during passive isometric, shortening and lengthening actions and during maximal voluntary isometric, concentric, and eccentric plantar-flexion. In all contraction types, supra-maximal stimulus intensity was used to evoke the superimposed maximal M wave ( MmaxA) and V wave ( V) of the soleus muscle. At rest, the Hmax/ MmaxR ratio was significantly reduced during lengthening with respect to isometric and shortening actions ( P < 0.05). For each action type, the ratio between H reflex superimposed to the contraction ( Hsup) and MmaxA was not different from Hmax/ MmaxR ratio. When plantar flexors were maximally voluntary activated, the Hsup/ MmaxA ratio was still lower during eccentric contraction as compared with isometric and concentric efforts (0.33 ± 0.03 vs. 0.47 ± 0.02 and 0.50 ± 0.03, P < 0.001), whereas V/ MmaxA ratios were similar for all contraction types (isometric 0.26 ± 0.02; concentric 0.23 ± 0.03, and eccentric 0.24 ± 0.02; P > 0.05). The V/ MmaxA ratio was significantly lower than Hsup/ MmaxA during isometric and concentric MVC ( P < 0.001). No difference was observed between V/ MmaxA and Hsup/ MmaxA ratios during eccentric efforts. The H-reflex modulations, present during lengthening actions, were mainly attributed to presynaptic inhibition of Ia afferents and to homosynaptic postactivation depression. Results on V wave and H reflex suggest that during eccentric MVC, the spinal loop is specifically modulated by the supra-spinal centers and/or neural mechanisms at spinal level.
Collapse
Affiliation(s)
- Julien Duclay
- INSERM/ERM 207 Motricité-Plasticité, Faculté des Sciences du Sport, BP 27 877-21 078 Dijon Cedex, France.
| | | |
Collapse
|
20
|
Palmieri RM, Weltman A, Edwards JE, Tom JA, Saliba EN, Mistry DJ, Ingersoll CD. Pre-synaptic modulation of quadriceps arthrogenic muscle inhibition. Knee Surg Sports Traumatol Arthrosc 2005; 13:370-6. [PMID: 15685462 DOI: 10.1007/s00167-004-0547-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 05/12/2004] [Indexed: 12/21/2022]
Abstract
Arthrogenic muscle inhibition (AMI) impedes rehabilitation following knee joint injury by preventing activation of the quadriceps. AMI has been attributed to neuronal reflex activity in which altered afferent input originating from the injured joint results in a diminished efferent motor drive to the quadriceps muscles. Beginning to understand the mechanisms responsible for muscle inhibition following joint injury is vital to control or eliminate this phenomenon. Therefore, the purpose of this investigation is to determine if quadriceps AMI is mediated by a presynaptic regulatory mechanism. Eight adults participated in two sessions: in one session their knee was injected with saline and in the other session it was not. The maximum Hoffmann reflex (H-reflex), M-wave, reflex activation history, plasma epinephrine, and norepinephrine were recorded at: baseline, post needle stick, post lidocaine, and 25 and 45 min post effusion. Measures for the control condition were matched to the effusion condition. The percent of the unconditioned reflex amplitude for reflex activation history and the maximum H-reflex were decreased at 25 and 45 min post effusion as compared to measures taken at baseline, post needle stick, and post lidocaine (P<0.05). No differences were noted for the maximum M-wave or plasma epinephrine and norepinephrine levels in either the effusion or noneffusion admission (P>0.05). No differences were detected at any time interval for any measure during the control admission (P>0.05). Quadriceps AMI elicited via an experimental knee joint effusion is, at least in part, mediated by a presynaptic mechanism.
