1
|
do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I. Neuroproteomics in Epilepsy: What Do We Know so Far? Front Mol Neurosci 2021; 13:604158. [PMID: 33488359 PMCID: PMC7817846 DOI: 10.3389/fnmol.2020.604158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.
Collapse
Affiliation(s)
- Amanda M. do Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C. Geraldis
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
2
|
Gigout S, Louvel J, Rinaldi D, Martin B, Pumain R. Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy. Brain Res 2013; 1525:39-52. [PMID: 23743261 DOI: 10.1016/j.brainres.2013.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/25/2013] [Accepted: 05/27/2013] [Indexed: 11/19/2022]
Abstract
Electroencephalographic generalized spike and wave discharges (SWD), the hallmark of human absence seizures, are generated in thalamocortical networks. However, the potential alterations in these networks in terms of the efficacy of the reciprocal synaptic activities between the cortex and the thalamus are not known in this pathology. Here, the efficacy of these reciprocal connections is assessed in vitro in thalamocortical slices obtained from BS/Orl mice, which is a new genetic model of absence epilepsy. These mice show spontaneous SWD, and their features can be compared to that of BR/Orl mice, which are free of SWD. In addition, since gap junctions may modulate the efficacy of these connections, their implications in pharmacologically-induced epileptiform discharges were studied in the same slices. The thalamus and neocortex were independently stimulated and the electrically-evoked responses in both structures were recorded from the same slice. The synaptic efficacy of thalamocortical and corticothalamic connections were assessed by measuring the dynamic range of synaptic field potential changes in response to increasing stimulation strengths. The connection efficacy was weaker in epileptic mice however, this decrease in efficacy was more pronounced in thalamocortical afferents, thus introducing an imbalance in the reciprocal connections between the cortex and thalamus. However, short-term facilitation of the thalamocortical responses were increased in epileptic mice compared to non-epileptic animals. These features may favor occurrence of rhythmical activities in thalamocortical networks. In addition, carbenoxolone (a gap junction blocker) decreased the cumulative duration of 4-aminopyridine-induced ictal-like activities, with a slower time course in epileptic mice. However, the 4-aminopyridine-induced GABA-dependent negative potentials, which appeared to trigger the ictal-like activities, remained. Our results show that the balance of the reciprocal connections between the thalamus and cortex is altered in favor of the corticothalamic connections in epileptic mice, and suggest that gap junctions mediate a stronger cortical synchronization in this strain.
Collapse
Affiliation(s)
- Sylvain Gigout
- Epilepsie de l'Enfant et Plasticité Cérébrale, INSERM U 663, Paris, France.
| | | | | | | | | |
Collapse
|
3
|
Lagarrigue M, Alexandrov T, Dieuset G, Perrin A, Lavigne R, Baulac S, Thiele H, Martin B, Pineau C. New Analysis Workflow for MALDI Imaging Mass Spectrometry: Application to the Discovery and Identification of Potential Markers of Childhood Absence Epilepsy. J Proteome Res 2012; 11:5453-63. [DOI: 10.1021/pr3006974] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mélanie Lagarrigue
- Inserm U1085, IRSET, Proteomics Core Facility Biogenouest, Campus de Beaulieu,
F-35042 Rennes, France
| | - Theodore Alexandrov
- Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany
- Steinbeis Innovation Center SCiLS, Richard-Dehmel-Str. 69 D, 28211
Bremen, Germany
| | - Gabriel Dieuset
- INSERM U1099, F-35000 Rennes, France
- Université de Rennes 1, LTSI, F-35000 Rennes, France
| | - Aline Perrin
- Inserm UMR S975/CNRS UMR 7225, Centre
de Recherche de l’Institut du Cerveau et de la Moelle Épinière,
Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, F-75013
Paris, France
| | - Régis Lavigne
- Inserm U1085, IRSET, Proteomics Core Facility Biogenouest, Campus de Beaulieu,
F-35042 Rennes, France
| | - Stéphanie Baulac
- Inserm UMR S975/CNRS UMR 7225, Centre
de Recherche de l’Institut du Cerveau et de la Moelle Épinière,
Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, F-75013
Paris, France
| | - Herbert Thiele
- Steinbeis Innovation Center SCiLS, Richard-Dehmel-Str. 69 D, 28211
Bremen, Germany
| | - Benoit Martin
- INSERM U1099, F-35000 Rennes, France
- Université de Rennes 1, LTSI, F-35000 Rennes, France
| | - Charles Pineau
- Inserm U1085, IRSET, Proteomics Core Facility Biogenouest, Campus de Beaulieu,
