1
|
Stocco MR, Tyndale RF. Cytochrome P450 enzymes and metabolism of drugs and neurotoxins within the mammalian brain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:73-106. [PMID: 35953164 DOI: 10.1016/bs.apha.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 enzymes (CYPs) that metabolize xenobiotics are expressed and active in the brain. These CYPs contribute to the metabolism of many centrally acting compounds, including clinically used drugs, drugs of abuse, and neurotoxins. Although CYP levels are lower in the brain than in the liver, they may influence central substrate and metabolite concentrations, which could alter resulting centrally-mediated responses to these compounds. Additionally, xenobiotic metabolizing CYPs are highly variable due to genetic polymorphisms and regulation by endogenous and xenobiotic molecules. In the brain, these CYPs are sensitive to xenobiotic induction. As a result, CYPs in the brain vary widely, including among humans, and this CYP variation may influence central metabolism and resulting response to centrally acting compounds. It has been demonstrated, using experimental manipulation of CYP activity in vivo selectively within the brain, that CYP metabolism in the brain alters central substrate and metabolite concentrations, as well as drug response and neurotoxic effects. This suggests that variability in xenobiotic metabolizing CYPs in the human brain may meaningfully contribute to individual differences in response to, and effects of, centrally acting drugs and neurotoxins. This chapter will provide an overview of CYP expression in the brain, endogenous- and xenobiotic-mediated CYP regulation, and the functional impact of CYP-mediated metabolism of drugs and neurotoxins in the brain, with a focus on experimental approaches in mice, rats, and non-human primates, and a discussion regarding the potential role of xenobiotic metabolizing CYPs in the human brain.
Collapse
Affiliation(s)
- Marlaina R Stocco
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Nascimento RP, Oliveira JL, Carvalho JLC, Santos WA, Pires TRC, Batatinha MJM, El-Bachá RS, Silva VDA, Costa SL. Involvement of astrocytic CYP1A1 isoform in the metabolism and toxicity of the alkaloid pyrrolizidine monocrotaline. Toxicon 2017; 134:41-49. [DOI: 10.1016/j.toxicon.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/27/2022]
|
3
|
Brown LA, Khoshbouei H, Goodwin JS, Irvin-Wilson CV, Ramesh A, Sheng L, McCallister MM, Jiang GCT, Aschner M, Hood DB. Down-regulation of early ionotrophic glutamate receptor subunit developmental expression as a mechanism for observed plasticity deficits following gestational exposure to benzo(a)pyrene. Neurotoxicology 2007; 28:965-78. [PMID: 17606297 PMCID: PMC2276633 DOI: 10.1016/j.neuro.2007.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/04/2007] [Accepted: 05/14/2007] [Indexed: 11/28/2022]
Abstract
The focus of this study was to characterize the impact of gestational exposure to benzo(a)pyrene [B(a)P] on modulation of glutamate receptor subunit expression that is critical for the maintenance of synaptic plasticity mechanisms during hippocampal or cortical development in offspring. Previous studies have demonstrated that hippocampal and/or cortical synaptic plasticity (as measured by long-term potentiation and S1-cortex spontaneous/evoked neuronal activity) and learning behavior (as measured by fixed-ratio performance operant testing) is significantly impaired in polycyclic aromatic or halogenated aromatic hydrocarbon-exposed offspring as compared to controls. These previous studies have also revealed that brain to body weight ratios are greater in exposed offspring relative to controls indicative of intrauterine growth retardation which has been shown to manifest as low birth weight in offspring. Recent epidemiological studies have identified an effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children [Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D, et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 2006;114:1287-92]. The present study utilizes a well-characterized animal model to test the hypothesis that gestational exposure to B(a)P causes dysregulation of developmental ionotropic glutamate receptor subunit expression, namely the N-methyl-d-aspartate receptor (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor (AMPAR) both critical to the expression of synaptic plasticity mechanisms. To mechanistically ascertain the basis of B(a)P-induced plasticity perturbations, timed pregnant Long-Evans rats were exposed in an oral subacute exposure regimen to 0, 25 and 150mug/kg BW B(a)P on gestation days 14-17. The first sub-hypothesis tested whether gestational exposure to B(a)P would result in significant disposition in offspring. The second sub-hypothesis tested whether gestational exposure to B(a)P would result in down-regulation of early developmental expression of NMDA and AMPA receptor subunits in the hippocampus of offspring as well as in primary neuronal cultures. The results of these studies revealed significant: (1) disposition to the hippocampus and cortex, (2) down-regulation of developmental glutamate receptor mRNA and protein subunit expression and (3) voltage-dependent decreases in the amplitude of inward currents at negative potentials in B(a)P-treated cortical neuronal membranes. These results suggest that plasticity and behavioral deficits produced as a result of gestational B(a)P exposure are at least, in part, a result of down-regulation of early developmental glutamate receptor subunit expression and function at a time when excitatory synapses are being formed for the first time in the developing central nervous system. The results also predict that in B(a)P-exposed offspring with reduced early glutamate receptor subunit expression, a parallel deficit in behaviors that depend on normal hippocampal or cortical functioning will be observed and that these deficits will be present throughout life.
