1
|
A New Gal in Town: A Systematic Review of the Role of Galanin and Its Receptors in Experimental Pain. Cells 2022; 11:cells11050839. [PMID: 35269462 PMCID: PMC8909084 DOI: 10.3390/cells11050839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Galanin is a neuropeptide expressed in a small percentage of sensory neurons of the dorsal root ganglia and the superficial lamina of the dorsal horn of the spinal cord. In this work, we systematically reviewed the literature regarding the role of galanin and its receptors in nociception at the spinal and supraspinal levels, as well as in chronic pain conditions. The literature search was performed in PubMed, Web of Science, Scopus, ScienceDirect, OVID, TRIP, and EMBASE using "Galanin" AND "pain" as keywords. Of the 1379 papers that were retrieved in the initial search, we included a total of 141 papers in this review. Using the ARRIVE guidelines, we verified that 89.1% of the works were of good or moderate quality. Galanin shows a differential role in pain, depending on the pain state, site of action, and concentration. Under normal settings, galanin can modulate nociceptive processing through both a pro- and anti-nociceptive action, in a dose-dependent manner. This peptide also plays a key role in chronic pain conditions and its antinociceptive action at both a spinal and supraspinal level is enhanced, reducing animals' hypersensitivity to both mechanical and thermal stimulation. Our results highlight galanin and its receptors as potential therapeutic targets in pain conditions.
Collapse
|
2
|
Wang L, Hou K, Wang H, Fu F, Yu L. Role of mu-opioid receptor in nociceptive modulation in anterior cingulate cortex of rats. Mol Pain 2020; 16:1744806920966144. [PMID: 33108956 PMCID: PMC7607811 DOI: 10.1177/1744806920966144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lots of studies have demonstrated that anterior cingulate cortex plays important roles in the pain perception and pain modulation. The present study explored the role of mu-opioid receptor in nociceptive modulation in anterior cingulate cortex of rats with neuropathic pain. Neuropathic pain model was set up by chronic constriction injury of the left sciatic nerve of rats. The hindpaw withdrawal latency to thermal and mechanical stimulation, by hot plate and Randall Selitto Test respectively, was used to evaluate the rat’s responses to noxious stimulation. Results showed that intra-anterior cingulate cortex injection of morphine could induce the antinociception dose-dependently. By intra-anterior cingulate cortex injection of opioid receptor antagonist, the morphine-induced antinociception could be attenuated by naloxone, as well as much significantly by the selective mu-opioid receptor antagonist β-funaltrexamine, indicating that mu-opioid receptor is involved in the morphine-induced antinociception in anterior cingulate cortex of rats with neuropathic pain. The morphine-induced antinociception was much more decreased in rats with neuropathic pain than that in normal rats, and there was a significant decrease in mu-opioid receptor messenger RNA levels in anterior cingulate cortex of rats with neuropathic pain, indicating that there may be a down-regulation in mu-opioid receptor expression in anterior cingulate cortex of rats with neuropathic pain. To further confirm the role of mu-opioid receptor in morphine-induced antinociception in anterior cingulate cortex, normal rats were received intra-anterior cingulate cortex administration of small interfering RNA targeting mu-opioid receptor and it was found that there was a down-regulation in mu-opioid receptor messenger RNA levels, as well as a down-regulation in mu-opioid receptor expression in anterior cingulate cortex tested by real-time polymerase chain reaction and western blotting. Furthermore, the morphine-induced antinociceptive effect decreased significantly in rats with small interfering RNA targeting mu-opioid receptor, which indicated that knockdown mu-opioid receptor in anterior cingulate cortex could also attenuate morphine-induced antinociceptive effect. These results strongly suggest that mu-opioid receptor plays a significant role in nociceptive modulation in anterior cingulate cortex of rats.
Collapse
Affiliation(s)
- Linlin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Kesai Hou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Longchuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.,Neurobiology Laboratory, College of Life Sciences, Peking University, Beijing, P.R. China
| |
Collapse
|
3
|
Thom G, Burrell M, Haqqani AS, Yogi A, Lessard E, Brunette E, Delaney C, Baumann E, Callaghan D, Rodrigo N, Webster CI, Stanimirovic DB. Enhanced Delivery of Galanin Conjugates to the Brain through Bioengineering of the Anti-Transferrin Receptor Antibody OX26. Mol Pharm 2018; 15:1420-1431. [PMID: 29485883 DOI: 10.1021/acs.molpharmaceut.7b00937] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having KDs of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.