Collapse
Affiliation(s)
- Riann M Palmieri
- Neuromuscular Research Laboratory, Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Palmieri RM, Tom JA, Edwards JE, Weltman A, Saliba EN, Mistry DJ, Ingersoll CD. Arthrogenic muscle response induced by an experimental knee joint effusion is mediated by pre- and post-synaptic spinal mechanisms. J Electromyogr Kinesiol 2004; 14:631-40. [PMID: 15491837 DOI: 10.1016/j.jelekin.2004.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knee joint effusion results in quadriceps inhibition and is accompanied by increased excitability in the soleus musculature. The purpose of this study was to determine if soleus arthrogenic muscle response is regulated by pre- or post-synaptic spinal mechanisms. Ten healthy adults (two females and eight males) were measured on two occasions. At the first session, subjects had their knee injected with 60 ml of saline and in the other session they did not. Pre- and post-synaptic spinal mechanisms were measured at baseline, immediately following a needle stick, immediately following a Xylocaine injection, and 25 and 45 min post-saline injection. A mixed effects model for repeated measures was used to analyze each dependent variable. The a priori alpha level was set a P < or = 0.05. The percentage of the unconditioned reflex amplitude for recurrent inhibition (P < 0.0001) and reflex activation history (P < 0.0001) significantly increased from baseline at 25 and 45 min post-effusion. Soleus arthrogenic muscle response seen following knee joint effusion is mediated by both pre- and post-synaptic mechanisms. In conclusion, the arthrogenic muscle response seen in the soleus musculature following joint effusion is regulated by both pre- and post-synaptic control mechanisms. Our data are the first step in understanding the neural networks involved in the patterned muscle response that occurs following joint effusion.
Collapse
Affiliation(s)
- Riann M Palmieri
- Neuromuscular Research Laboratory, Division of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mezzarane RA, Kohn AF. Bilateral soleus H-reflexes in humans elicited by simultaneous trains of stimuli: symmetry, variability, and covariance. J Neurophysiol 2002; 87:2074-83. [PMID: 11929925 DOI: 10.1152/jn.00129.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments using electrical and mechanical activation of spinal reflexes have contributed important results toward the understanding of neuronal and synaptic dynamics involved in spinal neural circuits as well as their response to different inputs. In this work, data obtained from the simultaneous stimulation of both legs are analyzed to provide information on the degree of symmetry of the respective spinal reflex circuits and on the characteristics of reflex variability. H-reflexes recorded from relaxed muscles show a frequency-dependent amplitude depression when elicited by a train of stimuli. This effect has been attributed to homosynaptic depression. Soleus H-reflexes were recorded in response to trains of simultaneous stimuli applied to both legs in right-handed subjects that were sitting in a relaxed state. The first objective was to verify the existence of asymmetries in H-reflex parameters obtained from the two legs. We measured the mean, variance, and coefficient of variation of the depressed H-reflex amplitudes and the time constant of decay toward the depressed plateau. The second objective was the analysis of the time correlation of subsequent H-reflex amplitudes in a long train of responses recorded from a given leg. The statistical dependence of H-reflex amplitudes in the long trains recorded from both legs was also investigated. Data obtained from preliminary experiments showed that there was no effect of a given stimulus on the contralateral leg applied simultaneously or 1 s before, therefore validating the simultaneous stimulation paradigm. Paired t-tests indicated that several parameters measured bilaterally from soleus H-reflex trains of right-handed subjects were not statistically different in the overall, although individually there were statistically significant asymmetries, toward either the right or left leg. Sequences of H-reflex amplitudes, as measured by the auto-covariance, were either white or had a memory ranging from 2 up to 50 s. This indicates that the random fluctuations in presynaptic inhibition and/or postsynaptic inputs to motoneurons may have either fast or slow time courses. The average auto-covariance sequences of the right and left legs, computed from all subjects, were practically superposable. The cross-covariance between the bilateral H-reflex amplitudes showed a statistically significant peak at zero lag in some experiments, suggesting a correlation between the synaptic inputs to the Ia-motoneuron systems of the soleus muscles of both legs.
Collapse
Affiliation(s)
- Rinaldo A Mezzarane
- Neuroscience Program and Biomedical Engineering Laboratory, Escola Politécnica, University of São Paulo, CEP 05424-970 São Paulo, SP, Brazil
| | | |
Collapse
|
23
|
Pinniger GJ, Nordlund M, Steele JR, Cresswell AG. H-reflex modulation during passive lengthening and shortening of the human triceps surae. J Physiol 2001; 534:913-23. [PMID: 11483720 PMCID: PMC2278740 DOI: 10.1111/j.1469-7793.2001.00913.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The present study investigated the effects of lengthening and shortening actions on H-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastrocnemius (MG) of human subjects during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/-15 deg s(-1). 2. H-reflex amplitudes in both SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric H-reflex amplitude. 3. Four experiments were performed in which the latencies from the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found to begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that the H-reflex modulation seen in the present study is related to the tonic discharge of muscle spindle afferents and the consequent effects of transmission within the Ia pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may be attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in Ia fibres that are refractory following muscle spindle discharge during rapid muscle lengthening, a reduced probability of transmitter release from the presynaptic terminal (homosynaptic post-activation depression) and presynaptic inhibition of Ia afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.
