1
|
Pinson A, Sevrin E, Chatzi C, Le Gac B, Thiry M, Westbrook GL, Parent AS. Induction of Oxidative Stress and Alteration of Synaptic Gene Expression in Newborn Hippocampal Granule Cells after Developmental Exposure to Aroclor 1254. Neuroendocrinology 2022; 113:1248-1261. [PMID: 36257292 PMCID: PMC10110769 DOI: 10.1159/000527576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.
Collapse
Affiliation(s)
- Anneline Pinson
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Elena Sevrin
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin Le Gac
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and tissular biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Gilbert ME, O'Shaughnessy KL, Axelstad M. Regulation of Thyroid-disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020; 161:bqaa106. [PMID: 32615585 PMCID: PMC8650774 DOI: 10.1210/endocr/bqaa106] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Synthetic chemicals with endocrine disrupting properties are pervasive in the environment and are present in the bodies of humans and wildlife. As thyroid hormones (THs) control normal brain development, and maternal hypothyroxinemia is associated with neurological impairments in children, chemicals that interfere with TH signaling are of considerable concern for children's health. However, identifying thyroid-disrupting chemicals (TDCs) in vivo is largely based on measuring serum tetraiodothyronine in rats, which may be inadequate to assess TDCs with disparate mechanisms of action and insufficient to evaluate the potential neurotoxicity of TDCs. In this review 2 neurodevelopmental processes that are dependent on TH action are highlighted, neuronal migration and maturation of gamma amino butyric acid-ergic interneurons. We discuss how interruption of these processes by TDCs may contribute to abnormal brain circuitry following developmental TH insufficiency. Finally, we identify issues in evaluating the developmental neurotoxicity of TDCs and the strengths and limitations of current approaches designed to regulate them. It is clear that an enhanced understanding of how THs affect brain development will lead to refined toxicity testing, reducing uncertainty and improving our ability to protect children's health.
Collapse
Affiliation(s)
- Mary E Gilbert
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Hufgard JR, Sprowles JLN, Pitzer EM, Koch SE, Jiang M, Wang Q, Zhang X, Biesiada J, Rubinstein J, Puga A, Williams MT, Vorhees CV. Prenatal exposure to PCBs in Cyp1a2 knock-out mice interferes with F 1 fertility, impairs long-term potentiation, reduces acoustic startle and impairs conditioned freezing contextual memory with minimal transgenerational effects. J Appl Toxicol 2018; 39:603-621. [PMID: 30561030 DOI: 10.1002/jat.3751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/17/2018] [Accepted: 10/14/2018] [Indexed: 01/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic environmental pollutants. Humans are exposed to PCB mixtures via contaminated food or water. PCB exposure causes adverse effects in adults and after exposure in utero. PCB toxicity depends on the congener mixture and CYP1A2 gene activity. For coplanar PCBs, toxicity depends on ligand affinity for the aryl hydrocarbon receptor (AHR). Previously, we found that perinatal exposure of mice to a three-coplanar/five-noncoplanar PCB mixture induced deficits in novel object recognition and trial failures in the Morris water maze in Cyp1a2-/- ::Ahrb1 C57BL6/J mice compared with wild-type mice (Ahrb1 = high AHR affinity). Here we exposed gravid Cyp1a2-/- ::Ahrb1 mice to a PCB mixture on embryonic day 10.5 by gavage and examined the F1 and F3 offspring (not F2 ). PCB-exposed F1 mice exhibited increased open-field central time, reduced acoustic startle, greater conditioned contextual freezing and reduced CA1 hippocampal long-term potentiation with no change in spatial learning or memory. F1 mice also had inhibited growth, decreased heart rate and cardiac output, and impaired fertility. F3 mice showed few effects. Gene expression changes were primarily in F1 PCB males compared with wild-type males. There were minimal RNA and DNA methylation changes in the hippocampus from F1 to F3 with no clear relevance to the functional effects. F0 PCB exposure during a period of rapid DNA de-/remethylation in a susceptible genotype produced clear F1 effects with little evidence of transgenerational effects in the F3 generation. While PCBs show clear developmental neurotoxicity, their effects do not persist across generations for effects assessed herein.
Collapse
Affiliation(s)
- Jillian R Hufgard
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Jenna L N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Emily M Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Min Jiang
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Qin Wang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jacek Biesiada
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Alvaro Puga
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| |
Collapse
|
4
|
Bandara SB, Sadowski RN, Schantz SL, Gilbert ME. Developmental exposure to an environmental PCB mixture delays the propagation of electrical kindling from the amygdala. Neurotoxicology 2016; 58:42-49. [PMID: 27816614 DOI: 10.1016/j.neuro.2016.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 10/01/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Abstract
Developmental PCB exposure impairs hearing and induces brainstem audiogenic seizures in adult offspring. The degree to which this enhanced susceptibility to seizure is manifest in other brain regions has not been examined. Thus, electrical kindling of the amygdala was used to evaluate the effect of developmental exposure to an environmentally relevant PCB mixture on seizure susceptibility in the rat. Female Long-Evans rats were dosed orally with 0 or 6mg/kg/day of the PCB mixture dissolved in corn oil vehicle 4 weeks prior to mating and continued through gestation and up until postnatal day (PND) 21. On PND 21, pups were weaned, and two males from each litter were randomly selected for the kindling study. As adults, the male rats were implanted bilaterally with electrodes in the basolateral amygdala. For each animal, afterdischarge (AD) thresholds in the amygdala were determined on the first day of testing followed by once daily stimulation at a standard 200μA stimulus intensity until three stage 5 generalized seizures (GS) ensued. Developmental PCB exposure did not affect the AD threshold or total cumulative AD duration, but PCB exposure did increase the latency to behavioral manifestations of seizure propagation. PCB exposed animals required significantly more stimulations to reach stage 2 seizures compared to control animals, indicating attenuated focal (amygdala) excitability. A delay in kindling progression in the amygdala stands in contrast to our previous finding of increased susceptibility to brainstem-mediated audiogenic seizures in PCB-exposed animals in response to a an intense auditory stimulus. These seemingly divergent results are not unexpected given the distinct source, type, and mechanistic underpinnings of these different seizure models. A delay in epileptogenesis following focal amygdala stimulation may reflect a decrease in neuroplasticity following developmental PCB exposure consistent with reductions in use-dependent synaptic plasticity that have been reported in the hippocampus of developmentally PCB exposed animals.
