1
|
Sakander N, Ahmed QN. Stereoselective synthesis of 2-deoxy-2-bromo-hexopyrano-β-nucleosides: solvent-free Lewis acid catalysis. Org Biomol Chem 2025; 23:579-588. [PMID: 39601080 DOI: 10.1039/d4ob01788a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An expedient solvent-free synthesis of 2-deoxy-2-bromo-hexopyrano-β-nucleosides stereo- and regioselectively from protected glycals and unactivated nucleobases using cheaper and easily available reagent systems has been developed. The synthesis is mediated by a Lewis acid and is solvent-free. The substrate scope of the reaction was analysed with ether, ester and silyl-protected glycals as donors and different pyrimidine and purine bases were taken into consideration. This method further finds application in the synthesis of 2-deoxynucleosides.
Collapse
Affiliation(s)
- Norein Sakander
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Nascimento SMRD, Ferry A, Gallier F, Lubin-Germain N, Uziel J, Gonzales S, Miranda LSDME. Developments in the chemistry and biology of 1,2,3-triazolyl-C-nucleosides. Arch Pharm (Weinheim) 2024; 357:e2300580. [PMID: 38150650 DOI: 10.1002/ardp.202300580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/29/2023]
Abstract
In the last 50 years, nucleoside analogs have been introduced to drug therapy as antivirals for different types of cancer due to their interference in cellular proliferation. Among the first line of nucleoside treatment drugs, ribavirin (RBV) is a synthetic N-nucleoside with a 1,2,4-triazole moiety that acts as a broad-spectrum antiviral. It is on the World Health Organization (WHO) list of essential medicines. However, this important drug therapy causes several side effects due to its nonspecific mechanism of action. There is thus a need for a continuous study of its scaffold. A particular approach consists of connecting d-ribose to the nitrogen-containing base with a C-C bond. It provides more stability against enzymatic action and a better pharmacologic profile. The coronavirus disease (COVID) pandemic has increased the need for more solutions for the treatment of viral infections. Among these solutions, remdesivir, the first C-nucleoside, has been approved by the Food and Drug Administration (FDA) for clinical use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It drew attention to the study of the C-nucleoside scaffold. Different C-nucleoside patterns have been synthesized over the years. They show many important activities against viruses and cancer cell lines. 1,2,3-Triazolyl-C-nucleoside derivatives are a prolific and efficient subclass of RBV analogs close to the already-known RBV with a C-C bond modification. These compounds are often prepared by alkynylation of the d-ribose ring followed by azide-alkyne cycloaddition. They are reported to be active against the Crimean-Congo hemorrhagic fever virus and several tumoral cell lines, showing promising biological potential. In this review, we explore such approaches to 1,2,3-triazolyl-C-nucleosides and their evolution over the years.
Collapse
Affiliation(s)
| | - Angélique Ferry
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Florian Gallier
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Nadège Lubin-Germain
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Jacques Uziel
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Simon Gonzales
- CY Cergy Paris Université, CNRS, BioCIS, Cergy-Pontoise, France
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | | |
Collapse
|
3
|
Poškaitė G, Wheatley DE, Wells N, Linclau B, Sinnaeve D. Obtaining Pure 1H NMR Spectra of Individual Pyranose and Furanose Anomers of Reducing Deoxyfluorinated Sugars. J Org Chem 2023; 88:13908-13925. [PMID: 37754916 PMCID: PMC10563139 DOI: 10.1021/acs.joc.3c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 09/28/2023]
Abstract
Due to tautomeric equilibria, NMR spectra of reducing sugars can be complex with many overlapping resonances. This hampers coupling constant determination, which is required for conformational analysis and configurational assignment of substituents. Given that mixtures of interconverting species are physically inseparable, easy-to-use techniques that enable facile full 1H NMR characterization of sugars are of interest. Here, we show that individual spectra of both pyranoside and furanoside forms of reducing fluorosugars can be obtained using 1D FESTA. We discuss the unique opportunities offered by FESTA over standard sel-TOCSY and show how it allows a more complete characterization. We illustrate the power of FESTA by presenting the first full NMR characterization of many fluorosugars, including of the important fluorosugar 2-deoxy-2-fluoroglucose. We discuss in detail all practical considerations for setting up FESTA experiments for fluorosugars, which can be extended to any mixture of fluorine-containing species interconverting slowly on the NMR frequency-time scale.
