1
|
Chapman LR, Ramnarine IVP, Zemke D, Majid A, Bell SM. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? Int J Mol Sci 2024; 25:2968. [PMID: 38474215 DOI: 10.3390/ijms25052968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Down syndrome is a well-studied aneuploidy condition in humans, which is associated with various disease phenotypes including cardiovascular, neurological, haematological and immunological disease processes. This review paper aims to discuss the research conducted on gene expression studies during fetal development. A descriptive review was conducted, encompassing all papers published on the PubMed database between September 1960 and September 2022. We found that in amniotic fluid, certain genes such as COL6A1 and DSCR1 were found to be affected, resulting in phenotypical craniofacial changes. Additionally, other genes such as GSTT1, CLIC6, ITGB2, C21orf67, C21orf86 and RUNX1 were also identified to be affected in the amniotic fluid. In the placenta, dysregulation of genes like MEST, SNF1LK and LOX was observed, which in turn affected nervous system development. In the brain, dysregulation of genes DYRK1A, DNMT3L, DNMT3B, TBX1, olig2 and AQP4 has been shown to contribute to intellectual disability. In the cardiac tissues, dysregulated expression of genes GART, ETS2 and ERG was found to cause abnormalities. Furthermore, dysregulation of XIST, RUNX1, SON, ERG and STAT1 was observed, contributing to myeloproliferative disorders. Understanding the differential expression of genes provides insights into the genetic consequences of DS. A better understanding of these processes could potentially pave the way for the development of genetic and pharmacological therapies.
Collapse
Affiliation(s)
- Laura R Chapman
- Sheffield Children's NHS Foundation Trust, Clarkson St, Sheffield S10 2TH, UK
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Isabela V P Ramnarine
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Dan Zemke
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
| | - Arshad Majid
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| | - Simon M Bell
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Glossop Road, Sheffield S10 2GF, UK
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2GJ, UK
| |
Collapse
|
2
|
Sen A, Youssef S, Wendt K, Anakk S. Depletion of IQ motif-containing GTPase activating protein 2 (IQGAP2) reduces hepatic glycogen and impairs insulin signaling. J Biol Chem 2023; 299:105322. [PMID: 37805137 PMCID: PMC10652104 DOI: 10.1016/j.jbc.2023.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
The liver is critical in maintaining metabolic homeostasis, regulating both anabolic and catabolic processes. Scaffold protein IQ motif-containing GTPase activating protein 2 (IQGAP2) is highly expressed in the liver and implicated in fatty acid uptake. However, its role in coordinating either fed or fasted responses is not well understood. Here we report that IQGAP2 is widely expressed in the liver that is pronounced in the pericentral region. Although control and IQGAP2 knockout mouse model showed comparable hepatic gene expression in the fasted state, we found significant defects in fed state responses. Glycogen levels were reduced in the periportal region when IQGAP2 was deleted. Consistently, we observed a decrease in phosphorylated glycogen synthase kinase 3α and total glycogen synthase protein in the fed IQGAP2 knockout mice which suggest inadequate glycogen synthesis. Moreover, immunoprecipitation of IQGAP2 revealed its interaction with GSK3 and GYS. Furthermore, our study demonstrated that knocking down IQGAP2 in vitro significantly decreased the phosphorylation of AKT and forkhead box O3 proteins downstream of insulin signaling. These findings suggest that IQGAP2 contributes to liver fed state metabolism by interacting with glycogen synthesis regulators and affecting the phosphorylation of insulin pathway components. Our results suggest that IQGAP2 plays a role in regulating fed state metabolism.
Collapse
Affiliation(s)
- Anushna Sen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sara Youssef
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Karen Wendt
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
3
|
Jin S, Campbell EJ, Ip CK, Layfield S, Bathgate RAD, Herzog H, Lawrence AJ. Molecular Profiling of VGluT1 AND VGluT2 Ventral Subiculum to Nucleus Accumbens Shell Projections. Neurochem Res 2023:10.1007/s11064-023-03921-z. [PMID: 37017888 DOI: 10.1007/s11064-023-03921-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
The nucleus accumbens shell is a critical node in reward circuitry, encoding environments associated with reward. Long-range inputs from the ventral hippocampus (ventral subiculum) to the nucleus accumbens shell have been identified, yet their precise molecular phenotype remains to be determined. Here we used retrograde tracing to identify the ventral subiculum as the brain region with the densest glutamatergic (VGluT1-Slc17a7) input to the shell. We then used circuit-directed translating ribosome affinity purification to examine the molecular characteristics of distinct glutamatergic (VGluT1, VGluT2-Slc17a6) ventral subiculum to nucleus accumbens shell projections. We immunoprecipitated translating ribosomes from this population of projection neurons and analysed molecular connectomic information using RNA sequencing. We found differential gene enrichment across both glutamatergic projection neuron subtypes. In VGluT1 projections, we found enrichment of Pfkl, a gene involved in glucose metabolism. In VGluT2 projections, we found a depletion of Sparcl1 and Dlg1, genes known to play a role in depression- and addiction-related behaviours. These findings highlight potential glutamatergic neuronal-projection-specific differences in ventral subiculum to nucleus accumbens shell projections. Together these data advance our understanding of the phenotype of a defined brain circuit.