Collapse
Affiliation(s)
- Suren B Bandara
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States.
| | - Renee N Sadowski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States
| | - Susan L Schantz
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, United States; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Mary E Gilbert
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States
| |
Collapse
|
5
|
Parent AS, Pinson A, Woods N, Chatzi C, Vaaga CE, Bensen A, Gérard A, Thome JP, Bourguignon JP, Westbrook GL. Early exposure to Aroclor 1254 in vivo disrupts the functional synaptic development of newborn hippocampal granule cells. Eur J Neurosci 2016; 44:3001-3010. [PMID: 27740705 DOI: 10.1111/ejn.13437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 02/05/2023]
Abstract
Neurogenesis in the dentate gyrus is sensitive to endogenous and exogenous factors that influence hippocampal function. Ongoing neurogenesis and the integration of these new neurons throughout life thus may provide a sensitive indicator of environmental stress. We examined the effects of Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls (PCBs), on the development and function of newly generated dentate granule cells. Early exposure to A1254 has been associated with learning impairment in children, suggesting potential impact on the development of hippocampus and/or cortical circuits. Oral A1254 (from the 6th day of gestation to postnatal day 21) produced the expected increase in PCB levels in brain at postnatal day 21, which persisted at lower levels into adulthood. A1254 did not affect the proliferation or survival of newborn neurons in immature animals nor did it cause overt changes in neuronal morphology. However, A1254 occluded the normal developmental increase in sEPSC frequency in the third post-mitotic week without altering the average sEPSC amplitude. Our results suggest that early exposure to PCBs can disrupt excitatory synaptic function during a period of active synaptogenesis, and thus could contribute to the cognitive effects noted in children exposed to PCBs.
Collapse
Affiliation(s)
- A S Parent
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - A Pinson
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - N Woods
- Vollum Institute, Portland, OR, USA
| | - C Chatzi
- Vollum Institute, Portland, OR, USA
| | | | - A Bensen
- Vollum Institute, Portland, OR, USA
| | - A Gérard
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | - J P Thome
- Laboratory of Animal Ecology and Ecotoxicology, University of Liège, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA-N, University of Liège, CHU Sart Tilman, 4000, Liège, Belgium
| | | |
Collapse
|
6
|
Pinson A, Bourguignon JP, Parent AS. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations. Andrology 2016; 4:706-22. [PMID: 27285165 DOI: 10.1111/andr.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/25/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling.
Collapse
Affiliation(s)
- A Pinson
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - J P Bourguignon
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| | - A S Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liege, Liège, Belgium
| |
Collapse
|
7
|
Frye CA. Endocrine-disrupting chemicals: elucidating our understanding of their role in sex and gender-relevant end points. VITAMINS AND HORMONES 2014; 94:41-98. [PMID: 24388187 DOI: 10.1016/b978-0-12-800095-3.00003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are diverse and pervasive and may have significant consequence for health, including reproductive development and expression of sex-/gender-sensitive parameters. This review chapter discusses what is known about common EDCs and their effects on reproductively relevant end points. It is proposed that one way that EDCs may exert such effects is by altering steroid levels (androgens or 17-estradiol, E₂) and/or intracellular E₂ receptors (ERs) in the hypothalamus and/or hippocampus. Basic research findings that demonstrate developmentally sensitive end points to androgens and E₂ are provided. Furthermore, an approach is suggested to examine differences in EDCs that diverge in their actions at ERs to elucidate their role in sex-/gender-sensitive parameters.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, New York, USA; Department of Biological Sciences, The University at Albany-SUNY, Albany, New York, USA; The Center for Neuroscience Research, The University at Albany-SUNY, Albany, New York, USA; The Center for Life Sciences Research, The University at Albany-SUNY, Albany, New York, USA; Department of Chemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|
8
|
Hilgier W, Łazarewicz JW, Strużynska L, Frontczak-Baniewicz M, Albrecht J. Repeated exposure of adult rats to Aroclor 1254 induces neuronal injury and impairs the neurochemical manifestations of the NMDA receptor-mediated intracellular signaling in the hippocampus. Neurotoxicology 2011; 33:16-22. [PMID: 22044768 DOI: 10.1016/j.neuro.2011.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
Aroclor 1254 is a mixture of polychlorinated biphenyls (PCBs), a class of environmental toxins which cause a wide spectrum of neurotoxic effects. Learning and memory deficits are the profound effects of PCBs which may be related to hippocampal dysfunction. To get insight into the underlying neurochemical mechanisms, we employed the microdialysis technique to investigate the effect of repeated exposure of adult male Wistar rats to Aroclor 1254 (10mg/kg b.w., daily, ig., for 14days), on the neurochemical parameters of NMDA receptor-mediated glutamatergic signaling in the hippocampus in vivo assessed using the microdialysis technique. The results demonstrated that exposure to Aroclor 1254, which was associated with substantial neuronal damage and loss in the hippocampus, markedly decreased the NMDA-induced extracellular accumulation of newly loaded (45)CaCl(2), cGMP and glutamate, and reduced the basal content of the NO precursor, arginine, indicating inhibition of the NMDA/NO/cGMP pathway. Aroclor 1254 exposure also decreased the basal microdialysate content of glutamate and glutamine, which may cause inadequate supply of the neurotransmitter glutamate, while the level of two other neuroactive amino acids, aspartate or taurine was not affected by the exposure. The results underscore neuronal lesion and inhibition of NMDA receptor-mediated glutamatergic signaling in hippocampus as a potential major contributor to the cognitive deficits associated with exposure to PCB.