F-35042 Rennes, France
| |
Collapse
|
4
|
Boissonnet A, Hévor T, Cloix JF. Phenotypic differences between fast and slow methionine sulfoximine-inbred mice: seizures, anxiety, and glutamine synthetase. Epilepsy Res 2011; 98:25-34. [PMID: 22050980 DOI: 10.1016/j.eplepsyres.2011.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/04/2011] [Accepted: 08/18/2011] [Indexed: 12/31/2022]
Abstract
Seizures induced by the convulsant methionine sulfoximine (MSO) resemble human "grand mal" epilepsy, and brain glutamine synthetase is inhibited. We recently selected two inbred lines of mice: sensitive to MSO (MSO-Fast) and resistant (MSO-Slow). In the present study, the selection pressure was increased and consanguinity established. To gain insight into the mechanisms of epileptogenesis, we studied the behaviour of MSO-Fast and MSO-Slow mice based on their responses to various convulsants and anticonvulsants, and also the kinetics of glutamine synthetase. The results show that increasing the number of generations of sib-crossings resulted in an increase in the differences between MSO-Fast and MSO-Slow mice. The dose-response curve of MSO-dependent seizures demonstrated that the MSO-Slow mice were highly insensitive to MSO-dependent seizures compared with MSO-Fast inbred mice that were highly sensitivity. The MSO-Slow were resistant to convulsions induced by various convulsants having different mechanisms of action, whereas those in the MSO-Fast line were more sensitive to kainic acid-induced seizures. These data, in addition to the effects of anticonvulsant, strongly suggest that glutamatergic pathways are most likely involved in MSO-dependent seizures, rather than GABAergic ones. This hypothesis is corroborated by the glutamine synthetase activity, which is more elevated in the MSO-Slow line. Behaviour tests showed that MSO-Slow were less anxious than MSO-Fast. Collectively, these results showed that glutamatergic pathways could be involved in the epileptogenic action of MSO, which may be related to the glutamate/glutamine cycle in the brain.
Collapse
Affiliation(s)
- Arnaud Boissonnet
- Laboratoire de Neurobiologie, Rue de Chartres, Université d'Orléans, 45067 Orléans CEDEX 2, France
| | | | | |
Collapse
|
5
|
Sartori SB, Landgraf R, Singewald N. The clinical implications of mouse models of enhanced anxiety. FUTURE NEUROLOGY 2011; 6:531-571. [PMID: 21901080 PMCID: PMC3166843 DOI: 10.2217/fnl.11.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying 'normal' anxiety rather than 'psychopathological' animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| | - Rainer Landgraf
- Max Planck Institute of Psychiatry, Department of Behavioral Neuroendocrinology, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy & Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Peter-Mayr-Street 1, A-6020, Innsbruck, Austria
| |
Collapse
|
6
|
Cloix JF, Tahi Z, Martin B, Hévor T. Selection of two lines of mice based on latency to onset of methionine sulfoximine seizures. Epilepsia 2010; 51:118-28. [DOI: 10.1111/j.1528-1167.2009.02200.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Inverse benzodiazepine agonist β-CCM does not reverse learning deficit induced by sleep deprivation. Neurosci Lett 2010; 469:169-73. [DOI: 10.1016/j.neulet.2009.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/02/2009] [Accepted: 11/29/2009] [Indexed: 11/23/2022]
|
8
|
Chaix Y, Ferraro TN, Lapouble E, Martin B. Chemoconvulsant-induced seizure susceptibility: toward a common genetic basis? Epilepsia 2007; 48 Suppl 5:48-52. [PMID: 17910581 DOI: 10.1111/j.1528-1167.2007.01289.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the efforts employed, understanding the genetic architecture underlying epilepsy remains difficult. To reach this aim, convulsive epilepsies are classically modeled in mice, where genetic studies are less constricting than in humans. Pharmacogenetic approaches are one major source of investigation where kainic acid, pentylenetetrazol, and the ss-carboline family represent compounds that are used extensively. Several quantitative trait loci (QTLs) influencing the convulsant effects of these drugs have been mapped using either recombinant inbred strains (RIS) or segregating F2 populations (or both). In our laboratory, we have recently mapped two QTLs for methyl 6, 7-dimethoxy-4-ethyl-ss-carboline-3-carboxylate (DMCM), and seizure response using an F2 method. One is located on the distal part of Chromosome 1, a region implicated in a number of other studies. Here, we address the general importance of this chromosomal fragment for influencing seizure susceptibility.
