1
|
Liu Z, Xue J, Liu C, Tang J, Wu S, Lin J, Han J, Zhang Q, Wu C, Huang H, Zhao L, Zhuo Y, Li Y. Selective deletion of zinc transporter 3 in amacrine cells promotes retinal ganglion cell survival and optic nerve regeneration after injury. Neural Regen Res 2023; 18:2773-2780. [PMID: 37449644 DOI: 10.4103/1673-5374.373660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Vision depends on accurate signal conduction from the retina to the brain through the optic nerve, an important part of the central nervous system that consists of bundles of axons originating from retinal ganglion cells. The mammalian optic nerve, an important part of the central nervous system, cannot regenerate once it is injured, leading to permanent vision loss. To date, there is no clinical treatment that can regenerate the optic nerve and restore vision. Our previous study found that the mobile zinc (Zn2+) level increased rapidly after optic nerve injury in the retina, specifically in the vesicles of the inner plexiform layer. Furthermore, chelating Zn2+ significantly promoted axonal regeneration with a long-term effect. In this study, we conditionally knocked out zinc transporter 3 (ZnT3) in amacrine cells or retinal ganglion cells to construct two transgenic mouse lines (VGATCreZnT3fl/fl and VGLUT2CreZnT3fl/fl, respectively). We obtained direct evidence that the rapidly increased mobile Zn2+ in response to injury was from amacrine cells. We also found that selective deletion of ZnT3 in amacrine cells promoted retinal ganglion cell survival and axonal regeneration after optic nerve crush injury, improved retinal ganglion cell function, and promoted vision recovery. Sequencing analysis of reginal ganglion cells revealed that inhibiting the release of presynaptic Zn2+ affected the transcription of key genes related to the survival of retinal ganglion cells in postsynaptic neurons, regulated the synaptic connection between amacrine cells and retinal ganglion cells, and affected the fate of retinal ganglion cells. These results suggest that amacrine cells release Zn2+ to trigger transcriptomic changes related to neuronal growth and survival in reginal ganglion cells, thereby influencing the synaptic plasticity of retinal networks. These results make the theory of zinc-dependent retinal ganglion cell death more accurate and complete and provide new insights into the complex interactions between retinal cell networks.
Collapse
Affiliation(s)
- Zhe Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jingfei Xue
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Canying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jiahui Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Siting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jicheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Jiaxu Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Caiqing Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Haishun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China, Guangzhou
| |
Collapse
|
2
|
Albrecht EA, Carter JD, Garbar V, Choudhary A, Tomlins SA. Intracellular Zinc Trafficking during Crotalus atrox Venom Wound Development. Int J Mol Sci 2023; 24:ijms24076763. [PMID: 37047742 PMCID: PMC10094922 DOI: 10.3390/ijms24076763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, we examined zinc trafficking in human umbilical vein endothelial cells (HUVEC) stimulated with Crotalus atrox (CA venom) snake venom. We utilized MTS cytotoxicity assays to monitor the cytotoxic range of CA venom. HUVEC monolayers stimulated with 10 µg/mL CA venom for 3 h displayed cellular retraction, which coincided with 53.0 ± 6.5 percent viability. In contrast, venom concentrations of 100 µg/mL produced a complete disruption of cellular adherence and viability decreased to 36.6 ± 1.0. The zinc probe Fluozin-3AM was used to detect intracellular zinc in non-stimulated controls, HUVEC stimulated with 10 µg/mL CA venom or HUVEC preincubated with TPEN for 2 h then stimulated with 10 µg/mL CA venom. Fluorescent intensity analysis returned values of 1434.3 ± 197.4 for CA venom demonstrating an increase of about two orders of magnitude in labile zinc compared to non-stimulated controls. Endothelial response to CA venom induced a 96.1 ± 3.0- and 4.4 ± 0.41-fold increase in metallothionein 1X (MT1X) and metallothionein 2A (MT2A) gene expression. Zinc chelation during CA venom stimulation significantly increased cell viability, suggesting that the maintenance of zinc homeostasis during envenomation injury improves cell survival.
Collapse
Affiliation(s)
- Eric A Albrecht
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jasmine D Carter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Veronica Garbar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Abeeha Choudhary
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Scott A Tomlins
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Márquez García A, Salazar V, Lima Pérez L. Consequences of zinc deficiency on zinc localization, taurine transport, and zinc transporters in rat retina. Microsc Res Tech 2022; 85:3382-3390. [PMID: 35836361 DOI: 10.1002/jemt.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
The colocalization of taurine and zinc transporters (TAUT, ZnTs) has not been explored in retina. Our objective is to evaluate the effect of the intracellular zinc chelator N,N,N,N-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) on zinc localization and colocalization TAUT and ZnT-1 (of plasma membrane), 3 (vesicular), and 7 (vesicular and golgi apparatus) in layers of retina by immunohistochemistry. To mark zinc, it was used cell-permeable fluorescent Zinquin ethyl ester. Specific first and secondary antibodies, conjugated with rhodamine or fluorescein-isothiocyanate were used to mark TAUT and ZnTs. The fluorescence results were reported as integrated optical density (IOD). Zinc was detected in all layers of the retina. The treatment with TPEN produced changes in the distribution of zinc in layers of retina less in the outer nuclear layer compared with the control. TAUT was detected in all layers of retina and TPEN chelator produced decrease of IOD in all layers of retina except in the photoreceptor compared with the control. ZnT 1, 3, and 7 were distributed in all retina layers, with more intensity in ganglion cell layer (GCL) and in the layers where there is synaptic connection. For all transporters, the treatment with TPEN produced significant decrease of IOD in layers of retina least in the inner nuclear layer for ZnT1, in the photoreceptor for ZnT3 and in the GCL and outer plexiform layer for ZnT7. The distribution of zinc, TAUT, and ZnTs in the layers of retina is indicative of the interaction of taurine and zinc for the function of the retina and normal operation of said layers. HIGHLIGHTS: Taurine and zinc are two molecules highly concentrated in the retina and with relevant functions in this structure. Maintaining zinc homeostasis in this tissue is necessary for the normal function of the taurine system in the retina. The study of the taurine transporter and the different zinc transporters in the retina (responsible for maintaining adequate levels of taurine and zinc) is relevant and novel, since it is indicative of the interactions between both molecules in this structure.