Collapse
Affiliation(s)
- Gabija Poškaitė
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - David E. Wheatley
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Neil Wells
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus
Sterre, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Davy Sinnaeve
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France
| |
Collapse
|
4
|
Hou J, Peng Y, Liu B, Zhang Q, Wang JH, Yu W, Chang J. 4'-Ethynyl-2'-deoxy-2'-β-fluoro-2-fluoroadenosine: A Highly Potent and Orally Available Clinical Candidate for the Treatment of HIV-1 Infection. J Med Chem 2023; 66:11282-11293. [PMID: 37535016 DOI: 10.1021/acs.jmedchem.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
2'-Deoxy-2'-β-fluoroadenosines bearing 4'-azido or 4'-ethynyl groups designed for the treatment of HIV-1 infection have been synthesized. All these compounds possess nanomolar anti-HIV-1 activity, with the 4'-ethynyl-2-fluoroadenosine analog 1c (CL-197) being the most potent compound with low cytotoxicity (EC50 = 0.9 nM, CC50 > 100 μM). It also shows potent inhibitory activities on drug resistant and clinical HIV-1 strains. Oral administration of 1c to Beagle dogs resulted in high levels of its bioactive form 1c-TP in peripheral blood mononuclear cells, the HIV-1 target cells, where the resulting triphosphate exhibited a long-term intracellular retention and could prevent HIV-1 infection for an extended time. 1c displayed low in vivo toxicity and favorable pharmacokinetics profiles in Sprague-Dawley rats. The preclinical data support further development of 1c as a highly potent and orally bioavailable clinical candidate to treat HIV-1 infection. Currently, CL-197 is in clinical trials in China (registration number: CXHL2200529).
Collapse
Affiliation(s)
- Jiao Hou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Youmei Peng
- Henan Key Laboratory for Pharmacology of Liver Diseases, Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bingjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jian-Hua Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
| | - Wenquan Yu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Henan Normal University, Xinxiang 453007, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Lowe PT, O'Hagan D. 4'-Fluoro-nucleosides and nucleotides: from nucleocidin to an emerging class of therapeutics. Chem Soc Rev 2023; 52:248-276. [PMID: 36472161 DOI: 10.1039/d2cs00762b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The history and development of 4'-fluoro-nucleosides is discussed in this review. This is a class of nucleosides which have their origin in the discovery of the rare fluorine containing natural product nucleocidin. Nucleocidin contains a fluorine atom located at the 4'-position of its ribose ring. From its early isolation as an unexpected natural product, to its total synthesis and bioactivity assessment, nucleocidin has played a role in inspiring the exploration of 4'-fluoro-nucleosides as a privileged motif for nucleoside-based therapeutics.
Collapse
Affiliation(s)
- Phillip T Lowe
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | - David O'Hagan
- School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
6
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
7
|
Neel AJ, Turnbull BWH, Carson WP, Benkovics T, Chung CK, Johnson HC, Liu Z, Peng F, Rummelt SM, Song ZJ, Tan L, Wang L, Xu F. A Unified Strategy to Fluorinated Nucleoside Analogues Via an Electrophilic Manifold. Org Lett 2022; 24:7701-7706. [PMID: 36227065 DOI: 10.1021/acs.orglett.2c03367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present a strategy for the preparation of 3'-fluorinated nucleoside analogues via the aminocatalytic, electrophilic fluorination of readily accessible and bench-stable 2'-ketonucleosides. Initially developed to facilitate the manufacture of 3'-fluoroguanosine (3'-FG)─a substructure of anticancer therapeutic MK-1454─this strategy has been extended to the synthesis of a variety of 3'-fluoronucleosides. Finally, we demonstrate the utility of the 2'-ketonucleoside synthon as a platform for further diversification and suggest that this methodology should be broadly applicable to the discovery of novel nucleoside analogues.