Collapse
Affiliation(s)
- Wojciech Hilgier
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
9
|
Curran CP, Nebert DW, Genter MB, Patel KV, Schaefer TL, Skelton MR, Williams MT, Vorhees CV. In utero and lactational exposure to PCBs in mice: adult offspring show altered learning and memory depending on Cyp1a2 and Ahr genotypes. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1286-93. [PMID: 21571617 PMCID: PMC3230394 DOI: 10.1289/ehp.1002965] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 05/13/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Both coplanar and noncoplanar polychlorinated biphenyls (PCBs) exhibit neurotoxic effects in animal studies, but individual congeners do not always produce the same effects as PCB mixtures. Humans genetically have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2)-uninduced basal levels and > 12-fold variability in aryl hydrocarbon receptor (AHR)affinity; because CYP1A2 is known to sequester coplanar PCBs and because AHR ligands include coplanar PCBs, both genotypes can affect PCB response. OBJECTIVES We aimed to develop a mouse paradigm with extremes in Cyp1a2 and Ahr genotypes to explore genetic susceptibility to PCB-induced developmental neurotoxicity using an environmentally relevant mixture of PCBs. METHODS We developed a mixture of eight PCBs to simulate human exposures based on their reported concentrations in human tissue, breast milk, and food supply. We previously characterized specific differences in PCB congener pharmacokinetics and toxicity, comparing high-affinity-AHR Cyp1a2 wild-type [Ahrb1_Cyp1a2(+/+)], poor-affinity-AHR Cyp1a2 wild-type [Ahrd_Cyp1a2(+/+)], and high-affinity-AHR Cyp1a2 knockout [Ahrb1_Cyp1a2(-/-)] mouse lines [Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. 2011. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 119:189-208]. Dams received a mixture of three coplanar and five noncoplanar PCBs on gestational day 10.5 and postnatal day (PND) 5. In the present study we conducted behavioral phenotyping of exposed offspring at PND60, examining multiple measures of learning, memory, and other behaviors. RESULTS We observed the most significant deficits in response to PCB treatment in Ahrb1_Cyp1a2(-/-) mice, including impaired novel object recognition and increased failure rate in the Morris water maze. However, all PCB-treated genotypes showed significant differences on at least one measure of learning or behavior. CONCLUSIONS High levels of maternal hepatic CYP1A2 offer the most important protection against deficits in learning and memory in offspring exposed to a mixture of coplanar and noncoplanar PCBs. High-affinity AHR is the next most important factor in protection of offspring.
Collapse
Affiliation(s)
- Christine P Curran
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kodavanti PRS, Curras-Collazo MC. Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 2010; 31:479-96. [PMID: 20609372 DOI: 10.1016/j.yfrne.2010.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/22/2010] [Accepted: 06/25/2010] [Indexed: 02/08/2023]
Abstract
Organohalogen compounds are global environmental pollutants. They are highly persistent, bioaccumulative, and cause adverse effects in humans and wildlife. Because of the widespread use of these organohalogens in household items and consumer products, indoor contamination may be a significant source of human exposure, especially for children. One significant concern with regard to health effects associated with exposure to organohalogens is endocrine disruption. This review focuses on PCBs and PBDEs as old and new organohalogens, respectively, and their effects on two neuroendocrine systems; thyroid hormones and the arginine vasopressin system (AVP). Regarding neuroendocrine effects of organohalogens, there is considerable information on the thyroid system as a target and evidence is now accumulating that the AVP system and associated functions are also susceptible to disruption. AVP-mediated functions such as osmoregulation, cardiovascular function as well as social behavior, sexual function and learning/memory are discussed. For both thyroid and AVP systems, the timing of exposure seems to play a major role in the outcome of adverse effects. The mechanism of organohalogen action is well understood for the thyroid system. In comparison, this aspect is understudied in the AVP system but some similarities in neural processes, shown to be targeted by these pollutants, serve as promising possibilities for study. One challenge in understanding modes of action within neuroendocrine systems is their complexity stemming, in part, from interdependent levels of organization. Further, because of the interplay between neuroendocrine and neural functions and behavior, further investigation into organohalogen-mediated effects is warranted and may yield insights with wider scope. Indeed, the current literature provides scattered evidence regarding the role of organohalogen-induced neuroendocrine disruption in the neuroplasticity related to both learning functions and brain structure but future studies are needed to establish the role of endocrine disruption in nervous system function and development.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, B 105-06, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
11
|
Fonnum F, Mariussen E. Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants. J Neurochem 2009; 111:1327-47. [DOI: 10.1111/j.1471-4159.2009.06427.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation. Toxicol Appl Pharmacol 2009; 237:168-77. [PMID: 19289137 DOI: 10.1016/j.taap.2009.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 01/19/2023]
Abstract
Exposure to polychlorinated biphenyls impairs cognition and behavior in children. Two environmental PCBs 2,2',3,3',4,4',5-heptachlorobiphenyl (PCB170) and 2,2',3,5',6-pentachlorobiphenyl (PCB95) were examined in vitro for influences on synaptic transmission in rat hippocampal slices. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the CA1 region using a multi-electrode array. Perfusion with PCB170 (10 nM) had no effect on fEPSP slope relative to baseline period, whereas (100 nM) initially enhanced then depressed fEPSP slope. Perfusion of PCB95 (10 or 100 nM) persistently enhanced fEPSP slope >200%, an effect that could be inhibited by dantrolene, a drug that attenuates ryanodine receptor signaling. Perfusion with picrotoxin (PTX) to block GABA neurotransmission resulted in a modest increase in fEPSP slope, whereas PTX+PCB170 (1-100 nM) persistently enhanced fEPSP slope in a dose dependent manner. fEPSP slope reached >250% of baseline period in the presence of PTX+100 nM PCB170, conditions that evoked marked epileptiform after-potential discharges. PCB95 and PCB170 were found to differentially influence the Ca(2+)-dependence of [(3)H]ryanodine-binding to hippocampal ryanodine receptors. Non-coplanar PCB congeners can differentially alter neurotransmission in a manner suggesting they can elicit imbalances between inhibitory and excitatory circuits within the hippocampus. Differential sensitization of ryanodine receptors by Ca(2+) appears to mediate, at least in part, hippocampal excitotoxicity by non-coplanar PCBs.
Collapse
|
13
|
Taylor MA, Swant J, Wagner JJ, Fisher JW, Ferguson DC. Lower thyroid compensatory reserve of rat pups after maternal hypothyroidism: correlation of thyroid, hepatic, and cerebrocortical biomarkers with hippocampal neurophysiology. Endocrinology 2008; 149:3521-30. [PMID: 18372327 DOI: 10.1210/en.2008-0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The developing central nervous system of the fetus and neonate is recognized as very sensitive to maternal or gestational hypothyroidism. Despite this recognition, there is still a lack of data concerning the relationship between thyroid-related biomarkers and neurological outcomes. We used propylthiouracil administered at 0, 3, or 10 ppm in drinking water from gestational d 2 until weaning to create hypothyroid conditions to study the relationship between hypothalamic-pituitary-thyroid axis compensation and impaired neurodevelopment. In addition to serum T(3), T(4), free T(4), and TSH concentrations, cerebrocortical T(3) concentration (cT(3)), hepatic type I and cerebrocortical type II (D2) 5'-deiodinase activity, and thyroidal mRNA for thyroglobulin and sodium iodide symporter were measured. Extracellular recordings from the CA1 region in hippocampal slices were obtained from both postnatal d 21-32 (pups) and postnatal d 90-110 (adults) rats to assess neurophysiological effects. Thyroidal mRNA for thyroglobulin and sodium iodide symporter were increased in pups but not in dams. Both propylthiouracil doses increased cerebrocortical D2 activity approximately 5-fold in pups but only 10 ppm increased D2 activity in dams. In dams, cT(3) concentrations were maintained at 3 ppm but fell 75% at 10 ppm. cT(3) concentration in pups fell 50% at 3 ppm and more than 90% at 10 ppm. In both 3 and 10 ppm pups, hippocampal baseline synaptic activity correlated negatively with cerebrocortical D2 activity. In 3 ppm adults, impaired long-term potentiation was evident. In summary, during depletion of serum T(4), D2 activity served as a sensitive marker of tissue thyroid status, an indicator of the brain's compensatory response to maintain cT(3), and correlated with a neurophysiological outcome.