Collapse
Affiliation(s)
- Asarí Márquez García
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela.,Universidad de Granada-Junta de Andalucía de Genómica e investigación Oncológica, Granada, Spain
| | - Víctor Salazar
- Servicio de Microscopía de Luz, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| | - Lucimey Lima Pérez
- Laboratorio de Neuroquímica, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Apdo, Caracas, Venezuela
| |
Collapse
|
4
|
Neumaier F, Akhtar-Schäfer I, Lüke JN, Dibué-Adjei M, Hescheler J, Schneider T. Reciprocal modulation of Ca v 2.3 voltage-gated calcium channels by copper(II) ions and kainic acid. J Neurochem 2018; 147:310-322. [PMID: 29972687 DOI: 10.1111/jnc.14546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022]
Abstract
Kainic acid (KA) is a potent agonist at non-N-methyl-D-aspartate (non-NMDA) ionotropic glutamate receptors and commonly used to induce seizures and excitotoxicity in animal models of human temporal lobe epilepsy. Among other factors, Cav 2.3 voltage-gated calcium channels have been implicated in the pathogenesis of KA-induced seizures. At physiologically relevant concentrations, endogenous trace metal ions (Cu2+ , Zn2+ ) occupy an allosteric binding site on the domain I gating module of these channels and interfere with voltage-dependent gating. Using whole-cell patch-clamp recordings in human embryonic kidney (HEK-293) cells stably transfected with human Cav 2.3d and β3 -subunits, we identified a novel, glutamate receptor-independent mechanism by which KA can potently sensitize these channels. Our findings demonstrate that KA releases these channels from the tonic inhibition exerted by low nanomolar concentrations of Cu2+ and produces a hyperpolarizing shift in channel voltage-dependence by about 10 mV, thereby reconciling the effects of Cu2+ chelation with tricine. When tricine was used as a surrogate to study the receptor-independent action of KA in electroretinographic recordings from the isolated bovine retina, it selectively suppressed a late b-wave component, which we have previously shown to be enhanced by genetic or pharmacological ablation of Cav 2.3 channels. Although the pathophysiological relevance remains to be firmly established, we speculate that reversal of Cu2+ -induced allosteric suppression, presumably via formation of stable kainate-Cu2+ complexes, could contribute to the receptor-mediated excitatory effects of KA. In addition, we discuss experimental implications for the use of KA in vitro, with particular emphasis on the seemingly high incidence of trace metal contamination in common physiological solutions.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schäfer
- Institute for Neurophysiology, University of Cologne, Cologne, Germany.,Department of Ophthalmology, Laboratory for Experimental Immunology of the Eye, University of Cologne, Cologne, Germany
| | - Jan Niklas Lüke
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Maxine Dibué-Adjei
- Institute for Neurophysiology, University of Cologne, Cologne, Germany.,Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Hescheler
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
6
|
Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci U S A 2017; 114:E209-E218. [PMID: 28049831 DOI: 10.1073/pnas.1616811114] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.
Collapse
|
7
|
Abstract
It has been nearly 15 years since the suggestion that synaptically released Zn2+ might contribute to excitotoxic brain injury after seizures, stroke, and brain trauma. In the original “zinc-translocation” model, it was proposed that synaptically released Zn2+ ions penetrated postsynaptic neurons, causing injury. According to the model, chelating zinc in the cleft was predicted to be neuroprotective. This proved to be true: zinc chelators have proved to be remarkably potent at reducing excitotoxic neuronal injury in many paradigms. Promising new zinc-based therapies for stroke, head trauma, and epileptic brain injury are under development. However, new evidence suggests that the original translocation model was incomplete. As many as three sources of toxic zinc ions may contribute to excitotoxicity: presynaptic vesicles, postsynaptic zincsequestering proteins, and (more speculatively) mitochondrial pools. The authors present a new model of zinc currents and zinc toxicity that offers expanded opportunities for zinc-selective therapeutic chelation interventions.