Collapse
Affiliation(s)
- La’Nissa A. Brown
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
| | - Habibeh Khoshbouei
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
| | - J. Shawn Goodwin
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
- Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Charletha V. Irvin-Wilson
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
| | - Aramandla Ramesh
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
- Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Liu Sheng
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
| | - Monique M. McCallister
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
| | - George C. T. Jiang
- Departments of Pediatrics and Pharmacology & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Michael Aschner
- Departments of Pediatrics and Pharmacology & Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37212
| | - Darryl B. Hood
- Department of Neurobiology and Neurotoxicology, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
4
|
Chinta SJ, Kommaddi RP, Turman CM, Strobel HW, Ravindranath V. Constitutive expression and localization of cytochrome P‐450 1A1 in rat and human brain: presence of a splice variant form in human brain
1. J Neurochem 2005; 93:724-36. [PMID: 15836631 DOI: 10.1111/j.1471-4159.2005.03061.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P-450 function as mono-oxygenases and metabolize xenobiotics. CYP1A1, a cytochrome P-450 enzyme, bioactivates polycyclic aromatic hydrocarbons to reactive metabolite(s) that bind to DNA and initiate carcinogenesis. Northern and immunoblot analyses revealed constitutive expression of Cyp1a1 and CYP1A1 in rat and human brain, respectively. CYP1A1 mRNA and protein were localized predominantly in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum and pyramidal neurons of CA1, CA2, and CA3 subfields of the hippocampus. RT-PCR analyses using RNA obtained from autopsy human brain samples demonstrated the presence of a splice variant having a deletion of 87 bp of exon 6. This splice variant was present in human brain, but not in the liver from the same individual, and was absent in rat brain and liver. Structural modeling indicated broadening of the substrate access channel in the brain variant. The study demonstrates the presence of a unique cytochrome P-450 enzyme in human brain that is generated by alternate splicing. The presence of distinct cytochrome P-450 enzymes in human brain that are different from well-characterized hepatic forms indicates that metabolism of xenobiotics including drugs could occur in brain by pathways different from those known to occur in liver.
Collapse
Affiliation(s)
- Shankar J Chinta
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Nainwal Mode, Manesar, Haryana, India
| | | | | | | | | |
Collapse
|
5
|
Boopathi E, Anandatheerthavarada HK, Bhagwat SV, Biswas G, Fang JK, Avadhani NG. Accumulation of mitochondrial P450MT2, NH(2)-terminal truncated cytochrome P4501A1 in rat brain during chronic treatment with beta-naphthoflavone. A role in the metabolism of neuroactive drugs. J Biol Chem 2000; 275:34415-23. [PMID: 10915793 PMCID: PMC3879004 DOI: 10.1074/jbc.m004431200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical and molecular characteristics of cytochrome P4501A1 targeted to rat brain mitochondria was studied to determine the generality of the targeting mechanism previously described for mitochondrial cytochrome P450MT2 (P450MT2) from rat liver. In rat brain and C6 glioma cells chronically exposed to beta-naphoflavone (BNF), P450MT2 content reached 50 and 95% of the total cellular pool, respectively. P450MT2 from 10 days of BNF-treated rat brain was purified to over 85% purity using hydrophobic chromatography followed by adrenodoxin affinity binding. Purified brain P450MT2 consisted of two distinct molecular species with NH(2) termini identical to liver mitochondrial forms. These results confirm the specificity of endoprotease-processing sites. The purified P450MT2 showed a preference for adrenodoxin + adrenodoxin reductase electron donor system and exhibited high erythromycin N-demethylation activity. Brain mitoplasts from 10-day BNF-treated rats and also purified P450MT2 exhibited high N-demethylation activities for a number of neuroactive drugs, including trycyclic anti-depressants, anti-convulsants, and opiates. At 10 days of BNF treatment, the mitochondrial metabolism of these neuroactive drugs represented about 85% of the total tissue activity. These results provide new insights on the role of P450MT2 in modulating the pharmacological potencies of different neuroactive drugs in chronically exposed individuals.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047