Collapse
Affiliation(s)
- Matthew A Taylor
- Interdisciplinary Toxicology Program, and Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
14
|
Orito K, Gotanda N, Murakami M, Ikeda T, Egashira N, Mishima K, Fujiwara M. Prenatal Exposure to 3,3',4,4',5-Pentachlorobiphenyl (PCB126) Promotes Anxiogenic Behavior in Rats. TOHOKU J EXP MED 2007; 212:151-7. [PMID: 17548959 DOI: 10.1620/tjem.212.151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that have adverse effects on the endocrine and nervous systems. As they are still detected in breast milk and adipose tissue in humans, the accumulated PCBs may transfer from mothers to children and damage central nervous system. It is revealed from epidemiological studies that cognitive and motor functions were damaged in children born to mothers who ingested PCBs-contaminated foods. However, it remains unclear whether prenatal exposure to PCBs affects emotionality. In the present study, we therefore examined the effect of prenatal exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB126) on emotionality in rats by focusing on anxiogenic behavior and response of the hypothalamus-pituitary-adrenal axis to stress. Pregnant rats were treated orally with PCB126 at a dose of 30 microg/kg or corn oil, its vehicle, on gestational day 15, and their male offspring were subjected to the following experiments at 4-5 weeks old. In an open field test, rats with prenatal exposure to PCB126 showed anxiogenic behavioral responses, including decrease in time spent in the center of an open field and the number of rearings and extension of grooming duration. Interactive behavior, which is an index of anxiety level, was shortened in the social interaction test. The increase in the serum corticosterone level induced by forced swim stress was facilitated by prenatal exposure to PCB126. This evidence suggests that PCB126 may exert anxiogenicity on the offspring of exposed dams, and dysfunction of the hypothalamus-pituitary-adrenal axis may at least in part contribute to this abnormality.
Collapse
Affiliation(s)
- Kensuke Orito
- Department of Pharmacology, Azabu University School of Veterinary Medicine, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Colciago A, Negri-Cesi P, Pravettoni A, Mornati O, Casati L, Celotti F. Prenatal Aroclor 1254 exposure and brain sexual differentiation: Effect on the expression of testosterone metabolizing enzymes and androgen receptors in the hypothalamus of male and female rats. Reprod Toxicol 2006; 22:738-45. [PMID: 16938428 DOI: 10.1016/j.reprotox.2006.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 06/08/2006] [Accepted: 07/06/2006] [Indexed: 11/18/2022]
Abstract
Polychlorinated biphenyls (PCBs) are industrial pollutants detected in human milk, serum and tissues. They readily cross the placenta to accumulate in fetal tissues, particularly the brain. These compounds affect normal brain sexual differentiation by mechanisms that are incompletely understood. The aim of this study was to verify whether a technical mixture of PCBs (Aroclor 1254) would interfere with the normal pattern of expression of hypothalamic aromatase and 5-alpha reductase(s), the two main enzymatic pathways involved in testosterone activation and of androgen receptor (AR). Aroclor 1254 was administered to pregnant rats at a daily dose of 25 mg/kg by gavage from days 15 to 19 of gestation (GD15-19). At GD20 the expression of aromatase, 5-alpha reductase types 1 and 2 and androgen receptor (AR) and aromatase activity were evaluated in the hypothalamus of male and female embryos. The direct effect of Aroclor was also evaluated on aromatase activity adding the PCB mixture to hypothalamic homogenates or to primary hypothalamic neuronal cultures. The data indicate that aromatase expression and activity is not altered by prenatal PCB treatment; 5-alpha reductase type 1 is similarly unaffected while 5-alpha reductase type 2 is markedly stimulated by the PCB exposure in females. Aroclor also decreases the expression of the AR in females. The observed in vivo effects are indicative of a possible adverse effect of PCBs on the important metabolic pathways by which testosterone produces its brain effects. In particular the changes of 5-alpha reductase type 2 and AR in females might be one of the mechanisms by which Aroclor exposure during fetal development affects adult sexual behavior in female rats.
Collapse
Affiliation(s)
- A Colciago
- Institute of Endocrinology, Via Balzaretti, Milano, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Mariussen E, Fonnum F. Neurochemical targets and behavioral effects of organohalogen compounds: an update. Crit Rev Toxicol 2006; 36:253-89. [PMID: 16686424 DOI: 10.1080/10408440500534164] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Organohalogen compounds (OHCs) have been used and still are used extensively as pesticides, flame retardants, hydraulic fluids, and in other industrial applications. These compounds are stable, most often lipophilic, and may therefore easily biomagnify. Today these compounds are found distributed both in human tissue, including breast milk, and in wildlife animals. In the late 1960s and early 1970s, high levels of the polychlorinated biphenyls (PCBs) and the pesticide dichlorodiphenyl trichloroethane (DDT) were detected in the environment. In the 1970s it was discovered that PCBs and some chlorinated pesticides, such as lindane, have neurotoxic potentials after both acute and chronic exposure. Although the use of PCBs, DDT, and other halogenated pesticides has been reduced, and environmental levels of these compounds are slowly diminishing, other halogenated compounds with potential of toxic effects are being found in the environment. These include the brominated flame retardants, chlorinated paraffins (PCAs), and perfluorinated compounds, whose levels are increasing. It is now established that several OHCs have neurobehavioral effects, indicating adverse effects on the central nervous system (CNS). For instance, several reports have shown that OHCs alter neurotransmitter functions in CNS and Ca2+ homeostatic processes, induce protein kinase C (PKC) and phospholipase A2 (PLA2) mobilization, and induce oxidative stress. In this review we summarize the findings of the neurobehavioral and neurochemical effects of some of the major OHCs with our main focus on the PCBs. Further, we try to elucidate, on the basis of available literature, the possible implications of these findings on human health.