Collapse
Affiliation(s)
- Yohan Chaix
- Laboratoire de Neurobiologie, Equipe Génétique des Epilepsies, Université d'Orléans, France
| | | | | | | |
Collapse
|
9
|
Jacobson LH, Cryan JF. Feeling strained? Influence of genetic background on depression-related behavior in mice: a review. Behav Genet 2006; 37:171-213. [PMID: 17029009 DOI: 10.1007/s10519-006-9106-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 08/11/2006] [Indexed: 02/03/2023]
Abstract
Depression is a growing pandemic in developed societies. The use of inbred mouse strains in pre-clinical psychiatric research has proven to be a valuable resource. Firstly, they provide the background for genetic manipulations that aid in the discovery of molecular pathways that may be involved in major depression. Further, inbred mouse strains are also being used in the determination of genetic and environmental influences that may pre-dispose or trigger depression-related behavior. This review aims to highlight the utility of inbred mouse strains in depression research, while providing an overview of the current state of research into behavioral differences between strains in paradigms commonly used in the field. Neurochemical differences that may underlie strain differences are examined, and some caveats and cautions associated with the use of inbred strains are highlighted.
Collapse
Affiliation(s)
- L H Jacobson
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, CH-4002, Basel, Switzerland
| | | |
Collapse
|
10
|
Do-Rego JC, Suaudeau C, Chapouthier G, Costentin J. Mouse lines differing in sensitivity to beta-CCM differ in tasks used for testing antidepressants. Pharmacol Biochem Behav 2002; 72:411-6. [PMID: 11900813 DOI: 10.1016/s0091-3057(01)00761-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two lines of mice, previously selected for their sensitivity (BS) or their resistance (BR) to an anxiogenic benzodiazepine (BZ) receptor inverse agonist, methyl beta-carboline-3-carboxylate (beta-CCM), have recently been shown to present several differences in anxiety. In the present study, attempt was made to extend their behavioral profile in two situations classically used for testing antidepressant drugs. Reassessment of locomotor performance of these new populations confirmed that the motor activity of BR mice was lower than that of BS mice. In both the forced-swimming and the tail suspension tests, the immobility time of BS mice was significantly higher than that of BR mice. In the tail suspension test, two administrations of imipramine (30 mg/kg i.p., 5 h and 30 min before testing) significantly reduced the immobility time of BS mice but not of BR mice. From these data, it appears that BS mice are more "depressed" than BR mice. Thus, these selectively bred lines may represent potentially useful animal models to investigate behavioral, neurochemical and neuroendocrine correlates of antidepressant action.
Collapse
Affiliation(s)
- Jean-Claude Do-Rego
- IFRMP 23, Unité de Neuropsychopharmacologie Expérimentale, CNRS UMR 6036, UFR de Médecine et Pharmacie, 22 Boulevard Gambetta, 76183 Rouen, France
| | | | | | | |
Collapse
|
11
|
Abstract
The way genetic and/or environmental factors influence psychiatric disorders is an enduring question in the field of human psychiatric diseases. Anxiety-related disorders provide a relevant example of how such an interaction is involved in the aetiology of a psychiatric disease. In this paper we review the literature on that subject, reporting data derived from human and rodent studies. We present in a critical way the animal models used in the studies aimed at investigating the genetic basis of anxiety, including inbred mice, selected lines, multiple marker strains, or knockout mice and review data reporting environmental components influencing anxiety-related behaviours. We conclude that anxiety is a complex behaviour, underlined not only by genetic or environmental factors but also by multiple interactions between these two factors.
Collapse
Affiliation(s)
- Yan Clément
- Université Reims Champagne-Ardenne, Taittinger, Reims Cedex, France
| | | | | |
Collapse
|
12
|
Vergnes M, Boehrer A, He X, Greney H, Dontenwill M, Cook J, Marescaux C. Differential sensitivity to inverse agonists of GABA(A)/benzodiazepine receptors in rats with genetic absence-epilepsy. Epilepsy Res 2001; 47:43-53. [PMID: 11673020 DOI: 10.1016/s0920-1211(01)00292-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A strain of Wistar rats, genetic absence epilepsy rats from Strasbourg (GAERS), was selected and inbred over 40 generations for occurrence of spontaneous spike-wave discharges characteristic of absence seizures, simultaneously with a strain of non-epileptic rats (NER). GAERS demonstrate an excessive sensitivity to antagonists of the GABA(A) receptor. The sensitivity to convulsions induced by various inverse agonists of the GABA(A)/benzodiazepine receptor was compared in GAERS and NERs. The beta-carbolines FG 7142 and DMCM, and the imidazobenzodiazepines RO 19-4603 and the alpha 5-selective RY 024 were several times more convulsant in GAERS than in NERs. The largest differences were found with the non-selective RO 19-4603- and FG 7142. The proconvulsant imidazobenzodiazepine RO 15-4513, binding also to diazepam-insensitive receptors, had low efficacy. The high affinity binding of GABA(A)/BZD receptors with (3H) RO 15-1788 in the brain of naive rats and after administration of FG 7142 did not differ in GAERS and NERs. The data indicate that the hypersensitivity of GAERS to various inverse agonists of the GABA(A)/benzodiazepine receptor involves cortical GABA(A) receptors and is not related to differential activity of a subunit-selective receptor.