Collapse
Affiliation(s)
- Andrew J Neel
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ben W H Turnbull
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - William P Carson
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tamas Benkovics
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Cheol K Chung
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Heather C Johnson
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhuqing Liu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Peng
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephan M Rummelt
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhiguo Jake Song
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lu Wang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Xu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
8
|
Rahman MM, Islam MR, Shohag S, Hossain ME, Shah M, Shuvo SK, Khan H, Chowdhury MAR, Bulbul IJ, Hossain MS, Sultana S, Ahmed M, Akhtar MF, Saleem A, Rahman MH. Multifaceted role of natural sources for COVID-19 pandemic as marine drugs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46527-46550. [PMID: 35507224 PMCID: PMC9065247 DOI: 10.1007/s11356-022-20328-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/14/2022] [Indexed: 05/05/2023]
Abstract
COVID-19, which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread over the world, posing a global health concern. The ongoing epidemic has necessitated the development of novel drugs and potential therapies for patients infected with SARS-CoV-2. Advances in vaccination and medication development, no preventative vaccinations, or viable therapeutics against SARS-CoV-2 infection have been developed to date. As a result, additional research is needed in order to find a long-term solution to this devastating condition. Clinical studies are being conducted to determine the efficacy of bioactive compounds retrieved or synthesized from marine species starting material. The present study focuses on the anti-SARS-CoV-2 potential of marine-derived phytochemicals, which has been investigated utilizing in in silico, in vitro, and in vivo models to determine their effectiveness. Marine-derived biologically active substances, such as flavonoids, tannins, alkaloids, terpenoids, peptides, lectins, polysaccharides, and lipids, can affect SARS-CoV-2 during the viral particle's penetration and entry into the cell, replication of the viral nucleic acid, and virion release from the cell; they can also act on the host's cellular targets. COVID-19 has been proven to be resistant to several contaminants produced from marine resources. This paper gives an overview and summary of the various marine resources as marine drugs and their potential for treating SARS-CoV-2. We discussed at numerous natural compounds as marine drugs generated from natural sources for treating COVID-19 and controlling the current pandemic scenario.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Gopalganj, Bangladesh
| | - Md Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Hosneara Khan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | | | - Israt Jahan Bulbul
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Korea.
| |
Collapse
|
9
|
Malik P, Jain S, Jain P, Kumawat J, Dwivedi J, Kishore D. A comprehensive update on the structure and synthesis of potential drug targets for combating the coronavirus pandemic caused by SARS-CoV-2. Arch Pharm (Weinheim) 2022; 355:e2100382. [PMID: 35040187 PMCID: PMC9011541 DOI: 10.1002/ardp.202100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of the coronavirus pandemic COVID-19 created by its severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) variant, known for producing a very severe acute respiratory syndrome, has created an unprecedented situation by its continual assault around the world. The crisis caused by the SARS-CoV-2 variant has been a global challenge, calling to mitigate this unprecedented pandemic that has engulfed the whole world. Since the outbreak and spread of COVID-19, many researchers globally have been grappling to find new clinically trialed active drugs with anti-COVID-19 activity, from antimalarial drugs to JAK inhibitors, antiviral drugs, immune suppressants, and so forth. This article presents a brief discussion on the activity and synthesis of some active molecules such as favipiravir, hydroxychloroquine, pirfenidone, remdesivir, lopinavir, camostat, chloroquine, baricitinib, molnupiravir, and so forth, which are under trial.
Collapse
Affiliation(s)
- Prerna Malik
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Sonika Jain
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Pankaj Jain
- Department of PharmacyBanasthali VidyapithJaipurIndia
| | - Jyoti Kumawat
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | - Jaya Dwivedi
- Department of ChemistryBanasthali VidyapithJaipurIndia
| | | |
Collapse
|
10
|
Hirashima S, Sugiyama H, Park S. Characterization of 2-Fluoro-2'-deoxyadenosine in Duplex, G-quadruplex and I-motif. Chembiochem 2022; 23:e202200222. [PMID: 35438834 DOI: 10.1002/cbic.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/12/2022]
Abstract
Among various kinds of fluorine-substituted biomolecules, 2-fluoroadenine (2FA) and its derivatives have been actively investigated as therapeutic reagents, radio-sensitizers, and 19F-NMR probe. In spite of their excellent properties, DNA containing 2FA has not been studied well. Toward fundamental understanding and future applications to the development of functional nucleic acids, we characterized 2FA-containing oligonucleotides for canonical right-handed DNA duplex, G-quadruplex, and i-motif structures. Properties of 2FA were similar to native adenine due to the small size of fluorine atom, but it showed unique features caused by high electronegativity. This work provides useful information for future application of 2FA-modified DNA.