Collapse
Affiliation(s)
- E Mariussen
- Norwegian Institute for Air Research, Kjeller, Norway.
| | | |
Collapse
|
17
|
Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N. Low dose hydroxylated PCB induces c-Jun expression in PC12 cells. Neurotoxicology 2006; 27:176-83. [PMID: 16300829 DOI: 10.1016/j.neuro.2005.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 11/26/2022]
Abstract
Polychlorinated biphenyls (PCBs) are known as environmental pollutants that may cause adverse health problems. Recently, accumulating evidence shows that PCBs express neurotoxicity through alteration of gene expression and signal transduction. On the other hand, c-Jun, a component of AP-1, is likely to coordinate transcription programs in response to various extracellular signals. However, little is known about the effects of PCBs on c-Jun expression. Here we investigated the expression of c-Jun in response to PCB. PC12 cells were incubated with hydroxylated PCB (4(OH)-2',3,3',4',5'-penta chlorobiphenyl, OH-PCB) at a final concentration from 10(-8) to 10(-5)M. The level of c-Jun expression was increased by OH-PCB at relatively low-dose; concentration of OH-PCB at 10(-8)M and 10(-7)M produced a 2.4- and 3.5-fold increase of c-Jun expression in respectively, compared with the values without OH-PCB treatment. Thyroid hormone (T3) did not induce such c-Jun expression, indicating that the effect of OH-PCB is not mediated through thyroid hormone signaling pathway. OH-PCB also enhanced phosphorylation of c-Jun NH2-terminal kinases. To determine whether the activation of Ca2+ channel is involved in the OH-PCB-induced c-Jun expression, we examined it using a L-type voltage-gated Ca2+ channel blocker nimodipine. Nimodipine partially inhibited OH-PCB-induced c-Jun expression by 50%. Moreover, Na+ channel antagonist tetrodotoxin inhibited OH-PCB-induced c-Jun expression completely. Taken together, our results indicate that exposure to OH-PCB induces c-Jun expression, and the response may be triggered by depolarization of a plasma membrane via Na+ influx, followed by Ca2+ influx partially through voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | | | | | | |
Collapse
|
18
|
Fonnum F, Mariussen E, Reistad T. Molecular mechanisms involved in the toxic effects of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2006; 69:21-35. [PMID: 16291560 DOI: 10.1080/15287390500259020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) and brominated flame-retardants (BFRs) in human, primates, and rodents is accompanied by neurobehavioral changes. These involve adverse effects on both memory and learning and motor activity. There are also adverse effects observed on the endocrine and immune system. This review is restricted to our laboratory's recent findings of effects of these compounds on the nervous system and some molecular effects on the immune system. In the nervous system, data showed that PCBs and BFRs produce an effect on neurotransmitter transport mechanisms, in particular the neurotransmitter dopamine. It was demonstrated that this might explain the loss of dopamine in the brain seen after exposure to PCB. Further, it may explain the behavior of dopamine in preparations in vitro from brain tissue after exposure to PCB. Recently it was also reported that PCB and some BFRs induce formation of reactive oxygen species (ROS) in neurons. ROS act as messengers in the nervous system and may also be involved in cell death. In the case of PCB exposure, a correlation between ROS formation and death of neurons was found. In the immune system it was shown that PCBs and some of the BFRs induce formation of ROS in neutrophils (granulocytes). This takes place primarily through phosphorylation and subsequent activation of the NADPH oxidase. This production of ROS may have an adverse effect on the immune system.
Collapse
Affiliation(s)
- F Fonnum
- Group of Molecular Neurobiology, Institute of Basal medicine, University of Oslo, Oslo, Norway.
| | | | | |
Collapse
|
19
|
Pravettoni A, Colciago A, Negri-Cesi P, Villa S, Celotti F. Ontogenetic development, sexual differentiation, and effects of Aroclor 1254 exposure on expression of the arylhydrocarbon receptor and of the arylhydrocarbon receptor nuclear translocator in the rat hypothalamus. Reprod Toxicol 2005; 20:521-30. [PMID: 15869859 DOI: 10.1016/j.reprotox.2005.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 01/11/2005] [Accepted: 03/25/2005] [Indexed: 11/18/2022]
Abstract
Interaction of polychlorinated biphenyls (PCBs) with the aryl hydrocarbon receptor (AhR)/nuclear translocator (ARNT) system might interfere with the mechanisms controlling the sexual differentiation of the developing hypothalamus. The aim of this study was to evaluate the presence of AhR/ARNT in brain cells and the developmental profile of their expression in the hypothalamus of male and female rats during the perinatal period. Brain accumulation of the main PCB congeners after prenatal exposure to Aroclor 1254 and its influence on hypothalamic expression of AhR/ARNT was also assessed. The results show that: (a) AhR and ARNT are expressed both in neurons and in glia; (b) AhR expression progressively increases in the developing hypothalamus particularly in males, while ARNT is relatively constant in both sexes; (c) the prenatal administration of Aroclor to dams produces a differential accumulation of PCBs, depending on the chlorine atom number, and stimulates AhR expression only in the male hypothalamus. In conclusion, the developing male hypothalamus might be more sensitive to disrupting potential of PCBs.
Collapse
Affiliation(s)
- Antonia Pravettoni
- Department of Endocrinology, University of Milano, Via Balzaretti, 9, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
20
|
Nguon K, Baxter MG, Sajdel-Sulkowska EM. Perinatal exposure to polychlorinated biphenyls differentially affects cerebellar development and motor functions in male and female rat neonates. THE CEREBELLUM 2005; 4:112-22. [PMID: 16035193 DOI: 10.1080/14734220510007860] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Perinatal exposure to polychlorinated biphenyls (PCBs) interacts with genetics and impacts the course of the central nervous system (CNS) development in both humans and animals. To test the hypothesis that the neurobehavioral impairments, and specifically motor dysfunctions following perinatal PCB exposure in rats are associated with changes in a specific brain region, the cerebellum, we compared neurodevelopment, motor behavior, cerebellar structure, and protein expression in rat neonates exposed to the PCB mixture Aroclor 1254 (A1254, 10.0 mg/kg/day) from gestational day 11 until postnatal day (P) 21 with that of controls. Body mass of PCB-exposed pups was not affected at birth, but was significantly lower than that of controls between birth and weaning; by P21 the difference was greater in females than in males. A1254 exposure delayed ear unfolding and impaired performance on the following behavioral tests: (1) righting response on P3-P6; (2) negative geotaxis on P5-P7; (3) startle response on P10-P12; and (4) a rotorod on P12, with PCB-male pups more severely affected than female. Changes in the behavior of PCB pups were associated with changes in cerebellar structure and protein expression. Cerebellar mass was more reduced in PCB-male than PCB-female pups. Analysis of selected cerebellar proteins revealed an increase in GFAP expression, greater in male than in female, and a decrease in L1 expression in both sexes. These results suggest that PCB exposure affects behavior and cerebellar development differently in male and female rat neonates, with greater effects in males. Further studies of neonatal PCB exposure will establish whether the environmental pollutants can contribute to the sex-related preponderance of certain neuropsychiatric disorders.