Collapse
Affiliation(s)
- Shubo Jin
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sharon Layfield
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
4
|
Schuy J, Eisfeldt J, Pettersson M, Shahrokhshahi N, Moslem M, Nilsson D, Dahl N, Shahsavani M, Falk A, Lindstrand A. Partial Monosomy 21 Mirrors Gene Expression of Trisomy 21 in a Patient-Derived Neuroepithelial Stem Cell Model. Front Genet 2022; 12:803683. [PMID: 35186010 PMCID: PMC8854775 DOI: 10.3389/fgene.2021.803683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) from patients are an attractive disease model to study tissues with poor accessibility such as the brain. Using this approach, we and others have shown that trisomy 21 results in genome-wide transcriptional dysregulations. The effects of loss of genes on chromosome 21 is much less characterized. Here, we use patient-derived neural cells from an individual with neurodevelopmental delay and a ring chromosome 21 with two deletions spanning 3.8 Mb at the terminal end of 21q22.3, containing 60 protein-coding genes. To investigate the molecular perturbations of the partial monosomy on neural cells, we established patient-derived iPSCs from fibroblasts retaining the ring chromosome 21, and we then induced iPSCs into neuroepithelial stem cells. RNA-Seq analysis of NESCs with the ring chromosome revealed downregulation of 18 genes within the deleted region together with global transcriptomic dysregulations when compared to euploid NESCs. Since the deletions on chromosome 21 represent a genetic “contrary” to trisomy of the corresponding region, we further compared the dysregulated transcriptomic profile in with that of two NESC lines with trisomy 21. The analysis revealed opposed expression changes for 23 genes on chromosome 21 as well as 149 non-chromosome 21 genes. Taken together, our results bring insights into the effects on the global and chromosome 21 specific gene expression from a partial monosomy of chromosome 21qter during early neuronal differentiation.
Collapse
Affiliation(s)
- Jakob Schuy
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Mansoureh Shahsavani
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Anna Lindstrand,
| |
Collapse
|
5
|
Pecze L, Szabo C. Meta-analysis of gene expression patterns in Down syndrome highlights significant alterations in mitochondrial and bioenergetic pathways. Mitochondrion 2021; 57:163-172. [PMID: 33412332 DOI: 10.1016/j.mito.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022]
Abstract
Individuals with Down syndrome (DS) have an extra copy of chromosome 21. Clinical observations and preclinical studies both suggest that DS is associated with altered bioenergetic pathways. Several studies have reported that differentially expressed genes in DS are located not only on chromosome 21 but also on all other chromosomes. Numerous sets of microarray and RNA-seq data are publicly accessible through the Gene Expression Omnibus. We have conducted a meta-analysis on differentially expressed genes between DS and control subjects. Data deposited before July 1, 2020, were identified by using the search terms "Down syndrome" or "trisomy 21" and "human". Gene expression data were analyzed and normalized for each study. The mixed effect model was used to identify the differentially expressed genes. We conclude that in DS more than 60% of the genes located on chromosome 21 are significantly upregulated and none of them are downregulated. In addition, a significant dysregulation of genes occurs on all other chromosomes as well. Several of the upregulated genes in DS encode for important components of various bioenergetic pathways, for instance PFKL and ACLY. Genes involved in oxidative phosphorylation are mostly downregulated in DS. The gene expression alterations are consistent with the development of significant metabolic disturbances ("pseudohypoxia") in DS cells, which may explain some of the well-known functional defects (ranging from neuronal dysfunction to reduced exercise tolerance) associated with DS.