Collapse
Affiliation(s)
- M Vergnes
- INSERM U 398, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Rinaldi D, Larrigaldie V, Chapouthier G, Martin B. Unexpected absence of correlation between the genetic mechanisms regulating beta-carboline-induced seizures and anxiety manifested in an elevated plus-maze test. Behav Brain Res 2001; 125:159-65. [PMID: 11682107 DOI: 10.1016/s0166-4328(01)00293-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Among the ligands of the benzodiazepine site, one can mention the benzodiazepines as agonists and some beta-carbolines (e.g. methyl-beta-carboline-3-carboxylate, abbreviated hereafter beta-CCM) as inverse agonists. Most benzodiazepines and beta-carbolines act on processes involved in memory, anxiety, and convulsions with opposite physiological effects. Since these molecules have influences on both anxiety and convulsions, we predicted that there would exist a genetic correlation between anxiety evaluated in an elevated plus-maze and susceptibility to beta-CCM-induced seizures. Using inbred strains of mice, the genetic correlation was estimated with the Hegmann and Possidente model. An absence of genetic correlation was found, showing that the mechanisms responsible for basal anxiety measured with the elevated plus-maze test and those leading to susceptibility to beta-CCM-induced seizures do not share the same genetic pathways.
Collapse
Affiliation(s)
- D Rinaldi
- CHR Orléans, 1 rue de la porte Madeleine, 45000 Orléans, France.
| | | | | | | |
Collapse
|
14
|
|
15
|
Suaudeau C, Rinaldi D, Lepicard E, Venault P, Crusio WE, Costentin J, Chapouthier G. Divergent levels of anxiety in mice selected for differences in sensitivity to a convulsant agent. Physiol Behav 2000; 71:517-23. [PMID: 11239670 DOI: 10.1016/s0031-9384(00)00383-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spontaneous behavior patterns were assessed in eight different behavioral situations in two lines of mice, BR and BS, previously selected for their sensitivity to an anxiogenic benzodiazepine (BZ) receptor inverse agonist, Methyl beta-carboline-3-carboxylate (beta-CCM). BR is highly resistant, and BS, highly sensitive to beta-CCM-induced seizures. Tests used included an assessment of general locomotor activity, several situations classically used for measuring fear-motivated behaviors (open field, thigmotaxis, elevated plus-maze, light-dark discrimination, staircase), a test for measuring exploration (holeboard), and a test for measuring nociception (hot-plate). In the absence of beta-CCM, the results provide evidence of reduced motor activity and higher levels of anxiety in the BR line as compared to the BS line.
Collapse
Affiliation(s)
- C Suaudeau
- Unité de Neuropsychopharmacologie, UPRESA 6036, Site Universitaire du Madrillet, Avenue de l'Université, 76800, Saint-Etienne-du-Rouvray, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
To define the genetic contributions affecting individual differences in seizure threshold, a beta carboline [methyl-beta-carboline-3-carboxylate (beta-CCM)]-induced model of generalized seizures was genetically dissected in mice. beta-CCM is a GABAA receptor inverse agonist and convulsant. By measuring the latency to generalized seizures after beta-CCM administration to A/J and C57BL6/J mice and their progeny, we estimated a heritability of 0.28 +/- 0.10. A genome wide screen in an F2 population of these parental strains (n = 273) mapped quantitative trait loci (QTLs) on proximal chromosome 7 [logarithm of the likelihood for linkage (LOD) = 3.71] and distal chromosome 10 (LOD = 4.29) for seizure susceptibility, explaining approximately 22 and 25%, respectively, of the genetic variance for this seizure trait. The best fitting logistic regression model suggests that the A/J allele at each locus increases the likelihood of seizures approximately threefold. In a subsequent backcross population (n = 223), we mapped QTLs on distal chromosome 4 (LOD = 2.88) and confirmed the distal chromosome 10 QTLs (LOD = 4.36). In the backcross, the C57BL/6J allele of the chromosome 10 QTL decreases the risk of seizures approximately twofold. These QTLs may ultimately lead to the identification of genes influencing individual differences in seizure threshold in mice and the discovery of novel anticonvulsant agents. The colocalization on distal chromosome 10 of a beta-CCM susceptibility QTL and a QTL for open field ambulation and vertical movement suggests the existence of a single, pleiotropic locus, which we have named Exq1.
Collapse
|