Collapse
Affiliation(s)
- K Nguon
- Department of Psychiatry, Brigham & Women's Hospital, Boston, MA, USA
| | | | | |
Collapse
|
21
|
Ozcan M, Yilmaz B, King WM, Carpenter DO. Hippocampal long-term potentiation (LTP) is reduced by a coplanar PCB congener. Neurotoxicology 2005; 25:981-8. [PMID: 15474616 DOI: 10.1016/j.neuro.2004.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 03/31/2004] [Indexed: 11/18/2022]
Abstract
Neurotoxicity of polychlorinated biphenyls (PCBs) is usually ascribed to the ortho-substituted congeners. We have examined the effects of acute perfusion of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), a coplanar, dioxin-like congener, on long-term potentiation (LTP) in the Schaffer collateral-CA1 and the mossy fiber-CA3 pathways in mouse hippocampus. LTP in both pathways was blocked by PCB 77, with a threshold effect at a concentration of 1 microM. LTP is a useful model of learning and memory function in which a patterned stimulation of an afferent pathway produces a persistent increase in the efficacy of synaptic transmission. LTP is reduced by PCB mixtures and ortho-substituted congeners at concentrations comparable to those studied here. These observations provide evidence in support of the hypothesis that dioxin-like and non-dioxin-like PCB congeners are equally potent in causing the cognitive decrements seen in children exposed prenatally to PCBs.
Collapse
Affiliation(s)
- Mete Ozcan
- School of Public Health, University at Albany, One University Place, Rensselaer, NY 12144-3456, USA
| | | | | | | |
Collapse
|
22
|
Wormley DD, Ramesh A, Hood DB. Environmental contaminant-mixture effects on CNS development, plasticity, and behavior. Toxicol Appl Pharmacol 2004; 197:49-65. [PMID: 15126074 DOI: 10.1016/j.taap.2004.01.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 01/26/2004] [Indexed: 11/27/2022]
Abstract
Environmental contaminants within the polycyclic aromatic hydrocarbon (PAH) and halogenated aromatic hydrocarbon class have been shown to cross the placenta exposing the fetus to the contaminant body burden of the mother. Consequently, a gestational exposure to environmental contaminants may result in increased adverse health outcomes, possibly affecting cognitive performance. Benzo(a)pyrene [B(a)P] and 2,3,7,8, tetrachlorodibenzo-p-dioxin (TCDD) are two prototypical environmental contaminants. A systematic review of the literature suggests that there may be a relationship between vulnerability in susceptible populations and health disparities. The purpose of this mini-review is to provide a point of reference for neurotoxicological studies of environmental contaminant mixture effects on indices of development in general, and on neurodevelopment in particular. Environmental contaminant-mixture-induced decrements in (1) birth index, (2) N-methyl-D-aspartate receptor (NMDA) mRNA expression, (3) long-term potentiation (LTP), (4) fixed-ratio performance learning behavior, and (5) experience-dependent activity related cytoskeletal-associated protein (Arc) mRNA and protein expression collectively support associations between neurobehavioral deficits and gestational exposure to environmental levels of these contaminants. Collectively, data are presented in this mini-review evaluating the effect of gestational exposure to environmental contaminant-mixtures on specific indices of learning and memory, including hippocampal-based synaptic plasticity mechanisms. These indices serve as templates for learning and memory, and as such, from a vulnerability perspective, may serve as targets for dysregulation during development in susceptible populations that have been disproportionately exposed to these contaminants. Included in this review is also a discussion of the relevance of developing biomarkers for use within the framework of cumulative risk-assessment.
Collapse
Affiliation(s)
- Deanna D Wormley
- Department of Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | | | | |
Collapse
|
23
|
Gilbert ME. Perinatal exposure to polychlorinated biphenyls alters excitatory synaptic transmission and short-term plasticity in the hippocampus of the adult rat. Neurotoxicology 2004; 24:851-60. [PMID: 14637380 DOI: 10.1016/s0161-813x(03)00073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Developmental exposure to polychlorinated biphenyls (PCBs) has been associated with cognitive deficits in humans and laboratory animals. Previous work has demonstrated a reduced capacity to support long-term potentiation (LTP) in animals exposed to a PCB mixture, Aroclor 1254 (A1254) via the dam in utero and throughout the preweaning period [Brain Res. 850;1999:87-95; Toxicol. Sci. 57;2000:102-11]. Assessment of normalized input/output (I/O) functions collected prior to LTP induction failed to reveal consistent differences in baseline synaptic transmission between control and PCB-exposed groups. The present study was designed to systematically evaluate excitatory and inhibitory synaptic transmission using a more extensive I/O analysis and paired pulse functions to assess short-term plasticity. Pregnant Long-Evans rats were administered either corn oil (control) or 6 mg/kg per day of A1254 by gavage from gestational day (GD) 6 until pups were weaned on postnatal day (PND) 21. In adult male offspring (5-11 months of age), field potentials evoked by perforant path stimulation were recorded in the dentate gyrus under urethane anesthesia. Detailed I/O functions were assessed by averaging the responses evoked in the dentate gyrus to stimulus pulses delivered to the perforant path in an extensive ascending intensity series. Population spike (PS) and postsynaptic potential (PSP) amplitudes recorded in the dentate gyrus were significantly enhanced in PCB-exposed animals relative to controls at midrange intensities. No group differences were observed in EPSP slope amplitudes. Short-term plasticity was assessed by delivering pairs of stimulus pulses at interpulse intervals (IPIs) ranging from 10 to 70 ms. In the dentate gyrus this range of intervals activates both inhibitory and excitatory mechanisms leading to a pattern of depression at brief intervals (<30 ms) followed by facilitation as the interval between pulses is extended. Paired pulse depression was decreased at an intermediate IPI (30 ms) with submaximal stimulus intensities. These data augment previous work demonstrating persistent changes in hippocampal plasticity as a result of exposure to PCBs during development. Furthermore, as increases in field potential amplitudes were observed, these findings support previous conclusions that A1254-induced LTP deficits are not readily attributable to reductions in synaptic excitability. Thus, in addition to impairment in use-dependent synaptic plasticity reported previously, the present report reveals that basic components of information processing within the hippocampus are permanently altered as a result of perinatal exposure to PCBs.