Collapse
Affiliation(s)
- Laszlo Pecze
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland.
| |
Collapse
|
6
|
Dierssen M, Fructuoso M, Martínez de Lagrán M, Perluigi M, Barone E. Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Front Neurosci 2020; 14:670. [PMID: 32733190 PMCID: PMC7360727 DOI: 10.3389/fnins.2020.00670] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Down syndrome (DS) is the most frequent chromosomal abnormality that causes intellectual disability, resulting from the presence of an extra complete or segment of chromosome 21 (HSA21). In addition, trisomy of HSA21 contributes to altered energy metabolism that appears to be a strong determinant in the development of pathological phenotypes associated with DS. Alterations include, among others, mitochondrial defects, increased oxidative stress levels, impaired glucose, and lipid metabolism, finally resulting in reduced energy production and cellular dysfunctions. These molecular defects seem to account for a high incidence of metabolic disorders, i.e., diabetes and/or obesity, as well as a higher risk of developing Alzheimer’s disease (AD) in DS. A dysregulation of the insulin signaling with reduced downstream pathways represents a common pathophysiological aspect in the development of both peripheral and central alterations leading to diabetes/obesity and AD. This is further strengthened by evidence showing that the molecular mechanisms responsible for such alterations appear to be similar between peripheral organs and brain. Considering that DS subjects are at high risk to develop either peripheral or brain metabolic defects, this review will discuss current knowledge about the link between trisomy of HSA21 and defects of insulin and insulin-related pathways in DS. Drawing the molecular signature underlying these processes in DS is a key challenge to identify novel drug targets and set up new prevention strategies aimed to reduce the impact of metabolic disorders and cognitive decline.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marta Fructuoso
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - María Martínez de Lagrán
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Kuwahara K, Yamamoto-Ibusuki M, Zhang Z, Phimsen S, Gondo N, Yamashita H, Takeo T, Nakagata N, Yamashita D, Fukushima Y, Yamamoto Y, Iwata H, Saya H, Kondo E, Matsuo K, Takeya M, Iwase H, Sakaguchi N. GANP protein encoded on human chromosome 21/mouse chromosome 10 is associated with resistance to mammary tumor development. Cancer Sci 2016; 107:469-77. [PMID: 26749495 PMCID: PMC4832866 DOI: 10.1111/cas.12883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/16/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
Human chromosome 21 is known to be associated with the high risk of hematological malignancy but with resistance to breast cancer in the study of Down syndrome. In human cancers, we previously observed the significant alterations of the protein expression encoded by the ganp/MCM3AP gene on human chromosome 21q22.3. Here, we investigated GANP protein alterations in human breast cancer samples (416 cases) at various stages by immunohistochemical analysis. This cohort study clearly showed that expression of GANP is significantly decreased in human breast cancer cases with poor prognosis as an independent risk factor (relapse-free survival, hazard ratio = 2.37, 95% confidence interval, 1.27-4.42, P = 0.007 [univariate analysis]; hazard ratio = 2.70, 95% confidence interval, 1.42-5.13, P = 0.002 [multivariate analysis]). To investigate whether the altered GANP expression is associated with mammary tumorigenesis, we created mutant mice that were conditionally deficient in the ganp/MCM3AP gene using wap-cre recombinase transgenic mice. Mammary gland tumors occurred at a very high incidence in female mammary gland-specific GANP-deficient mice after severe impairment of mammary gland development during pregnancy. Moreover, tumor development also occurred in female post parous GANP-heterodeficient mice. GANP has a significant role in the suppression of DNA damage caused by estrogen in human breast cancer cell lines. These results indicated that the GANP protein is associated with breast cancer resistance.
Collapse
Affiliation(s)
- Kazuhiko Kuwahara
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mutsuko Yamamoto-Ibusuki
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Zhenhuan Zhang
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Suchada Phimsen
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Gondo
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroko Yamashita
- Division of Breast and Endocrine Surgery, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Daisuke Yamashita
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Yamamoto
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Graduate School of Medicine, Keio University, Tokyo, Japan
| | - Eisaku Kondo
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirotaka Iwase
- Department of Breast and Endocrine Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Herault Y, Duchon A, Velot E, Maréchal D, Brault V. The in vivo Down syndrome genomic library in mouse. PROGRESS IN BRAIN RESEARCH 2012; 197:169-97. [PMID: 22541293 DOI: 10.1016/b978-0-444-54299-1.00009-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mouse models are key elements to better understand the genotype-phenotype relationship and the physiopathology of Down syndrome (DS). Even though the mouse will never recapitulate the whole spectrum of intellectual disabilities observed in the DS, mouse models have been developed over the recent decades and have been used extensively to identify homologous genes or entire regions homologous to the human chromosome 21 (Hsa21) that are necessary or sufficient to induce DS cognitive features. In this chapter, we review the principal mouse DS models which have been selected and engineered over the years either for large genomic regions or for a few or a single gene of interest. Their analyses highlight the complexity of the genetic interactions that are involved in DS cognitive phenotypes and also strengthen the hypothesis on the multigenic nature of DS. This review also addresses future research challenges relative to the making of new models and their combination to go further in the characterization of candidates and modifier of the DS features.