| | | | | | - Gopa Biswas
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047
| | - Ji-Kang Fang
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047
| | - Narayan G. Avadhani
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047
| |
Collapse
|
6
|
Anandatheerthavarada HK, Vijayasarathy C, Bhagwat SV, Biswas G, Mullick J, Avadhani NG. Physiological role of the N-terminal processed P4501A1 targeted to mitochondria in erythromycin metabolism and reversal of erythromycin-mediated inhibition of mitochondrial protein synthesis. J Biol Chem 1999; 274:6617-25. [PMID: 10037757 DOI: 10.1074/jbc.274.10.6617] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we showed that the major species of beta-naphthoflavone-inducible rat liver mitochondrial P450MT2 consists of N-terminal truncated microsomal P4501A1 (+33/1A1) and that the truncated enzyme exhibits different substrate specificity as compared with intact P4501A1. The results of the present study show that P450MT2 targeted to COS cell mitochondria by transient transfection of P4501A1 cDNA is localized inside the mitochondrial inner membrane in a membrane-extrinsic orientation. Co-expression with wild type P4501A1 and adrenodoxin (Adx) cDNAs resulted in 5-7-fold higher erythromycin N-demethylation (ERND) in the mitochondrial fraction but minimal changes in the microsomal fraction of transfected cells. Erythromycin, a potent inhibitor of bacterial and mitochondrial protein synthesis, caused 8-12-fold higher accumulation of CYP1A1 mRNA, preferential accumulation of P450MT2, and 5-6-fold higher ERND activity in the mitochondrial compartment of rat C6 glioma cells. Consistent with the increased mitochondrial ERND activity, co-expression with P4501A1 and Adx in COS cells rendered complete protection against erythromycin-mediated mitochondrial translation inhibition. Mutations that specifically affect the mitochondrial targeting of P4501A1 also abolished protection against mitochondrial translation inhibition. These results for the first time suggest a physiological function for the xenobiotic inducible cytochrome P4501A1 against drug-mediated mitochondrial toxicity.
Collapse
Affiliation(s)
- H K Anandatheerthavarada
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047, USA
| | | | | | | | | | | |
Collapse
|
7
|
Thompson CM, Kawashima H, Strobel HW. Isolation of partially purified P450 2D18 and characterization of activity toward the tricyclic antidepressants imipramine and desipramine. Arch Biochem Biophys 1998; 359:115-21. [PMID: 9799568 DOI: 10.1006/abbi.1998.0892] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous reports have shown that rat brain microsomes are capable of metabolizing tricyclic antidepressants such as imipramine. Subsequent studies have shown that the protein products of several clones isolated from rat brain cDNA libraries are capable of metabolizing imipramine to both its active metabolite, desipramine, and its inactive hydroxylated metabolites. We report here the overexpression and partial purification of P450 2D18 using the baculovirus expression system and the incorporation of a C-terminal [His]4 tag. P450 2D18 was partially purified to a specific content of 4.8 nmol/mg protein and shown to be electrophoretically pure. The apparent KM values for P450 2D18 toward imipramine and desipramine were 374 and 314 microM, respectively. While apparent KM values were similar, P450 2D18 was shown to have a fivefold increased Vmax (2.2 nmol/min/nmol P450) for imipramine compared to desipramine (0.44 nmol/min/nmol P450), suggesting a primary involvement in the activation of imipramine to desipramine. We also examined the effect of the CYP2D6 inhibitor quinidine, the CYP3A inhibitor ketoconazole, and the dopamine reuptake inhibitor GBR-12935 for their ability to inhibit P450 2D18-mediated metabolism of imipramine. These results, when compared with previous studies using rat brain microsomes, suggest that P450 2D18 may play an important role in the conversion of imipramine to its active metabolite desipramine in the rat brain.
Collapse
Affiliation(s)
- C M Thompson
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas, 77225, USA
| | | | | |
Collapse
|