Collapse
Affiliation(s)
- George Thom
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Matthew Burrell
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Alvaro Yogi
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Etienne Lessard
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Eric Brunette
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Christie Delaney
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Ewa Baumann
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Deborah Callaghan
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| | - Natalia Rodrigo
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Carl I Webster
- Antibody Discovery and Protein Engineering , MedImmune , Milstein Building, Granta Park, Cambridge CB21 6GH , U.K
| | - Danica B Stanimirovic
- Human Health Therapeutics Portfolio , National Research Council of Canada , Ottawa , Ontario K1A0R6 , Canada
| |
Collapse
|
4
|
Li SY, Huo ML, Wu XY, Huang YQ, Wang L, Zhang X, Jiang YM, Zhang ML, Wang LL, Yu LC. Involvement of galanin and galanin receptor 1 in nociceptive modulation in the central nucleus of amygdala in normal and neuropathic rats. Sci Rep 2017; 7:15317. [PMID: 29127424 PMCID: PMC5681679 DOI: 10.1038/s41598-017-13944-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
The present study was performed to explore the role of galanin and galanin receptor 1 (GalR 1) in nociceptive modulation in the central nucleus of amygdala (CeA) in normal rats and rats with neuropathy, and the involvement of GalR 1 and PKC was also investigated. The hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulations were increased in a dose-dependent manner after intra-CeA injection of galanin in both normal rats and rats with neuropathy. The increased HWLs were significantly attenuated by intra-CeA injection of galanin receptor antagonist M40, indicating an involvement of galanin receptor in nociceptive modulation in CeA. Furthermore, intra-CeA administration of the GalR 1 agonist M 617 induced increases in HWLs in normal rats, suggesting that GalR 1 may be involved in galanin-induce antinociception in CeA. Additionally, intra-CeA injection of the PKC inhibitor inhibited galanin-induced antinociception, showing an involvement of PKC in galanin-induced antinociception in CeA of normal rats. Moreover, there was a significant increase in GalR1 content in CeA in rats with neuropathy than that in normal rats. These results illustrated that galanin induced antinociception in CeA in normal rats and rats with neuropathy, and there is an up-regulation of GalR1 expression in rats with neuropathy.
Collapse
Affiliation(s)
- Shi-Yang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Mei-Ling Huo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Xu-Yang Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Yu-Qing Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Lei Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Xin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Yan-Mei Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Meng-Lin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Lin-Lin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China
| | - Long-Chuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, P.R. China.
- Neurobiology Laboratory, College of Life Sciences, Peking University, Beijing, 100871, P.R. China.
| |
Collapse
|
5
|
Involvement of galanin and galanin receptor 2 in nociceptive modulation in anterior cingulate cortex of normal rats and rats with mononeuropathy. Sci Rep 2017; 7:45930. [PMID: 28378856 PMCID: PMC5381108 DOI: 10.1038/srep45930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
The present study was performed to explore the role of galanin and galanin receptor 2 in nociceptive modulation in anterior cingulate cortex (ACC) of normal rats and rats with mononeuropathy. Intra-ACC injection of galanin induced significant increases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulations in both normal rats and rats with mononeuropathy, the increased HWLs were attenuated significantly by intra-ACC injection of galanin receptor 2 antagonist M871, indicating an involvement of galanin receptor 2 in nociceptive modulation in ACC. Interestingly, the galanin-induced HWL was significant higher in rats with mononeuropathy than that in normal rats tested by Randall Selitto test. Furthermore, both the galanin mRNA expression and galanin content increased significantly in ACC in rats with mononeuropathy than that in normal rats. Moreover, both the mRNA levels of galanin receptor 2 and the content of galanin receptor 2 in ACC increased significantly in rats with mononeuropathy than that in normal rats. These results found that galanin induced antinociception in ACC in both normal rats and rats with mononeuropathy. And there may be plastic changes in the expression of galanin and galanin receptor 2 in rats with mononeuropathy, as well as in the galanin-induced antinociception.
Collapse
|
6
|
Zhang ML, Fu FH, Yu LC. Antinociception induced by galanin in anterior cingulate cortex in rats with acute inflammation. Neurosci Lett 2016; 638:156-161. [PMID: 27993710 DOI: 10.1016/j.neulet.2016.12.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
The present study was performed to explore the role of galanin in nociceptive modulation in anterior cingulate cortex (ACC) of rats with acute inflammation, and the changes in galanin and galanin receptor 2 (Gal R2) expressions in rats with acute inflammation. Intra-ACC injection of galanin induced antinociception in rats with acute inflammation, the antinociceptive effects induced by galanin were attenuated significantly by intra-ACC injection of the Gal R2 antagonist M871, indicating an involvement of Gal R2 in nociceptive modulation in ACC in rats with acute inflammation. Furthermore, we found that both the galanin mRNA expression and galanin content increased significantly in ACC in rats with acute inflammation than that in normal rats. Moreover, both the mRNA levels of Gal R2 and the content of Gal R2 in ACC increased significantly in rats with acute inflammation than that in normal rats. These results demonstrated that galanin induced antinociception in ACC in rats with acute inflammation. And there were changes in the expression of galanin and Gal R2 in rats with acute inflammation.