Collapse
Affiliation(s)
- Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Translational medicine and Neurogenetics program, IGBMC, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, Illkirch, Strasbourg, France.
| | | | | | | | | |
Collapse
|
9
|
Marin-Valencia I, Good LB, Ma Q, Jeffrey FM, Malloy CR, Pascual JM. High-resolution detection of ¹³C multiplets from the conscious mouse brain by ex vivo NMR spectroscopy. J Neurosci Methods 2011; 203:50-5. [PMID: 21946227 DOI: 10.1016/j.jneumeth.2011.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/10/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization. The rate of brain glucose metabolism can be computed using (13)C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in (13)C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent (13)C carbons (multiplets) can provide additional information to (13)C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-(13)C(2)]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this infusion protocol, the (13)C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders.
Collapse
Affiliation(s)
- Isaac Marin-Valencia
- Rare Brain Disorders Clinic and Research Laboratory, Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
10
|
Nabuurs CIHC, Klomp DWJ, Veltien A, Kan HE, Heerschap A. Localized sensitivity enhanced in vivo 13C MRS to detect glucose metabolism in the mouse brain. Magn Reson Med 2008; 59:626-30. [PMID: 18224699 DOI: 10.1002/mrm.21498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The application of in vivo 13C MR spectroscopy to mouse brain models is potentially valuable for improving the understanding of cerebral carbohydrate metabolism and glutamatergic neurotransmission in various neuropathologies. However, the low sensitivity of 13C nuclei and contaminating signals of lipids in the relatively small mouse brain make this application rather challenging. To meet these technical challenges, localized semi-adiabatic distortionless enhanced polarization transfer (DEPT) MR spectroscopy in combination with a continuous intravenous [1,6-13C2] glucose infusion was implemented to detect glucose metabolism in isoflurane-anesthetized mice at 7T. The signal enhancement and high spectral resolution obtained in these experiments enabled the separate determination of 13C label incorporation into as much as 13 metabolites from a 175 microL volume. Signal increases of glucose (C6), glutamine (C3, C4), and glutamate (C3, C4) were determined with a time resolution of 8.6 min. This study demonstrates an optimized MR method for the application of in vivo 13C MRS in mouse brain.
Collapse
Affiliation(s)
- C I H C Nabuurs
- Department of Radiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Shin JH, Krapfenbauer K, Lubec G. Mass-spectrometrical analysis of proteins encoded on chromosome 21 in human fetal brain. Amino Acids 2006; 31:435-47. [PMID: 16622604 DOI: 10.1007/s00726-005-0257-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 08/21/2005] [Indexed: 11/28/2022]
Abstract
Overexpression of chromosome 21 genes is directly or indirectly responsible for the Down syndrome phenotype. In order to analyse chromosome 21 gene products (Chr21Ps), we extracted proteins from fetal human brain cortex and applied an ultracentrifugal and chromatographic prefractionation principle followed by two-dimensional gel electrophoresis (2-DE) and mass-spectrometrical analysis using high-throughput automated MALDI-TOF/TOF. Nine Chr21Ps were identified: pyridoxal kinase; superoxide dismutase [Cu/Zn] 1; carbonyl reductase 1; ES1 protein homolog, mitochondrial [Precursor]; cystathionine-beta-synthetase; T-complex protein 1, theta subunit; cystatin B; 6-phosphofructokinase; glycinamide ribonucleotide synthetase. Mass-spectrometric characterisation of Chr21Ps following separation in 2-DE gels is a useful tool for the analysis of these structures in brain, independent of antibody availability and specificity.
Collapse
Affiliation(s)
- J-H Shin
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
12
|
Kahlem P. Gene-dosage effect on chromosome 21 transcriptome in trisomy 21: implication in Down syndrome cognitive disorders. Behav Genet 2006; 36:416-28. [PMID: 16557362 DOI: 10.1007/s10519-006-9053-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/20/2005] [Indexed: 10/24/2022]
Abstract
In the era of human functional genomics, the chromosome 21 has represented a prototype for pioneering global biotechnologies. Its relatively low gene content enabled studying Down syndrome at the chromosomal scale, for which the last years have seen intense research activity aiming at genotype-phenotype correlations. The global gene-dose dependent upregulation of gene expression seen in the context of trisomy and preliminary functional annotation of chromosome 21 genes points towards candidate genes and molecular pathways potentially associated with the cognitive defects observed in Down syndrome.