Collapse
|
8
|
Stork CJ, Li YV. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury. ACTA NEUROCHIRURGICA SUPPLEMENT 2016; 121:347-53. [DOI: 10.1007/978-3-319-18497-5_60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Portbury SD, Adlard PA. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer’s Disease: Common Pathologies Potentiated by Altered Zinc Homeostasis. J Alzheimers Dis 2015; 46:297-311. [DOI: 10.3233/jad-143048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Enhanced susceptibility to spontaneous seizures of noda epileptic rats by loss of synaptic zn(2+). PLoS One 2013; 8:e71372. [PMID: 23951148 PMCID: PMC3741169 DOI: 10.1371/journal.pone.0071372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/04/2013] [Indexed: 01/21/2023] Open
Abstract
Zinc homeostasis in the brain is associated with the etiology and manifestation of epileptic seizures. Adult Noda epileptic rats (NER, >12-week-old) exhibit spontaneously generalized tonic-clonic convulsion about once a day. To pursue the involvement of synaptic Zn2+ signal in susceptibility to spontaneous seizures, in the present study, the effect of zinc chelators on epileptogenesis was examined using adult NER. Clioquinol (CQ) and TPEN are lipophilic zinc chelotors, transported into the brain and reduce the levels of synaptic Zn2+. The incidence of tonic-clonic convulsion was markedly increased after i.p. injection of CQ (30–100 mg/kg) and TPEN (1 mg/kg). The basal levels of extracellular Zn2+ measured by ZnAF-2 were decreased before tonic-clonic convulsion was induced with zinc chelators. The hippocampal electroencephalograms during CQ (30 mg/kg)-induced convulsions were similar to those during sound-induced convulsions in NER reported previously. Exocytosis of hippocampal mossy fibers, which was measured with FM4-64, was significantly increased in hippocampal slices from CQ-injected NER that did not show tonic-clonic convulsion yet. These results indicate that the abnormal excitability of mossy fibers is induced prior to epileptic seizures by injection of zinc chelators into NER. The incidence of tonic-clonic convulsion induced with CQ (30 mg/kg) was significantly reduced by co-injection with aminooxyacetic acid (5–10 mg/kg), an anticonvulsant drug enhancing GABAergic activity, which did not affect locomotor activity. The present paper demonstrates that the abnormal excitability in the brain, especially in mossy fibers, which is potentially associated with the insufficient GABAergic neuron activity, may be a factor to reduce the threshold for epileptogenesis in NER.
Collapse
|
11
|
Subacute zinc administration and L-NAME caused an increase of NO, zinc, lipoperoxidation, and caspase-3 during a cerebral hypoxia-ischemia process in the rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:240560. [PMID: 23997853 PMCID: PMC3749594 DOI: 10.1155/2013/240560] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/04/2013] [Indexed: 11/17/2022]
Abstract
Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc.
Collapse
|
12
|
Fukuyama S, Matsunaga Y, Zhanghui W, Noda N, Asai Y, Moriwaki A, Matsumoto T, Nakano T, Matsumoto K, Nakanishi Y, Inoue H. A zinc chelator TPEN attenuates airway hyperresponsiveness and airway inflammation in mice in vivo. Allergol Int 2011; 60:259-66. [PMID: 21364313 DOI: 10.2332/allergolint.09-oa-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 09/27/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Zinc is an essential element required for the cell metabolism, including gene transcription, signal transduction, immunity, and apoptosis. The pathophysiological role of zinc in asthma, however, is not entirely clear. Mast cells have been implicated in atopic asthma, and zinc deprivation has been reported to reduce mast cell activation. Here, we investigate the effects of a zinc chelator, N,N,N',N'-tetrakis (2-pyridyl-methyl) ethylenediamine (TPEN), on asthmatic responses in mouse models of ovalbumin (OVA)-induced airway hyperresponsiveness and allergic airway inflammation. METHODS Mice were sensitized with OVA with or without the adjuvant aluminum hydroxide (alum) and subjected to OVA exposure with or without treatment of TPEN. Cell profiles and cytokine levels in bronchoalveolar lavage (BAL) fluids, airway responsiveness to inhaled acetylcholine, and goblet cell hyperplasia after allergen exposure were assessed. RESULTS In mice sensitized to OVA without alum, TPEN significantly suppressed airway hyperresponsiveness and eosinophilia in BAL fluids. TPEN also attenuated the upregulation of TNFα, IL-13 and IL-4 in BAL fluids and goblet cell hyperplasia after OVA exposure. By contrast, in mice sensitized to OVA with alum, TPEN suppressed eosinophilia in BAL fluids but not airway hyperresponsiveness and goblet cell hyperplasia. CONCLUSIONS In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.
Collapse
Affiliation(s)
- Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Karol N, Brodski C, Bibi Y, Kaisman T, Forberg M, Hershfinkel M, Sekler I, Silverman WF. Zinc homeostatic proteins in the CNS are regulated by crosstalk between extracellular and intracellular zinc. J Cell Physiol 2010; 224:567-74. [DOI: 10.1002/jcp.22168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Rayatzadeh H, Nouri M, Ghasemi M, Kebriaeezadeh A, Mehr SE, Dehpour AR. Effect of metal chelating agents on pentylenetetrazole-induced seizure threshold in cholestatic mice. Seizure 2008; 18:51-6. [PMID: 18703360 DOI: 10.1016/j.seizure.2008.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 04/02/2008] [Accepted: 06/05/2008] [Indexed: 01/04/2023] Open
Abstract
Zinc has been proven to be anticonvulsant in several studies which indicate that diphenylthiocarbazone (dithizone) and diethyldithiocarbamate (DEDTC), zinc chelating agents, enhance seizure activities. There is also evidence that nitric oxide (NO) generators increase zinc concentration in the brain. On the other hand, the increased level of NO in the nervous system and the consequently increased seizure threshold in cholestatic mice have been well studied. Thus, it could be hypothesized that one of the reasons for the increased seizure threshold in cholestasis is partly the enhanced endogenous zinc concentration, at least in part, due to the overproduction of NO. In this study, we examined the hypothesis that zinc chelating agents might decrease seizure activity to its pre-cholestatic level in bile duct-ligated (BDL) mice. Mice were intra-peritoneally injected with dithizone and diethyldithiocarbamate (DEDTC) before the induction of seizure by pentylenetetrazole (PTZ) and then the seizure activity was recorded. Dose response (dithizone: 5, 30, 100 and 200mg/kg; DEDTC: 25, 50 and 100mg/kg) and time course (only for dithizone: 15, 30, 60 and 120 min) studies were performed first. Then, the effects of cholestasis, with and without dithizone injection, on seizure activity were assessed. Proconvulsant effect of dithizone and DEDTC was proved to be dose dependent although time interval between dithizone and PTZ injections did not play any significant role in the seizure activity. Cholestasis decreased seizure activity and increased lag phase before seizure and both effects were decreased by dithizone injection. It is elicited that zinc may mediate the cholestasis-induced decrement in seizure activity.