Collapse
Affiliation(s)
- Meng-Lin Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Feng-Hua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Long-Chuan Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China; Neurobiology Laboratory, College of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
7
|
Zhang XY, Zhang YM, Zhang ML, Yu LC. Involvement of galanin receptor 2 and CaMKII in galanin-induced antinociception in periaqueductal grey of rats. Neurosci Lett 2015; 604:124-7. [PMID: 26254694 DOI: 10.1016/j.neulet.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
The present study was performed to explore the effect of the galanin receptor 2 (GalR2) antagonist M871 on the galanin-induced antinociception in periaqueductal grey (PAG), and an involvement of Ca(2+)/calmodulin-dependent kinase II (CaMKII) in the galanin-induced antinociception. Intra-PAG injection of galanin induced marked increases in HWLs to noxious thermal and mechanical stimulation. The increased HWLs to thermal and mechanical stimulation decreased significantly after intra-PAG administration of the GalR2 antagonist M871, indicating an involvement of GalR2 in the galanin-induced antinociception in PAG of rats. Furthermore, rats received intra-PAG injection of galanin, followed 5min later by intra-PAG administration of the CaMKII inhibitor MAP. The galanin-induced increases in HWLs to thermal and mechanical stimulation decreased significantly after intra-PAG administration of MAP, indicating that there is an involvement of CaMKII in the galanin-induced antinociception in PAG, blockade the activity of CaMKII by MAP inhibits the galanin-induced antinociception in PAG of rats. Our results strongly indicate that the galanin-induced antinociception is mediated by GalR2 in the PAG, and CaMKII may be involved in the galanin-induced antinociception in PAG of rats.
Collapse
Affiliation(s)
- Xi-Yue Zhang
- Laboratory of Neuropharmacology, School of Pharmacy, Yantai University, Yantai 264000, PR China
| | - Yi-Ming Zhang
- Laboratory of Neuropharmacology, School of Pharmacy, Yantai University, Yantai 264000, PR China
| | - Meng-Lin Zhang
- Laboratory of Neuropharmacology, School of Pharmacy, Yantai University, Yantai 264000, PR China
| | - Long-Chuan Yu
- Laboratory of Neuropharmacology, School of Pharmacy, Yantai University, Yantai 264000, PR China; Neurobiology Laboratory, College of Life Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
8
|
Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D, Hökfelt T, Kofler B. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol Rev 2015; 67:118-75. [PMID: 25428932 DOI: 10.1124/pr.112.006536] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Galanin was first identified 30 years ago as a "classic neuropeptide," with actions primarily as a modulator of neurotransmission in the brain and peripheral nervous system. Other structurally-related peptides-galanin-like peptide and alarin-with diverse biologic actions in brain and other tissues have since been identified, although, unlike galanin, their cognate receptors are currently unknown. Over the last two decades, in addition to many neuronal actions, a number of nonneuronal actions of galanin and other galanin family peptides have been described. These include actions associated with neural stem cells, nonneuronal cells in the brain such as glia, endocrine functions, effects on metabolism, energy homeostasis, and paracrine effects in bone. Substantial new data also indicate an emerging role for galanin in innate immunity, inflammation, and cancer. Galanin has been shown to regulate its numerous physiologic and pathophysiological processes through interactions with three G protein-coupled receptors, GAL1, GAL2, and GAL3, and signaling via multiple transduction pathways, including inhibition of cAMP/PKA (GAL1, GAL3) and stimulation of phospholipase C (GAL2). In this review, we emphasize the importance of novel galanin receptor-specific agonists and antagonists. Also, other approaches, including new transgenic mouse lines (such as a recently characterized GAL3 knockout mouse) represent, in combination with viral-based techniques, critical tools required to better evaluate galanin system physiology. These in turn will help identify potential targets of the galanin/galanin-receptor systems in a diverse range of human diseases, including pain, mood disorders, epilepsy, neurodegenerative conditions, diabetes, and cancer.
Collapse
Affiliation(s)
- Roland Lang
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Andrew L Gundlach
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Fiona E Holmes
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Sally A Hobson
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - David Wynick
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Tomas Hökfelt
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| | - Barbara Kofler
- Department of Dermatology (R.L.) and Laura Bassi Centre of Expertise, Department of Pediatrics (B.K.), Paracelsus Private Medical University, Salzburg, Austria; The Florey Institute of Neuroscience and Mental Health, and Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia (A.L.G.); Schools of Physiology and Pharmacology and Clinical Sciences, Bristol University, Bristol, United Kingdom (F.E.H., S.A.H., D.W.); and Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden (T.H.)