Collapse
Affiliation(s)
- M E Gilbert
- Neurotoxicology Division (B105-05), National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
24
|
Yang JH, Derr-Yellin EC, Kodavanti PRS. Alterations in brain protein kinase C isoforms following developmental exposure to a polychlorinated biphenyl mixture. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:123-35. [PMID: 12654512 DOI: 10.1016/s0169-328x(02)00697-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PCBs have been shown to alter several neurochemical end-points and are implicated in the etiology of some neurological diseases. Recent in vivo studies from our laboratory indicated that developmental exposure to a commercial PCB mixture, Aroclor 1254, caused perturbations in calcium homeostasis and changes in protein kinase C (PKC) activities in rat brain. However, it is not known which molecular substances are targets for PCB-induced developmental neurotoxicity. Since the PKC signaling pathway has been implicated in the modulation of motor behavior as well as learning and memory, and the roles of PKC are subspecies specific, the present study attempted to analyze the effects on selected PKC isozymes in the cerebellum and the hippocampus following developmental exposure (gestational day 6 through postnatal day 21) to a PCB mixture, Aroclor 1254. The results indicated that the developmental exposure to PCBs caused significant hypothyroxinemia and age-dependent alterations in the translocation of PKC isozymes; the effects were greatly significant at postnatal day (PND) 14. Immunoblot analysis of PKC-alpha (alpha) from both cerebellum and hippocampus revealed that developmental exposure to Aroclor 1254 caused a significant decrease in cytosolic fraction and an increase in particulate fraction. There was no significant difference between these two brain regions on the level of fractional changes. However, the ratio between the fractions (particulate/cytosol) from cerebellum only was increased in a dose-dependent manner. Analysis of PKC-gamma (gamma) in cerebellum on PND14 showed a decrease in cytosolic fraction in both dose groups and an increase in particulate fraction at high dose (6 mg/kg) only. The ratio between the two fractions was increased in a dose-dependent manner. In the hippocampus, there was a significant decrease in PKC-gamma in cytosolic fraction of the high-dose group and a significant increase in particulate fraction of the low-dose group. But, the ratio between the fractions showed a significant increase (2.6-fold increase in high dose on PND14). Analysis of PKC-epsilon (epsilon) in cerebellum showed a significant decrease in cytosolic fraction at PND14, while particulate PKand an increase in ratio between fractions at 6 mg/kg on PND14. The results from this study indicate that the patterns of subcellular distributions of PKC isoforms following a developmental PCB exposure were PKC isozyme- and developmental stage-specific. Considering the significant role of PKC signaling in motor behavior, learning and memory, it is suggested that altered subcellular distribution of PKC isoforms at critical periods of brain development may be a possible mechanism of PCB-induced neurotoxic effects and that PKC-alpha, gamma, and epsilon may be among the target molecules implicated with PCB-induced neurological impairments during developmental exposure. It is believed that this is the first report successfully identifying PKC isoforms responding to PCBs during developmental exposure.
Collapse
Affiliation(s)
- Jae-Ho Yang
- National Academy of Sciences, National Research Council, Washington, DC, USA
| | | | | |
Collapse
|
25
|
Inglefield JR, Mundy WR, Meacham CA, Shafer TJ. Identification of calcium-dependent and -independent signaling pathways involved in polychlorinated biphenyl-induced cyclic AMP-responsive element-binding protein phosphorylation in developing cortical neurons. Neuroscience 2003; 115:559-73. [PMID: 12421622 DOI: 10.1016/s0306-4522(02)00343-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cyclic AMP (cAMP)-responsive element-binding protein (CREB) is a transcription factor important in developing nervous system cells and is activated by a variety of signaling molecules. Aroclor 1254 (A1254), a polychlorinated biphenyl mixture, perturbs Ca(2+) homeostasis and increases CREB phosphorylation in rat neonatal cortical cell cultures in a time- and concentration-dependent manner. The present experiments determined that the cell type responding to A1254 with Ca(2+) increases and phosphorylated CREB (phospho-CREB) was predominantly of neuronal morphology and microtubule-associated protein (MAP2)-positive phenotype. Similarly, glutamate (100 microM) increased phospho-CREB immunoreactivity selectively in MAP2-immunopositive cells. Using Western blotting and immunocytochemical techniques, we identified key signal transduction pathways operative in phosphorylating CREB in cortical cell cultures and examined their participation in 3 ppm A1254-induced CREB activation. Cortical cultures treated with glutamate, forskolin or the phorbol ester phorbol 12-myristate 13-acetate exhibited robust increases in phospho-CREB. Tetrodotoxin (1 microM) completely inhibited CREB phosphorylation by A1254, suggesting that synaptic activity is involved in A1254-induced CREB activation. Buffering [Ca(2+)](i) with bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester in the absence of extracellular Ca(2+) partially inhibited A1254-induced CREB phosphorylation. Inhibition of mitogen-activated protein kinase (10 microM U0126) or protein kinase C (PKC; bisindoylmaleimide, 5 microM) activation did not inhibit A1254-induced CREB phosphorylation. By contrast, inhibition of protein kinase A (PKA) with 100 microM PKA inhibitor peptide, PKI, blocked A1254-induced CREB phosphorylation. Thus, we examined whether A1254 activates PKA by increasing cAMP; 10 microM forskolin, but not A1254, elevated intracellular cAMP levels. These results indicate that in neocortical cells in culture, CREB phosphorylation occurs via Ca(2+)-, PKA-, and PKC-dependent pathways. Furthermore, A1254-induced CREB phosphorylation occurs predominantly in neurons, is dependent on synaptic activity and mediated by Ca(2+)- and PKA-dependent pathways.