Collapse
Affiliation(s)
- Hussein Rayatzadeh
- Department of Pharmacology, School of Medicine, Medical Sciences/University of Tehran, P.O. Box 13145-784, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
15
|
Lavoie N, Peralta MR, Chiasson M, Lafortune K, Pellegrini L, Seress L, Tóth K. Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 2006; 578:275-89. [PMID: 17095563 PMCID: PMC2075111 DOI: 10.1113/jphysiol.2006.121848] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the nervous system, zinc can influence synaptic responses and at extreme concentrations contributes to epileptic and ischaemic neuronal injury. Zinc can originate from synaptic vesicles, the extracellular space and from intracellular stores. In this study, we aimed to determine which of these zinc pools is responsible for the increased hippocampal excitability observed in zinc-depleted animals or following zinc chelation. Also, we investigated the source of intracellularly accumulating zinc in vulnerable neurons. Our data show that membrane-permeable and membrane-impermeable zinc chelators had little or no effect on seizure activity in the CA3 region. Furthermore, extracellular zinc chelation could not prevent the accumulation of lethal concentrations of zinc in dying neurons following epileptic seizures. At the electron microscopic level, zinc staining significantly increased at the presynaptic membrane of mossy fibre terminals in kainic acid-treated animals. These data indicate that intracellular but not extracellular zinc chelators could influence neuronal excitability and seizure-induced zinc accumulation observed in the cytosol of vulnerable neurons.
Collapse
Affiliation(s)
- Nathalie Lavoie
- Centre de Recherche Université Laval Robert Giffard, 2601 chemin de la Canardière, Québec, Canada G1J 2G3
| | | | | | | | | | | | | |
Collapse
|
16
|
Côté A, Chiasson M, Peralta MR, Lafortune K, Pellegrini L, Tóth K. Cell type-specific action of seizure-induced intracellular zinc accumulation in the rat hippocampus. J Physiol 2005; 566:821-37. [PMID: 15919712 PMCID: PMC1464793 DOI: 10.1113/jphysiol.2005.089458] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increased levels of intracellular zinc have been implicated in neuronal cell death in ischaemia, epilepsy and traumatic brain damage. However, decreases in zinc levels also lead to increased neuronal death and lowered seizure threshold. In the present study we investigated the physiological role of zinc in neurodegeneration and protection following epileptic seizures. Cells located in the strata oriens and lucidum of the CA3 region accumulated high concentrations of zinc and died. A decrease in zinc level could prevent the death of these neurones after seizures. Most of these cells were GABAergic interneurones. In contrast, neurones in the CA3 pyramidal cell layer accumulated moderate amounts of zinc and survived. Zinc chelation led to an increase in the mortality rate of these cells. Furthermore, in these cells low concentrations of intracellular zinc activated Akt (protein kinase B), thus providing protection against neurodegeneration. These results demonstrate that intracellularly accumulated zinc can be neurotoxic or neuroprotective depending on its concentration. This dual action is cell type specific.
Collapse
Affiliation(s)
- Amélie Côté
- Centre de recherche Université Laval Robert Giffard, 2601 chemin de la Canardière, Québec, QC, G1J 2G3 Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Alzheimer's disease (AD) is associated with the abnormal aggregation of amyloid-beta (Abeta) protein. Abeta and its precursor protein (APP) interact with metal ions such as zinc, copper and iron. Evidence shows that these metals play a role in the precipitation and cytotoxicity of Abeta. Despite recent advances in AD research, there is a lack of therapeutic agents to hinder the apparent aggregation and toxicity of Abeta. Recent studies show that drugs with metal chelating properties could produce a significant reversal of amyloid-beta plaque deposition in vitro and in vivo. Here we discuss the interaction of Abeta with metals, metal dyshomeostasis in the CNS of patients with AD, and the potential therapeutic effects of metal chelators.