| |
Collapse
|
9
|
Kong Q, Yu LC. Antinociceptive effects induced by intra-periaqueductal grey injection of the galanin receptor 1 agonist M617 in rats with morphine tolerance. Neurosci Lett 2013; 550:125-8. [DOI: 10.1016/j.neulet.2013.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/10/2013] [Accepted: 06/25/2013] [Indexed: 12/23/2022]
|
10
|
Li J, Zhang JJ, Xu SL, Yu LC. Antinociceptive effects induced by injection of the galanin receptor 1 agonist M617 into central nucleus of amygdala in rats. Neurosci Lett 2012; 526:45-8. [PMID: 22884928 DOI: 10.1016/j.neulet.2012.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022]
Abstract
The present study was performed to explore the antinociceptive effects of M617, a selective galanin receptor 1 agonist, in the central nucleus of amygdala (CeA) of rats. Intra-CeA injection of 0.1 nmol, 0.5 nmol and 1 nmol of M617 induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulations in rats. Furthermore, rats received intra-CeA administration of M617 and galanin. The HWL to noxious thermal and mechanical stimulations increased markedly, and there were no significant differences in HWLs of rats received intra-CeA administration of M617 and galanin. The results demonstrated that intra-CeA injection of M617 induced significant antinociceptive effects in CeA of rats, indicating that galanin receptor 1 may be involved in M617-induced antinociception in the CeA of rats.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biomembrane and Membrane, Biotechnology and Neurobiology Laboratory, College of Life Sciences, Peking University, Beijing 100871, PR China
| | | | | | | |
Collapse
|
11
|
Xu SL, Li J, Zhang JJ, Yu LC. Antinociceptive effects of galanin in the nucleus accumbens of rats. Neurosci Lett 2012; 520:43-6. [DOI: 10.1016/j.neulet.2012.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/04/2012] [Accepted: 05/05/2012] [Indexed: 11/26/2022]
|
12
|
Involvement of protein kinase C in the galanin-induced antinociception in the brain of rats. Neurosci Lett 2011; 497:60-3. [DOI: 10.1016/j.neulet.2011.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/10/2011] [Accepted: 04/12/2011] [Indexed: 12/17/2022]
|
13
|
Fu LB, Wang XB, Jiao S, Wu X, Yu LC. Antinociceptive effects of intracerebroventricular injection of the galanin receptor 1 agonist M 617 in rats. Neurosci Lett 2011; 491:174-6. [DOI: 10.1016/j.neulet.2011.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/11/2022]
|
14
|
Feng J, Jia N, Han LN, Huang FS, Xie YF, Liu J, Tang JS. Microinjection of morphine into thalamic nucleus submedius depresses bee venom-induced inflammatory pain in the rat. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.60.10.0012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Previous studies have provided evidence of the existence of a pain modulatory feedback pathway consisting of thalamic nucleus submedius (Sm)–ventrolateral orbital cortex-periaqueductal grey pathway, which is activated during acute pain and leads to depression of transmission of nociceptive information in the spinal dorsal horn. The aim of this study was to test the hypothesis that morphine microinjection into the Sm decreased spontaneous pain and bilateral thermal hyperalgesia, as well as ipsilateral mechanical allodynia, induced by subcutaneous injections of bee venom into the rat hind paw. Morphine (1.0, 2.5 or 5.0 m̀g in 0.5 μL) injected into the Sm, contralateral to the bee venominjected paw, depressed spontaneous nociceptive behaviour in a dose-dependent manner. Furthermore, morphine significantly decreased bilateral thermal hyperalgesia and ipsilateral mechanical allodynia 2 h after bee venom injection. These morphine-induced effects were antagonized by 1.0 μg naloxone (an opioid antagonist) microinjected into the Sm 5 min before morphine administration. The results provided further support for the important role of the Sm and Sm-opioid receptors in inhibiting nociceptive behaviour and indicated for the first time that Sm opioid receptors were also effective in inhibiting the hypersensitivity provoked by bee venom-induced inflammation.
Collapse
Affiliation(s)
- Jie Feng
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Jia
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ling-Na Han
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Fen-Sheng Huang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Yu-Feng Xie
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Liu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jing-Shi Tang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Antinociceptive effects of galanin in the central nucleus of amygdala of rats, an involvement of opioid receptors. Brain Res 2010; 1320:16-21. [PMID: 20051236 DOI: 10.1016/j.brainres.2009.12.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/30/2009] [Accepted: 12/21/2009] [Indexed: 12/11/2022]
Abstract
The central nucleus of amygdala (CeA) is a very important brain structure involved in multiple physiological functions, especially in pain modulation. There are high densities of galanin and galanin receptors found in the CeA. The present study was performed to explore the antinociceptive effects of galanin in the CeA of rats, and possible involvements of opioid receptors in the galanin-induced antinociception. Intra-CeA injection of galanin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulations in rats. Interestingly, the amtinociceptive effect induced by intra-CeA injection of galanin was blocked by intra-CeA injection of naloxone, a common opioid receptor antagonist, indicating an involvement of opioid receptors in the galanin-induced antinociception in the CeA of rats. Moreover, intra-CeA injection of either selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) or delta-opioid receptor antagonist naltrindole, but not kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI), significantly attenuated the galanin-induced increases in HWLs in the CeA of rats. Taken together, the results demonstrate that galanin induces antinociceptive effects in the CeA of rats, and both mu- and delta-opioid receptors are involved in the galanin-induced antinociception.