Collapse
Affiliation(s)
- G J Pinniger
- Department of Biomedical Science, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
24
|
Inghilleri M, Lorenzano C, Gilio F, Pedace F, Romeo S, Manfredi M, Berardelli A. Ia presynaptic inhibition after muscle twitch in the arm. Muscle Nerve 2000; 23:748-52. [PMID: 10797398 DOI: 10.1002/(sici)1097-4598(200005)23:5<748::aid-mus12>3.0.co;2-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Contraction of upper limb muscles in healthy subjects was used to investigate presynaptic inhibition at spinal level. The H reflex recorded in the forearm flexor muscles in response to median nerve stimulation was depressed in amplitude from 400 ms to 1 s after a muscle twitch induced by transcranial stimulation, root stimulation, direct biceps stimulation, and triceps tendon tap. Stimulation of the cutaneous branch of musculocutaneous nerve, ipsilateral triceps and contralateral biceps, and biceps tendon tap did not alter H-reflex size. Forearm flexor H-reflex amplitude is therefore related to changes in proprioceptive inflow secondary to the biceps muscle twitch. Root and direct muscle stimulation both failed to reduce the size of the motor evoked potential (MEP) after transcranial magnetic stimulation, suggesting that the inhibition acts at presynaptic level. Attenuation of H-reflex amplitude was related to the size of the muscle twitch and was less pronounced during an isometric twitch than during free joint movement. Our results suggest that the biceps muscle twitch produces long-lasting inhibition of the Ia afferents from forearm flexor muscles. This is an important and a simple mechanism for suppressing proprioceptive input during movement.
Collapse
Affiliation(s)
- M Inghilleri
- Dipartimento Scienze Neurologiche, Universitá degli Studi di Roma "La Sapienza," Viale Universitá, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Kearney RE, Lortie M, Stein RB. Modulation of stretch reflexes during imposed walking movements of the human ankle. J Neurophysiol 1999; 81:2893-902. [PMID: 10368406 DOI: 10.1152/jn.1999.81.6.2893] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our overall objectives were to examine the role of peripheral afferents from the ankle in modulating stretch reflexes during imposed walking movements and to assess the mechanical consequences of this reflex activity. Specifically we sought to define the changes in the electromyographic (EMG) and mechanical responses to a stretch as a function of the phase of the step cycle. We recorded the ankle position of a normal subject walking on a treadmill at 3 km/h and used a hydraulic actuator to impose the same movements on supine subjects generating a constant level of ankle torque. Small pulse displacements, superimposed on the simulated walking movement, evoked stretch reflexes at different phases of the cycle. Three major findings resulted: 1) soleus reflex EMG responses were influenced strongly by imposed walking movements. The response amplitude was substantially smaller than that observed during steady-state conditions and was modulated throughout the step cycle. This modulation was qualitatively similar to that observed during active walking. Because central factors were held constant during the imposed walking experiments, we conclude that peripheral mechanisms were capable of both reducing the amplitude of the reflex EMG and producing its modulation throughout the movement. 2) Pulse disturbances applied from early to midstance of the imposed walking cycle generated large reflex torques, suggesting that the stretch reflex could help to resist unexpected perturbations during this phase of walking. In contrast, pulses applied during late stance and swing phase generated little reflex torque. 3) Reflex EMG and reflex torque were modulated differently throughout the imposed walking cycle. In fact, at the time when the reflex EMG response was largest, the corresponding reflex torque was negligible. Thus movement not only changes the reflex EMG but greatly modifies the mechanical output that results.
Collapse
Affiliation(s)
- R E Kearney
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4
| | | | | |
Collapse
|