Collapse
|
18
|
Nitzan YB, Sekler I, Frederickson CJ, Coulter DA, Balaji RV, Liang SL, Margulis A, Hershfinkel M, Silverman WF. Clioquinol effects on tissue chelatable zinc in mice. J Mol Med (Berl) 2003; 81:637-44. [PMID: 12928783 DOI: 10.1007/s00109-003-0462-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Accepted: 06/23/2003] [Indexed: 10/26/2022]
Abstract
Recent evidence for the involvement of zinc in the formation of beta-amyloid plaques in the brain in Alzheimer's disease has led to the establishment of new therapeutic strategies for the degenerative disorder based on metal chelation. The present experiment was conducted on a membrane-permeable zinc chelator, clioquinol (CQ), that has shown potential in initial studies on a mouse model of Alzheimer's disease [1]. The degree of chelatable zinc in mice treated with CQ, delivered by two different routes, was measured using complementary protocols for identifying chelatable zinc: 6-methoxy-8-quinolyl- p-toluenesulfonamide (TSQ) histofluorescence, and selenite autometalography. Mice injected intraperitoneally with CQ showed a dramatic reduction in chelatable zinc in brain, testis, and pancreas. In contrast, mice given CQ orally showed no significant change in levels of chelatable zinc in these tissues. This suggests that CQ administered orally to patients with Alzheimer's disease should not significantly perturb chelatable zinc levels in key organs and may be used over long periods without adverse endocrinological and reproductive effects related to zinc deficiency. In contrast, CQ injected intraperitoneally may be used not only as a tool for investigating chelatable zinc pools but also in a clinical context. For example, injected CQ could be employed in situations requiring the rapid buffering of excessive chelatable zinc following ischemic episodes or brain trauma. Thus, our findings indicate that CQ has considerable potential as a versatile scientific and clinical tool used for selective modulation of zinc pools.
Collapse
Affiliation(s)
- Yuval B Nitzan
- Department of Morphology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Miró-Bernié N, Sancho-Bielsa FJ, López-García C, Pérez-Clausell J. Retrograde transport of sodium selenite and intracellular injection of micro-ruby: a combined method to describe the morphology of zinc-rich neurones. J Neurosci Methods 2003; 127:199-209. [PMID: 12906949 DOI: 10.1016/s0165-0270(03)00146-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zinc is found in synaptic vesicles in a large number of glutamatergic systems. Its involvement in neurotransmission and neurological disorders has been suggested. There are methods for tracing these circuits, but they do not fill the dendritic tree. In this study, extracellular selenite injections in vivo were combined with intracellular injection of fluorochromes in fixed tissue to reveal the morphology of these zinc-rich neurones. Intraperitoneal and intracerebral injections of sodium selenite alone or intracerebral injections of selenite combined with bisbenzimide were made in the visual cortex of the rat in order to locate the somata of zinc-rich neurones. After 24 h of retrograde transport, animals were killed and fluorescent markers were injected intracellularly into fixed slices to show neuronal morphology: (a) Lucifer Yellow (LY) followed by biocytin, (b) LY coupled to biocytin or (c) micro-ruby (MR) (dextranamines bound to rhodamine and biotin). Double-labelled somata (selenite+fluorochrome) were plotted. Details of the dendritic morphology were then revealed by incubation in avidin-biotin complex and development in 3,3'-diaminobenzidine and H(2)O(2). Camera lucida drawings showed that zinc-rich neurones in layers II-III involved in cortico-cortical visual projections were typical pyramidal neurones. This technique is noteworthy for its analysis of the morphology (and connections) of zinc-rich neurones.
Collapse
Affiliation(s)
- N Miró-Bernié
- Departament de Biologia Cel.lular, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
20
|
Stupien G, Florian C, Roullet P. Involvement of the hippocampal CA3-region in acquisition and in memory consolidation of spatial but not in object information in mice. Neurobiol Learn Mem 2003; 80:32-41. [PMID: 12737932 DOI: 10.1016/s1074-7427(03)00022-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigates the implication of the hippocampal CA3-region in the different phases of learning and memory in spatial and non-spatial tasks. For that purpose, we performed focal injections of diethyldithiocarbamate (DDC) into the CA3-region of the dorsal hippocampus. The DDC chelates most of the heavy metals in the brain which blocks selectively and reversibly the synapses containing heavy metals, i.e., the mossy fibres synaptic buttons and synapses of the dendrites of pyramidal cells. The effects of temporal inactivation of the CA3-region was examined in a non-associative task, the spatial open-field, designed to estimate the ability of mice to react to spatial changes, and in the object recognition task, designed to estimate the ability of mice to identify a familiar object. The results show that DDC induced a specific impairment on learning and memory consolidation in the spatial open-field but had no effect on recall in this task. In the object recognition task, DDC did not induce any impairment in the different phases of learning and memory. These data demonstrate that the hippocampal CA3-region is specifically implicated in spatial information processing and seems to be involved not only in acquisition but also in consolidation of spatial information.