Collapse
|
16
|
Sun YG, Gu XL, Yu LC. The neural pathway of galanin in the hypothalamic arcuate nucleus of rats: activation of beta-endorphinergic neurons projecting to periaqueductal gray matter. J Neurosci Res 2007; 85:2400-6. [PMID: 17600376 DOI: 10.1002/jnr.21396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that microinjection of galanin into the arcuate nucleus of hypothalamus (ARC) produced antinociceptive effects in rats (Sun et al., 2003a). In this study, the neural pathway of galanin from ARC to midbrain periaqueductal gray (PAG) in nociceptive modulation was investigated. The hindpaw withdrawal latencies (HWLs) with noxious thermal and mechanical stimulation were assessed by the hotplate and the Randall Selitto tests. Intra-ARC administration of 0.1, 0.5, or 1 nmol of galanin induced significant increases in HWLs of rats. The galanin-induced increases in HWLs were inhibited by injection of 10 microg of the opioid receptor antagonist naloxone or 1 nmol of the mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) into PAG, suggesting that the antinociceptive effects induced by intra-ARC injection of galanin occur via the neural pathway from ARC to PAG. Furthermore, our results demonstrate that the galaninergic fibers directly innervated the beta-endorphinergic neurons in ARC by immunofluorescent methods. Taken together, our results suggest that galanin produces antinociceptive effects in the ARC of rats by activating the beta-endorphinergic pathway from ARC to PAG.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
17
|
Gu XL, Sun YG, Yu LC. Involvement of galanin in nociceptive regulation in the arcuate nucleus of hypothalamus in rats with mononeuropathy. Behav Brain Res 2007; 179:331-5. [PMID: 17383023 DOI: 10.1016/j.bbr.2007.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/08/2007] [Accepted: 02/22/2007] [Indexed: 12/28/2022]
Abstract
The hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation increased significantly after intra-hypothalamic arcuate nucleus (ARC) injection of galanin in mononeuropathic rats, while intra-ARC injection of the putative antagonist of galanin receptors markedly reduced the HWLs. The number of galaninergic neurons in the ARC increased in rats with mononeuropathy than that in normal rats. The results demonstrated that both endogenous and exogenous galanin were involved in the regulation of nociception in the ARC of rats with peripheral nerve injury.
Collapse
Affiliation(s)
- Xing-Long Gu
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, Center for Brain and Cognitive Science, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
18
|
Wu X, Yu LC. Alternation of galanin in nociceptive modulation in the central nervous system of rats during morphine tolerance: A behavioral and immunohistochemical study. Brain Res 2006; 1086:85-91. [PMID: 16626663 DOI: 10.1016/j.brainres.2005.12.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 12/24/2005] [Accepted: 12/27/2005] [Indexed: 11/22/2022]
Abstract
The present study was performed to investigate the alternation of galanin in nociceptive modulation and galanin-like immunoreactivity in the central nervous system of rats after morphine tolerance. The hindpaw withdrawal latencies to both thermal and mechanical stimulation increased significantly after intracerebroventricular injection of 3 nmol of galanin in opioid-naive rats. The antinociceptive effect induced by galanin was attenuated remarkably at the same dose in morphine-tolerant rats. Furthermore, an up-regulation of galanin-like immunoreactivity in the arcuate nucleus of hypothalamus of morphine-tolerant rat was observed by immunohistochemical methods, whereas no significant changes were detected in periaqueductal gray. The present study demonstrated that there are alternations in both galanin-induced antinociception and galanin-like immunoreactivity in the brain of rat after morphine tolerance. The results suggest an involvement of galanin in the central nervous system in morphine tolerance.