Collapse
Affiliation(s)
- Pascal Kahlem
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Germany.
| |
Collapse
|
13
|
Sérégaza Z, Roubertoux PL, Jamon M, Soumireu-Mourat B. Mouse Models of Cognitive Disorders in Trisomy 21: A Review. Behav Genet 2006; 36:387-404. [PMID: 16523244 DOI: 10.1007/s10519-006-9056-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 10/15/2005] [Indexed: 10/24/2022]
Abstract
Trisomy 21 (TRS21) is the most frequent genetic cause of mental retardation. Although the presence of an extra copy of HSA21 is known to be at the origin of the syndrome, we do not know which 225 HSA21 genes have an effect on cognitive processes. Mouse models of TRS21 have been developed using syntenies between HSA21 and MMU16, MMU10 and MMU17. Available mouse models carry extra fragments of MMU16 or of HSA21 that cover all of HSA21 (chimeric HSA21) or MMU16 (Ts16); some carry large parts of MMU16 (Ts65Dn, Ts1Cje, Ms1Cje), while others have reduced contiguous fragments covering the D21S17-ETS2 region or single transfected genes. This offers a nest design strategy for deciphering cognitive (learning, memory and exploration) and associated brain abnormalities involving each of these chromosomal regions. This review confirms the crucial but not exclusive contribution of the D21S17-ETS2 region encompassing 16 genes to cognitive disorders.
Collapse
Affiliation(s)
- Zohra Sérégaza
- Génomique Fonctionnelle, Pathologies, Comportements, P3M, UMR 6196, CNRS-Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, Department of Biological Sciences, University of Denver, Colorado 80206, USA.
| | | |
Collapse
|
15
|
Abstract
Transgenic and eugenic animals as small as 30 g can be studied non-invasively by radionuclides with resolutions of 1-2 mm, by MRI with resolution of 100 microns and by light fluorescence and bioluminescence with high sensitivities. The technologies of radionuclide emission, magnetic resonance imaging, magnetic resonance spectroscopy, optical tomography, optical fluorescence and optical bioluminescence are currently being applied to small-animal studies. These technologies and examples of their applications are reviewed in this chapter.
Collapse
Affiliation(s)
- T F Budinger
- Department of Bioengineering and Center for Functional Imaging, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
16
|
Abstract
The availability of the recently published DNA sequence of human chromosome 21 (HSA21) is a landmark contribution that will have an immediate impact on the study of the role of specific genes to Down syndrome (DS). Trisomy 21 or DS is the only autosomal aneuploidy that is not lethal in the fetal or early postnatal period. DS phenotypes show variable penetrance, affecting many different organs, including brain (mental retardation, early onset of Alzheimer's disease, AD), muscle (hypotonia), skeleton, and blood. DS phenotypes may stem directly from the cumulative effect of overexpression of specific HSA21 gene products or indirectly through the interaction of these gene products with the whole genome, transcriptome, or proteome. Mouse genetic models have played an important role in the elucidation of the contribution of specific genes to the DS phenotype. To date, the strategies used for modeling DS in mice have been three: (1) to assess single-gene contributions to DS phenotype, using transgenic techniques to create models overexpressing single or combinations of genes, (2) to assess the effects of overexpressing large foreign DNA pieces, introduced on yeast artificial chromosomes (YACs) or bacterial artificial chromosomes (BACs) into transgenic mice, and (3) mouse trisomies that carry all or part of MMU16, which has regions of conserved homology with HSA21. Here we review the existing murine models and the relevance of their contribution to DS research.
Collapse
Affiliation(s)
- M Dierssen
- Down Syndrome Research Group, Medical and Molecular Genetics Center-IRO, Hospital Duran i Reynals, Granvia km 2.7, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The current status and challenges of small animal non-invasive imaging is briefly reviewed. The advantages of non-invasive studies on living animals versus post-mortem studies are evaluated. An argument is advanced that even in post-mortem situations, non-invasive imaging may play an important role in efficiently characterizing small animal phenotypes as well as pathology. Issues of data interpretation under anesthetized conditions in live animal studies are also reviewed. The five imaging technologies covered include CT, PET, ultrasound, MRI and optical imaging. The structural and physiological information content of these different modalities is reviewed along with the ability of these techniques to scale down for use in small mammals such as mice and rats. In general, it was found that most of these technologies scale favorably to the study of small mammals, generally providing more physiological information than when used on the larger human scale. This suggests that these types of small mammal imaging capabilities will play a very significant role in the full utilization of these important animal models in biomedical research.
Collapse
Affiliation(s)
- R S Balaban
- Laboratory Research Program, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|