Collapse
Affiliation(s)
- Grégory Stupien
- Centre de Recherches Sur la Cognition Animale, CNRS FRE 2382, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
| | | | | |
Collapse
|
21
|
Domínguez MI, Blasco-Ibáñez JM, Crespo C, Marqués-Marí AI, Martínez-Guijarro FJ. Zinc chelation during non-lesioning overexcitation results in neuronal death in the mouse hippocampus. Neuroscience 2003; 116:791-806. [PMID: 12573720 DOI: 10.1016/s0306-4522(02)00731-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the hippocampus, chelatable zinc is accumulated in vesicles of glutamatergic presynaptic terminals, abounding specially in the mossy fibers, from where it is released with activity and can exert a powerful inhibitory action upon N-methyl-D-aspartate receptors. Zinc is therefore in a strategic situation to control overexcitation at the zinc-rich excitatory synapses, and consequently zinc removal during high activity might result in excitotoxic neuronal damage. We analyzed the effect of zinc chelation with sodium dietyldithiocarbamate under overexcitation conditions induced by non-lesioning doses of kainic acid in the mouse hippocampus, to get insight into the role of zinc under overexcitation. Swiss male mice were injected with kainic acid (15 mg/kg, i.p.) 15 min prior to sodium dietyldithiocarbamate (150 mg/kg, i.p.), and left to survive for 6 h, 1 day, 4 days, or 7 days after the treatment. Cell damage was analyzed with the hematoxylin-eosin and acid fuchsin stainings. Neither control animals treated only with kainic acid nor those treated only with sodium dietyldithiocarbamate suffered seizures or neuronal damage. By contrast, the kainic acid+sodium dietyldithiocarbamate-treated animals showed convulsive behavior and cell death involving the hilus, CA3, and CA1 regions. Pretreatment with the N-methyl-D-aspartate receptor antagonist MK801 (1 mg/kg, i.p.) completely prevented neuronal damage. Experiments combining different doses of sodium dietyldithiocarbamate and kainic acid with different administration schedules demonstrated that the overlap of zinc chelation and overexcitation is necessary to trigger the observed effects. Moreover, the treatment with a high dose of sodium dietyldithiocarbamate (1000 mg/kg), which produced a complete bleaching of the Timm staining for approximately 12 h, highly increased the sensitivity of animals to kainic acid. Altogether, our results indicate that the actions of sodium dietyldithiocarbamate are based on a reduction of zinc levels, which under overexcitation conditions induce seizures and neuronal damage. These findings fully support a protective role for synaptically released zinc during high neuronal activity, most probably mediated by its inhibitory actions on N-methyl-D-aspartate receptors, and argue against a direct action of synaptic zinc on the observed neuronal damage.
Collapse
Affiliation(s)
- M I Domínguez
- Departamento de Biología Celular, Unidad de Neurobiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjasot 46100, Spain
| | | | | | | | | |
Collapse
|
22
|
Frederickson CJ, Suh SW, Koh JY, Cha YK, Thompson RB, LaBuda CJ, Balaji RV, Cuajungco MP. Depletion of intracellular zinc from neurons by use of an extracellular chelator in vivo and in vitro. J Histochem Cytochem 2002; 50:1659-62. [PMID: 12486088 DOI: 10.1177/002215540205001210] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The membrane-impermeable chelator CaEDTA was introduced extracellularly among neurons in vivo and in vitro for the purpose of chelating extracellular Zn(2+). Unexpectedly, this treatment caused histochemically reactive Zn(2+) in intracellular compartments to drop rapidly. The same general result was seen with intravesicular Zn(2+), which fell after CaEDTA infusion into the lateral ventricle of the brain, with perikaryal Zn(2+) in Purkinje neurons (in vivo) and with cortical neurons (in vitro). These findings suggest either that the volume of zinc ion efflux and reuptake is higher than previously suspected or that EDTA can enter cells and vesicles. Caution is therefore warranted in attempting to manipulate extracellular or intracellular Zn(2+) selectively.
Collapse
|
23
|
Yeiser EC, Vanlandingham JW, Levenson CW. Moderate zinc deficiency increases cell death after brain injury in the rat. Nutr Neurosci 2002; 5:345-52. [PMID: 12385597 DOI: 10.1080/1028415021000033811] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Zinc supplementation has been used clinically to reduce Zn losses and protein turnover in patients suffering from traumatic brain injury. Despite the known role of zinc in cell survival and integrity, the influence of zinc status on central nervous system wound healing in the weeks and months after brain injury has not been addressed. In this investigation, we examined cell death after unilateral cortical stab wounds in adult rats (n = 5 per group) that were provided diets containing adequate zinc (30 mg Zn/kg diet), supplemental zinc (180 mg/kg), or moderately deficient zinc (5 mg/kg). Four weeks following the brain injury there was a 1.82-2.65-fold increase in terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling (TUNEL)-positive cells with DNA fragmentation at the site of injury in animals receiving a moderately zinc deficient diet compared to animals receiving a zinc-adequate or supplemented diet (p0.05). Examination of the nuclear morphology of these cells suggested the presence of both apoptosis and necrosis. Immunohistochemistry showed that the TUNEL-positive cells expressed both ED-1 and OX-42, identifying them as microglia/macrophages. Thus it appears that adequate zinc status may be necessary to minimize the amount of neuroimmune cell death after brain injury.
Collapse
Affiliation(s)
- E Carden Yeiser
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee 32306-4340, USA
| | | | | |
Collapse
|
24
|
Almli LM, Hamrick SE, Koshy AA, Täuber MG, Ferriero DM. Multiple pathways of neuroprotection against oxidative stress and excitotoxic injury in immature primary hippocampal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 132:121-9. [PMID: 11744116 DOI: 10.1016/s0165-3806(01)00302-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the immature brain hydrogen peroxide accumulates after excitotoxic hypoxia-ischemia and is neurotoxic. Immature hippocampal neurons were exposed to N-methyl-D-aspartate (NMDA), a glutamate agonist, and hydrogen peroxide (H(2)O(2)) and the effects of free radical scavenging and transition metal chelation on neurotoxicity were studied. alpha-Phenyl-N-tert.-butylnitrone (PBN), a known superoxide scavenger, attenuated both H(2)O(2) and NMDA mediated toxicity. Treatment with desferrioxamine (DFX), an iron chelator, at the time of exposure to H(2)O(2) was ineffective, but pretreatment was protective. DFX also protected against NMDA toxicity. TPEN, a metal chelator with higher affinities for a broad spectrum of transition metal ions, also protected against H(2)O(2) toxicity but was ineffective against NMDA induced toxicity. These data suggest that during exposure to free radical and glutamate agonists, the presence of iron and other free metal ions contribute to neuronal cell death. In the immature nervous system this neuronal injury can be attenuated by free radical scavengers and metal chelators.