Collapse
Affiliation(s)
- Xia Wu
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, 100871, PR China
| | | |
Collapse
|
19
|
Sun YG, Yu LC. Interactions of galanin and opioids in nociceptive modulation in the arcuate nucleus of hypothalamus in rats. ACTA ACUST UNITED AC 2005; 124:37-43. [PMID: 15544839 DOI: 10.1016/j.regpep.2004.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Accepted: 06/22/2004] [Indexed: 11/21/2022]
Abstract
The fact that galanin, beta-endorphin and their receptors are present in the arcuate nucleus of hypothalamus (ARC), coupled with our previous observation that both beta-endorphin and galanin play antinociceptive roles in pain modulation in the ARC, made it of interest to study their interactions. The hindpaw withdrawal latency (HWL) in response to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. We showed that the antinociceptive effect induced by intra-ARC injection of galanin was dose-dependently attenuated by the following intra-ARC injection of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) attenuated the increased HWL induced by intra-ARC injection of galanin in a dose-dependent manner, while the delta-opioid receptor antagonist naltrindole or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) did not. Moreover, intra-ARC injection of a galanin receptor antagonist galantide attenuated intraperitoneal morphine-induced increases in HWLs. These results demonstrate that the antinociceptive effect of galanin was related to the opioid system, especially mu-opioid receptor was involved in, and that systemic morphine induced antinociception involves galanin in the ARC.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology, Center for Brain and Cognitive Science, Peking University, Beijing 100871, People's Republic of China
| | | |
Collapse
|
20
|
Sun YG, Li J, Yang BN, Yu LC. Antinociceptive effects of galanin in the rat tuberomammillary nucleus and the plasticity of galanin receptor 1 during hyperalgesia. J Neurosci Res 2004; 77:718-22. [PMID: 15352218 DOI: 10.1002/jnr.20206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although the tuberomammillary nucleus (TM) is well defined in terms of anatomy and neurochemistry, little is known about its function in nociceptive modulation. There was an abundance of galanin-immunoreactive fibers in the TM, and galanin has been implicated in pain processing. The present study assessed the role of galanin in the modulation of nociception in the TM of rats. Intra-TM injection of galanin dose-dependently increased the hindpaw withdrawal latency of rats to a noxious thermal stimulus, indicating an antinociceptive role of galanin in the TM. The antinociceptive effect of galanin was blocked by a subsequent intra-TM injection of galantide, a putative galanin receptor antagonist, suggesting that the antinociceptive effect of galanin is mediated by galanin receptors. Moreover, there was abundant galanin receptor 1 (GalR1) in the TM, and the number of GalR1-positive neurons in the ipsilateral TM increased significantly after unilateral loose ligation of the sciatic nerve compared with the contralateral TM or the TM of intact rats. However, the number of GalR1-positive neurons was not significantly altered by carrageenan-induced inflammation, in either the ipsilateral or the contralateral TM. The results suggest that galanin and GalR1 in the TM may play important roles in pain regulation.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology and Center for Brain and Cognitive Science, Peking University, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
21
|
Sun YG, Gu XL, Lundeberg T, Yu LC. An antinociceptive role of galanin in the arcuate nucleus of hypothalamus in intact rats and rats with inflammation. Pain 2003; 106:143-50. [PMID: 14581121 DOI: 10.1016/s0304-3959(03)00316-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the arcuate nucleus of hypothalamus (ARC), galaninergic fibers form synaptic contacts with proopiomelanocortin neurons, which are involved in pain modulation. The present study assessed the role of exogenous and endogenous galanin in the modulation of nociception in the ARC of rats. The hindpaw withdrawal latency (HWL) to thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of galanin dose-dependently increased the HWLs in intact rats, indicating an antinociceptive role of exogenous galanin in the ARC. The antinociceptive effect of galanin was blocked by following intra-ARC injection of galantide, a putative galanin receptor antagonist, suggesting that the antinociceptive effect of galanin is mediated by galanin receptors. Moreover, intra-ARC injection of galanin increased the HWL in rats with inflammation. Intra-ARC administration of galantide alone reduced the HWLs in rats with inflammation, while there were no influences of galantide on the HWL in intact rats. Taken together, the results show that galanin has an antinociceptive role in the ARC of intact rats and rats with inflammation.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Neurobiology Laboratory, College of Life Sciences, National Laboratory of Biomembrane and Membrane Biotechnology and Center for Brain and Cognitive Science, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
22
|