Collapse
Affiliation(s)
- Shingo Hirashima
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku,, 606-8502, Kyoto, JAPAN
| | - Hiroshi Sugiyama
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| | - Soyoung Park
- Osaka University: Osaka Daigaku, Immunology Research Frontier Center, 3-1 Ymadaoka Suita, 565-0871, Osaka, JAPAN
| |
Collapse
|
11
|
Panda S, Poudel TN, Hegde P, Aldrich CC. Innovative Strategies for the Construction of Diverse 1'-Modified C-Nucleoside Derivatives. J Org Chem 2021; 86:16625-16640. [PMID: 34756029 DOI: 10.1021/acs.joc.1c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modified C-nucleosides have proven to be enormously successful as chemical probes to understand fundamental biological processes and as small-molecule drugs for cancer and infectious diseases. Historically, the modification of the glycosyl unit has focused on the 2'-, 3'-, and 4'-positions as well as the ribofuranosyl ring oxygen. By contrast, the 1'-position has rarely been studied due to the labile nature of the anomeric position. However, the improved chemical stability of C-nucleosides allows the modification of the 1'-position with substituents not found in conventional N-nucleosides. Herein, we disclose new chemistry for the installation of diverse substituents at the 1'-position of C-nucleosides, including alkyl, alkenyl, difluoromethyl, and fluoromethyl substituents, using the 4-amino-7-(1'-hydroxy-d-ribofuranosyl)pyrrolo[2,1-f][1,2,4]triazine scaffold as a representative purine nucleoside mimetic.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tej Narayan Poudel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
13
|
Hamoda AM, Fayed B, Ashmawy NS, El-Shorbagi ANA, Hamdy R, Soliman SSM. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold. Front Pharmacol 2021; 12:666664. [PMID: 34079462 PMCID: PMC8165660 DOI: 10.3389/fphar.2021.666664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
The current pandemic caused by SARS-CoV2 and named COVID-19 urgent the need for novel lead antiviral drugs. Recently, United States Food and Drug Administration (FDA) approved the use of remdesivir as anti-SARS-CoV-2. Remdesivir is a natural product-inspired nucleoside analogue with significant broad-spectrum antiviral activity. Nucleosides analogues from marine sponge including spongouridine and spongothymidine have been used as lead for the evolutionary synthesis of various antiviral drugs such as vidarabine and cytarabine. Furthermore, the marine sponge is a rich source of compounds with unique activities. Marine sponge produces classes of compounds that can inhibit the viral cysteine protease (Mpro) such as esculetin and ilimaquinone and human serine protease (TMPRSS2) such as pseudotheonamide C and D and aeruginosin 98B. Additionally, sponge-derived compounds such as dihydrogracilin A and avarol showed immunomodulatory activity that can target the cytokines storm. Here, we reviewed the potential use of sponge-derived compounds as promising therapeutics against SARS-CoV-2. Despite the reported antiviral activity of isolated marine metabolites, structural modifications showed the importance in targeting and efficacy. On that basis, we are proposing a novel structure with bifunctional scaffolds and dual pharmacophores that can be superiorly employed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdel-Nasser A. El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Bouton J, Furquim d'Almeida A, Maes L, Caljon G, Van Calenbergh S, Hulpia F. Synthesis and evaluation of 3'-fluorinated 7-deazapurine nucleosides as antikinetoplastid agents. Eur J Med Chem 2021; 216:113290. [PMID: 33667845 DOI: 10.1016/j.ejmech.2021.113290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023]
Abstract
Kinetoplastid parasites are the causative agents of neglected tropical diseases with an unmet medical need. These parasites are unable to synthesize the purine ring de novo, and therefore rely on purine salvage to meet their purine demand. Evaluating purine nucleoside analogs is therefore an attractive strategy to identify antikinetoplastid agents. Several anti-Trypanosoma cruzi and anti-Trypanosoma brucei 7-deazapurine nucleosides were previously discovered, with the removal of the 3'-hydroxyl group resulting in a significant boost in activity. In this work we therefore decided to assess the effect of the introduction of a 3'-fluoro substituent in 7-deazapurine nucleosides on the anti-kinetoplastid activities. Hence, we synthesized two series of 3'-deoxy-3'-fluororibofuranosyl and 3'-deoxy-3'-fluoroxylofuranosyl nucleosides comprising 7-deazaadenine and -hypoxanthine bases and assayed these for antiparasitic activity. Several analogs with potent activity against T. cruzi and T. brucei were discovered, indicating that a fluorine atom in the 3'-position is a promising modification for the discovery of antiparasitic nucleosides.