Collapse
Affiliation(s)
- L M Almli
- Departments of Neurology and Pediatrics, University of California San Francisco, Box 0114, San Francisco, CA 94143-0114, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Experimental evidence exists to suggest that zinc can have positive and negative effects on the physiology of cells depending on the "local" concentration, localisation (extracellular vs. intracellular) and/or state (bound vs. free). The retina contains particularly high amounts of zinc suggesting a pivotal role in the tissue. There is also suggestive evidence that zinc deficiency in humans may result in abnormal dark adaptation and/or age-related macular degeneration. The purpose of this article is to provide an overview of various proposed functions for zinc, particularly in the retina. Endogenous chelatable zinc in the retina is localised mainly to the photoreceptors and retinal pigment epithelial cells. Moreover, the zinc localisation in the photoreceptors varies in dark and light, suggesting a role for zinc in a light-regulated process. Some zinc is also located to other areas of the retina but clearly defined zinc-enriched neurones could not be identified as has been shown to occur in certain areas of the brain. Neurones post-synaptic to zinc-enriched neurones in the brain have been suggested to be particularly vulnerable in ischaemia. The role of zinc in retinal ischaemia has been investigated to determine how it is involved in the process. It would appear that when zinc is administered in low concentrations it generally has a positive effect on an insulted retina as in ischaemia. However, higher concentrations of zinc exacerbates the influence of the insult and also acts as a toxin. Use of zinc supplements in diet must, therefore, be taken with caution.
Collapse
Affiliation(s)
- M Ugarte
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford OX2 6AW, UK
| | | |
Collapse
|
26
|
Suh SW, Jo SM, Vajda Z, Danscher G. Adrenalectomy causes loss of zinc ions in zinc-enriched (ZEN) terminals and decreases seizure-induced neuronal death. Brain Res 2001; 895:25-32. [PMID: 11259756 DOI: 10.1016/s0006-8993(01)01996-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chelatable zinc ions from synaptic vesicles have been suggested to be involved in neuronal death caused by stroke, epilepsy and head trauma. Elevated glucocorticoid concentration exacerbates such neuron loss, while low levels protect. We have tested the notion that the neuroprotective effect of prior glucocorticoid reduction is mediated by a reduction of zinc ions contained in zinc-enriched (ZEN) synaptic vesicles. The level of vesicular zinc ions was evaluated by toluene sulfonamide quinoline (TSQ) fluorometry and zinc autometallography (ZnS(AMG)) 10 and 30 days, respectively, after adrenalectomy. The hippocampus showed significant vesicular zinc ion depletion following adrenalectomy. After the kainate injection, adrenalectomized rats showed proconvulsive seizure behavior, i.e. shortened latency to seizure onset time and increased seizure score. Additionally they showed decreased hippocampal CA3 neuronal death as compared to control animals. The present data suggest that zinc ions released from damaged ZEN terminals are involved in seizure-induced neuronal death.
Collapse
Affiliation(s)
- S W Suh
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
27
|
Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 2000; 130:1471S-83S. [PMID: 10801962 DOI: 10.1093/jn/130.5.1471s] [Citation(s) in RCA: 596] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc is essential to the structure and function of myriad proteins, including regulatory, structural and enzymatic. It is estimated that up to 1% of the human genome codes for zinc finger proteins. In the central nervous system, zinc has an additional role as a neurosecretory product or cofactor. In this role, zinc is highly concentrated in the synaptic vesicles of a specific contingent of neurons, called "zinc-containing" neurons. Zinc-containing neurons are a subset of glutamatergic neurons. The zinc in the vesicles probably exceeds 1 mmol/L in concentration and is only weakly coordinated with any endogenous ligand. Zinc-containing neurons are found almost exclusively in the forebrain, where in mammals they have evolved into a complex and elaborate associational network that interconnects most of the cerebral cortices and limbic structures. Indeed, one of the intriguing aspects of these neurons is that they compose somewhat of a chemospecific "private line" of the mammalian cerebral cortex. The present review outlines (1) the methods used to discover, define and describe zinc-containing neurons; (2) the neuroarchitecture and synaptology of zinc-containing neural circuits; (3) the physiology of regulated vesicular zinc release; (4) the "life cycle" and molecular biology of vesicular zinc; (5) the importance of synaptically released zinc in the normal and pathological processes of the cerebral cortex; and (6) the role of specific and nonspecific stressors in the release of zinc.
Collapse
|
28
|
Lee JY, Park J, Kim YH, Kim DH, Kim CG, Koh JY. Induction by synaptic zinc of heat shock protein-70 in hippocampus after kainate seizures. Exp Neurol 2000; 161:433-41. [PMID: 10686065 DOI: 10.1006/exnr.1999.7297] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Following seizures, heat shock protein (HSP)-70 is induced in various brain regions. Since zinc that can induce HSP-70 in various cell systems is enriched in certain glutamatergic terminals and translocates to postsynaptic neurons with seizures, we examined the possibility that HSP-70 induction in the epileptic brain is mediated by synaptic zinc. Adult rats were injected intraperitoneally with kainate to induce seizures. Seizures were halted 3 h after the kainate administration by the injection of phenytoin. Staining of brain sections with zinc-specific fluorescent dye TFL at 24 h after the kainate injection revealed a one-to-one correlation between dense TFL fluorescence and acidophilic neuronal degeneration in the hippocampus. Subsequent staining with anti-HSP-70 antibody, however, revealed that more numerous neurons than degenerating neurons exhibited HSP-70 immunoreactivity. Most of the HSP-70(+) neurons were not stained with acid fuchsin but exhibited mild zinc fluorescence in the cytoplasm. Intraventricular injection of CaEDTA attenuated neuronal death as well as the HSP-70 induction in a dose-dependent manner. Supporting the specificity of zinc rather than calcium as the inducer of HSP-70 in neurons, exposure to zinc but not to a calcium ionophore or excitotoxins increased expression of HSP-70 mRNA and protein in cultured cortical neurons. The present results suggest that not only selective neuronal death, but also HSP-70 induction in neurons after seizures, is mediated by the translocation of endogenous synaptic zinc.