Collapse
Affiliation(s)
- J R Inglefield
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | |
Collapse
|
26
|
Gilbert ME, Lasley SM. Long-term consequences of developmental exposure to lead or polychlorinated biphenyls: Synaptic transmission and plasticity in the rodent CNS. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 12:105-117. [PMID: 21782630 DOI: 10.1016/s1382-6689(02)00029-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Exposure to lead (Pb) or polychlorinated biphenyls (PCBs) during early development has been associated with deficits in cognitive function in children (Pediatrics 87 (1991) 219; N. Engl. J. Med. 335 (1996) 783). These effects persist in the child long after exposure has ceased and body burdens have diminished. Despite intensive research, no consensus on the mechanisms of neurotoxicity of these chemicals has resulted. As the primary neurotoxic action of these agents is to impair cognitive ability, a number of laboratories have examined and reported on the detrimental the effects of Pb or PCBs on hippocampal synaptic transmission and long-term potentiation (LTP) in animals exposed during the perinatal period. Use-dependent synaptic plasticity, of which hippocampal LTP is the primary model system, is a fundamental property of neuronal function. In forebrain structures such as amygdala and hippocampus, LTP and related processes are purported to represent a physiological substrate for memory. During brain ontogeny, this type of plasticity guides the establishment and maintenance of synaptic connections in cortical structures based on sensory input. We postulate that the actions of PCBs and Pb in the developing nervous system perturb activity-dependent plasticity and promote organizational changes in brain. Aberrant connectivity derived from perturbations in activity-dependent plasticity during development may manifest as impaired LTP and cognitive ability in the adult organism.
Collapse
Affiliation(s)
- M E Gilbert
- Neurotoxicology Division (MD 74B), National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | |
Collapse
|
27
|
Sharma R, Kodavanti PRS. In vitro effects of polychlorinated biphenyls and hydroxy metabolites on nitric oxide synthases in rat brain. Toxicol Appl Pharmacol 2002; 178:127-36. [PMID: 11858728 DOI: 10.1006/taap.2001.9328] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide synthases (NOS) play a key role in motor activity in the cerebellum, hormonal regulation in the hypothalamus, and long-term potentiation (LTP), learning, and memory processes in the hippocampus. Developmental exposure to polychlorinated biphenyls (PCBs) has been shown to affect psychomotor functions, learning and memory processes, and to inhibit LTP. We hypothesized that PCBs may disrupt the regulation of such neurological functions by altering NOSs. We have studied the in vitro effects of several PCB congeners and some hydroxy PCBs on NOS activity in cytosolic (presumably neuronal NOS [nNOS]) and membrane (presumably endothelial NOS [eNOS]) fractions in different brain regions of young and adult rats. Among the two selected dichloro PCBs, the ortho-PCB, 2,2'-dichlorobiphenyl (DCB), inhibited both cytosolic and membrane NOS activity at low micromolar concentrations (3-10 microM) in the selected brain regions of all age groups while the non-ortho-PCB, 4,4'-DCB, did not. 2,2'-DCB inhibited cytosolic NOS to a greater extent than membrane NOS. Pentachloro-PCBs (PeCBs) and hexachloro-PCBs (HCBs) did not have a significant effect on adult cerebellar cytosolic or membrane NOS. However, mono- and dihydroxy derivatives of HCBs significantly decreased cytosolic NOS (IC50s: 16.33 +/- 0.47 and 33.65 +/- 4.33 microM, respectively) but resulted in a marginal effect on membrane NOS in the cerebellum. Among three adult rat brain regions, the hypothalamic cytosolic NOS was the most sensitive to 2,2'-DCB. Also, cytosolic NOS in the cerebellum and hypothalamus of young rats was less sensitive than in the older rats. In summary, these results indicate that only di-ortho-PCB inhibited both NOS and hydroxy substitution of one or more chlorine molecules significantly increased the potency of both ortho- and non-ortho-HCBs. The selective sensitivity of NOS to dichloro- ortho-PCB and hydroxy metabolites suggests that the inhibition of NOS could play a role in the neuroendocrine effects as well as learning and memory deficits caused by exposure to PCBs.
Collapse
Affiliation(s)
- Rashmi Sharma
- National Research Council, National Academy of Sciences, Washington, DC, USA
| | | |
Collapse
|
28
|
Inglefield JR, Shafer TJ. Perturbation by the PCB mixture aroclor 1254 of GABA(A) receptor-mediated calcium and chloride responses during maturation in vitro of rat neocortical cells. Toxicol Appl Pharmacol 2000; 164:184-95. [PMID: 10764632 DOI: 10.1006/taap.2000.8898] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GABA(A) receptors are targets of highly chlorinated environmental chemicals and have important roles in developing neurons. As such, we examined effects of polychlorinated biphenyls (PCBs) on GABA(A) receptor responses in primary cultures of rat neocortical cells using fluorescence imaging techniques. Between days in vitro (DIV) 5 and 8, the effect of GABA(A) receptor stimulation switched from excitatory (Ca(2+) entry following a Cl(-) efflux; DIV </=6) to inhibitory (Cl(-) influx without a Ca(2+) rise; DIV >/=7). GABA(A)-receptor-stimulated increases in [Ca(2+)](i) were diminished in a concentration-dependent (1-20 microM) manner following 1 h of exposure to the PCB mixture Aroclor 1254 (A1254), with significant reductions at concentrations as low as 2 microM. A1254 (1-20 microM) also led to concentration-dependent increases in basal [Ca(2+)](i), irrespective of DIV. A1254 (10 and 20 microM) significantly increased basal Ca(2+)(i); the Ca(2+)(i) was elevated to 426 +/- 39 nM by 20 microM A1254 but this concentration was not cytotoxic at 1 h. In addition, the mixture, A1254, as well as ortho- and non-ortho-chlorinated PCB congeners (IUPAC Nos. 4, 15, 126, and 138; 5-10 microM) individually decreased GABA(A)-stimulated Ca(2+)(i) responses and this tended not to depend on increases in basal Ca(2+)(i). In cultures DIV 7 and older, A1254 (20 microM) also impaired inhibitory GABA(A) responses as evidenced by an approximately 50% reduction of GABA(A)-stimulated Cl(-) influx (from approximately 6 to 8 mM net accumulation in controls). The results demonstrate that: (1) GABA(A) receptor increases in Ca(2+)(i) and Cl(-)(i) are inhibited by 2-20 microM A1254, regardless of whether the responses are at excitatory or inhibitory stages of development; (2) Ca(2+)(i) homeostasis in cortical cells is disrupted by 10 microM A1254; yet (3) disruption of excitatory GABA(A) responses by A1254 or PCB congeners does not necessarily depend on impaired Ca(2+) homeostasis. These novel observations suggest that GABA(A) receptor responses are a sensitive target for PCB effects in the rat developing nervous system.
Collapse
Affiliation(s)
- J R Inglefield
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park, North Carolina 27711, USA
| | | |
Collapse
|