Sun YG, Lundeberg T, Yu LC. Involvement of endogenous beta-endorphin in antinociception in the arcuate nucleus of hypothalamus in rats with inflammation. Pain 2003; 104:55-63. [PMID: 12855314 DOI: 10.1016/s0304-3959(02)00464-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although exogenous administration of beta-endorphin to the arcuate nucleus of hypothalamus (ARC) had been shown to produce antinociception, the role of endogenous beta-endorphin of the ARC in nociceptive processing has not been studied directly. The aim of the present study was to investigate the effect of endogenous beta-endorphin in the ARC on nociception in rats with carrageenan-induced inflammation. The hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of naloxone had no significant influence on the HWL to thermal and mechanical stimulation in intact rats. The HWL decreased significantly after intra-ARC injection of 1 or 10 microg of naloxone in rats with inflammation, but not with 0.1 microg of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) decreased the nociceptive response latencies to both stimulation in a dose-dependent manner in rats with inflammation, while intra-ARC administration of the selective delta-opioid receptor antagonist naltrindole or the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) showed no influences on the nociceptive response latency. The antiserum against beta-endorphin, administered to the ARC, also dose-dependently reduced the HWL in rats with inflammation. The results indicate that endogenous beta-endorphin in the ARC plays an important role in the endogenous antinociceptive system in rats with inflammation, and that its effect is predominantly mediated by the mu-opioid receptor.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
23
|
Leibowitz SF, Avena NM, Chang GQ, Karatayev O, Chau DT, Hoebel BG. Ethanol intake increases galanin mRNA in the hypothalamus and withdrawal decreases it. Physiol Behav 2003; 79:103-11. [PMID: 12818715 DOI: 10.1016/s0031-9384(03)00110-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alcoholism can be viewed as a motivational disorder that results from alterations in brain systems for ingestive behavior. Therefore, it was hypothesized that alcohol intake might alter the expression of hypothalamic peptides that stimulate feeding. Earlier studies showed that hypothalamic injection of the feeding-stimulatory peptide, galanin (GAL), increases the release of dopamine (DA) in the nucleus accumbens (NAc), as does systemic alcohol, leading to a focus on GAL. Results of this study demonstrate the following: (1). Ethanol, injected daily (0.8 g/kg 10% v/v) for 7 days in male rats, markedly increased the expression of GAL but not of neuropeptide Y (NPY). This occurred in specific hypothalamic nuclei, namely the dorsomedial nucleus (DMN), paraventricular nucleus (PVN) and perifornical lateral hypothalamus (PLH). (2). Rats induced to drink ethanol ad libitum, by gradually increasing the concentration from 1% to 9% v/v without adding sugar or flavoring, exhibited a similar stimulation of GAL mRNA in the PVN and GAL immunoreactivity in the DMN and PVN. (3). Rats given increasing ethanol concentrations, with 12 h access starting 4 h into the dark cycle, had a mean blood alcohol concentration of 18 mg/dl and exhibited a similar increase in GAL expression in the DMN and PVN. (4) Withdrawal from the opioid effects of 9% ethanol, produced by injection of naloxone (3 mg/kg sc), reversed this ethanol effect by significantly reducing GAL expression in the DMN and PLH below baseline levels. These studies suggest a possible role for hypothalamic GAL in alcohol abuse.
Collapse
Affiliation(s)
- Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mennicken F, Hoffert C, Pelletier M, Ahmad S, O'Donnell D. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J Chem Neuroanat 2002; 24:257-68. [PMID: 12406501 DOI: 10.1016/s0891-0618(02)00068-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent molecular cloning studies have established the existence of a third rat galanin receptor subtype, GalR3, however its precise distribution in the mammalian central nervous system (CNS) is not well established. In the present study, we examined the regional and cellular distribution of GalR3 mRNA in the CNS of the rat by in situ hybridization. Our findings indicate that GALR3 mRNA expression in the rat brain is discrete and highly restricted, concentrated mainly in the preoptic/hypothalamic area. Within the hypothalamus, GalR3 expression was confined to the paraventricular, ventromedial and dorsomedial hypothalamic nuclei. In addition to these hypothalamic nuclei, GalR3 mRNA-expressing cells were observed in the medial septum/diagonal band of Broca complex, the bed nucleus of the stria terminalis, the medial amygdaloid nucleus, the periaqueductal gray, the lateral parabrachial nucleus, the dorsal raphe nucleus, the locus coeruleus, the medial medullary reticular formation and in one of the circumventricular organs, the subfornical organ. In the spinal cord, a faint but specific ISH signal was observed over the laminae I-II with a few moderately labeled cells distributed in laminae V and X. The neuroanatomical distribution of GalR3 suggests it might be involved in mediating documented effects of galanin on food intake, fluid homeostasis, cardiovascular function and nociception.
Collapse
Affiliation(s)
- Françoise Mennicken
- AstraZeneca R&D Montreal, 7171 Frederick-Banting, St. Laurent, Quebec, Canada H4S 1Z9.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
26
|
Bytner B, Huang YH, Yu LC, Lundeberg T, Nylander I, Rosen A. Nociceptin/orphanin FQ into the rat periaqueductal gray decreases the withdrawal latency to heat and loading, an effect reversed by (Nphe(1))nociceptin(1-13)NH(2). Brain Res 2001; 922:118-24. [PMID: 11730709 DOI: 10.1016/s0006-8993(01)03161-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study investigated the effect of intraperiaqueductal grey injection of nociceptin/orphanin FQ (N/OFQ) and an antagonist (Nphe(1))nociceptin(1-13)NH(2) on the hindpaw withdrawal response to thermal and mechanical stimulation in rats. N/OFQ (5 nmol) significantly decreased the nociceptive thresholds in both tests and 1, 5 and 10 nmol of (Nphe(1))nociceptin(1-13)NH(2) significantly reversed this effect in a dose dependent way. Our results demonstrate, that N/OFQ has a nociceptive action, possibly through inhibition of PAG neurons. This effect is blocked by the antagonist (Nphe(1))nociceptin(1-13)NH(2) probably via ORL1 receptors in the periaqueductal grey.