Collapse
Affiliation(s)
- J Y Lee
- National Creative Research Initiative Center for the Study of CNS Zinc, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer's diseased brains. Brain Res 2000; 852:274-8. [PMID: 10678753 DOI: 10.1016/s0006-8993(99)02096-x] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Excess brain zinc has been implicated in Alzheimer's neuropathology. Here we evaluated that hypothesis by searching the brains of Alzheimer's patients for abnormal zinc deposits. Using histochemical methods, we found vivid Zn2+ staining in the amyloid deposits of dense-core (senile) plaques, in the amyloid angiopathy surrounding diseased blood vessels, and in the somata and dendrites of neurons showing the characteristic neurofibrillary tangles (NFT) of Alzheimer's. In contrast, brains from age-matched, non-demented subjects showed only occasional staining for Zn2+ in scattered neurons and possible plaques. A role of abnormal zinc metabolism in Alzheimer's neuropathology is suggested.
Collapse
Affiliation(s)
- S W Suh
- Center for Biomedical Engineering, Anatomy and Neuroscience, Jennie-Sealy Hospital, University of Texas Medical Branch, Galveston, 77555, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kim CH, Kim JH, Xu J, Hsu CY, Ahn YS. Pyrrolidine dithiocarbamate induces bovine cerebral endothelial cell death by increasing the intracellular zinc level. J Neurochem 1999; 72:1586-92. [PMID: 10098865 DOI: 10.1046/j.1471-4159.1999.721586.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The antioxidant and metal-chelating effects of pyrrolidine dithiocarbamate (PDTC) have been extensively studied. PDTC prevents cell death induced by various insults. However, PDTC itself may cause cell death in selected experimental paradigms. PDTC induced bovine cerebral endothelial cell death. However, in serum-depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. The metal chelators bathocuproine disulfonic acid, o-phenanthroline, bathophenanthroline disulfonic acid, and N,N,N',N'-tetrakis(2-pyridyl-methyl)ethylenediamine (TPEN) prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper or zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper or zinc in serum may mediate the cytotoxic effect of PDTC. The potency of zinc for PDTC-induced endothelial cell death was greater than that of copper. Zn-EDTA did not block PDTC-induced cell death, whereas Ca-EDTA and Cu-EDTA were able to prevent this PDTC effect. PDTC increased the intracellular fluorescence of the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide, which was quenched by TPEN or various EDTA preparations but not by Zn-EDTA. Results suggest that an increase in intracellular zinc concentration is required in PDTC-induced cerebral endothelial cell death.
Collapse
Affiliation(s)
- C H Kim
- Yonsei Brain Research Institute and Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
31
|
Cuajungco MP, Lees GJ. Diverse effects of metal chelating agents on the neuronal cytotoxicity of zinc in the hippocampus. Brain Res 1998; 799:97-107. [PMID: 9666092 DOI: 10.1016/s0006-8993(98)00482-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abnormal metabolism of metal ions such as zinc may contribute to neuropathology. Complexing zinc could reduce this pathology. Thus, to examine the effectiveness of metal chelating agents in vivo, a model system was used. This involved determining the ability of chelating agents to prevent neuronal death caused by zinc chloride injected into the rat hippocampus. Significant protection against zinc toxicity was obtained with pyrithione, inositol hexakisphosphate, ethylenediamine tetraacetate (EDTA) and N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). The affinity of these agents for zinc varied between 106 M-1 and 1018 M-1. Thus, the affinity for zinc within this range does not appear to be a major factor affecting the ability of chelators to provide neuroprotection. While almost complete protection was found with EDTA and TPEN given simultaneously with zinc chloride, poor protection was obtained if TPEN was given before or after zinc chloride. Other agents either did not protect against zinc-induced neuronal death (zincon), or exacerbated zinc toxicity (BTC-5N and about 40% of rats injected with a combination of zinc chloride and diethylenetriamine pentaacetate [DTPA]). Rats showing increased damage after zinc plus BTC-5N or DTPA suffered wet dog-like shakes (WDS), suggesting that these zinc chelate complexes can induce seizures resulting in seizure-related damage. In contrast, in the 60% of rats treated with zinc chloride and DTPA that had no WDS, there was about an 80% reduction in the size of the zinc-induced lesion. The ability of chelators to cross cell membranes was examined by determining whether Timm's staining for vesicular zinc was reduced following the injection of a chelator into the hippocampus. TPEN and pyrithione reduced Timm's staining for zinc. However, cell permeability was not necessary for a chelator to protect against zinc toxicity.
Collapse
Affiliation(s)
- M P Cuajungco
- Department of Psychiatry and Behavioural Science, University of Auckland School of Medicine, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|