Collapse
Affiliation(s)
- B Bytner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
27
|
Yu LC, Xu SL, Xiong W, Lundeberg T. The effect of galanin on wide-dynamic range neuron activity in the spinal dorsal horn of rats. REGULATORY PEPTIDES 2001; 101:179-82. [PMID: 11495694 DOI: 10.1016/s0167-0115(01)00287-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effect of galanin on wide-dynamic range (WDR) neuron activity in the dorsal horn of the spinal cord of rats. The evoked discharge of WDR neurons was elicited by transdermic electrical stimulation applied on the ipsilateral hindpaw of rats. Galanin was administered directly on the spinal dorsal surface of L3-L5. The evoked discharge frequency of the WDR neurons decreased significantly after the administration of galanin and the effect lasted for more than 30 min. Furthermore, the inhibitory effect of galanin on the evoked discharge frequency of WDR neurons was blocked by following administration of the galanin antagonist galantide, indicating that the inhibitory effect of galanin on the activity of WDR neurons was induced by activating galanin receptors in the dorsal horn of the spinal cord. The results suggest that galanin has an inhibitory role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord in rats.
Collapse
Affiliation(s)
- L C Yu
- Department of Physiology, College of Life Sciences, and National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, 100871, Beijing, People's Republic of China.
| | | | | | | |
Collapse
|
28
|
Wang D, Lundeberg T, Yu LC. Antinociceptive role of galanin in periaqueductal grey of rats with experimentally induced mononeuropathy. Neuroscience 2000; 96:767-71. [PMID: 10727794 DOI: 10.1016/s0306-4522(00)00005-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was performed in rats with experimentally induced mononeuropathy after left common sciatic nerve ligation. The hindpaw withdrawal latencies to thermal and mechanical stimulation increased significantly after intra-periaqueductal grey injection of 2 or 3nmol, but not 1nmol of galanin in rats with mononeuropathy. Intraperitoneal administration of 4.5mg/kg morphine induced significant increases in hindpaw withdrawal latencies to both noxious stimulation, which were attenuated by following intra-periaqueductal grey injection of 2nmol of the galanin antagonist galantide. Furthermore, the antinociceptive effect induced by intra-periaqueductal grey injection of 26.6nmol of morphine was attenuated significantly by following intra-periaqueductal gray administration of 2nmol of galantide. The results demonstrated that in periaqueductal grey galanin plays an antinociceptive role in rats with mononeuropathy and galanin is involved in the mechanisms of opioid-induced antinociception.
Collapse
Affiliation(s)
- D Wang
- Department of Physiology, College of Life Sciences, and National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, People's Republic of China
| | | | | |
Collapse
|
29
|
Xu XJ, Hökfelt T, Bartfai T, Wiesenfeld-Hallin Z. Galanin and spinal nociceptive mechanisms: recent advances and therapeutic implications. Neuropeptides 2000; 34:137-47. [PMID: 11021973 DOI: 10.1054/npep.2000.0820] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Galanin is a peptide consisting of 29 or 30 (in humans) amino acids that is present in sensory and spinal dorsal horn neurons. Endogenous galanin may have an important modulatory function on nociceptive input at the spinal level. In addition, exogenously administered galanin exerts complex effects on spinal nociceptive transmission, where inhibitory action appears to predominate. Peripheral nerve injury and inflammation, conditions associated with chronic pain, upregulate the synthesis of galanin in sensory neurons and spinal cord neurons, respectively. Hence, the sensory effect of galanin may be increased under these conditions, raising the possibility that modulation of the activity of the galanin system may produce antinociception.
Collapse
Affiliation(s)
- X J Xu
- Department of Medical Laboratory Sciences and Technology, Division of Clinical Neurophysiology, Karolinska Institutet, S-141 86 Huddinge, Sweden.
| | | | | | | |
Collapse
|
30
|
Zhang YP, Lundeberg T, Yu LC. Interactions of galanin and morphine in the spinal antinociception in rats with mononeuropathy. Brain Res 2000; 852:485-7. [PMID: 10678779 DOI: 10.1016/s0006-8993(99)02236-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The increased hind-paw withdrawal latency (HWL) to thermal stimulation and hind-paw withdrawal threshold (HWT) to mechanical stimulation induced by morphine were attenuated by intrathecal injection of 1 or 3 nmol, but not 0.3 nmol of the selective galanin antagonist galantide. The result indicated a possible interaction between galanin and opioids in the transmission of presumed nociceptive information in the spinal cord of rats with mononeuropathy.
Collapse
Affiliation(s)
- Y P Zhang
- Department of Physiology and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Science, Peking University, Beijing, China
| | | | | |
Collapse
|