Collapse
Affiliation(s)
- Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Arno Furquim d'Almeida
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1 (S7), B-2610, Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium.
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000, Gent, Belgium
| |
Collapse
|
15
|
Synthesis and Conformational Analysis of Fluorinated Uridine Analogues Provide Insight into a Neighbouring-Group Participation Mechanism. Molecules 2020; 25:molecules25235513. [PMID: 33255573 PMCID: PMC7728060 DOI: 10.3390/molecules25235513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 02/05/2023] Open
Abstract
Fluorinated nucleoside analogues have attracted much attention as anticancer and antiviral agents and as probes for enzymatic function. However, the lack of direct synthetic methods, especially for 2′,3′-dideoxy-2′,3′-difluoro nucleosides, hamper their practical utility. In order to design more efficient synthetic methods, a better understanding of the conformation and mechanism of formation of these molecules is important. Herein, we report the synthesis and conformational analysis of a 2′,3′-dideoxy-2′,3′-difluoro and a 2′-deoxy-2′-fluoro uridine derivative and provide an insight into the reaction mechanism. We suggest that the transformation most likely diverges from the SN1 or SN2 pathway, but instead operates via a neighbouring-group participation mechanism.
Collapse
|
16
|
Sivakrishna B, Shukla M, Santra MK, Pal S. Design, synthesis and cytotoxic evaluation of truncated 3'-deoxy- 3', 3' difluororibofuranosyl pyrimidine nucleosides. Carbohydr Res 2020; 497:108113. [PMID: 32858257 DOI: 10.1016/j.carres.2020.108113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Truncated 3'-deoxy- 3', 3' difluororibofuranosyl pyrimidine nucleoside derivatives were synthesized from d-ribose via β-apioribo pyrimidine nucleoside intermediates 11a-c. The synthetic approach signifies that truncation at C3' position of apioribose ring of 13a-c by oxidative cleavage of diols with Pb(OAc)4 and followed by fluorination with DAST as key steps. Cytotoxic evaluation of synthesized truncated nucleoside derivatives 16a-c and 19a-c were tested against MCF7 and MDA-MB-231 breast cancer cell lines. However, only 19a was shown minimal growth suppression activity on MDA-MB-231 cancer cell lines.
Collapse
Affiliation(s)
- Balija Sivakrishna
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India
| | - Meenakshi Shukla
- Cancer Biology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | - Manas Kumar Santra
- Cancer Biology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra, 411007, India.
| | - Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha, 752050, India.
| |
Collapse
|
17
|
A synergistic synthetic and computational insights towards anomerization of N-nitro pyrimidine nucleosides using fluorinating agents. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Lucas T, Dietz JP, Opatz T. Synthesis of 4-amino-5-fluoropyrimidines and 5-amino-4-fluoropyrazoles from a β-fluoroenolate salt. Beilstein J Org Chem 2020; 16:445-450. [PMID: 32273906 PMCID: PMC7113542 DOI: 10.3762/bjoc.16.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 02/05/2023] Open
Abstract
A synthesis of fluorinated pyrimidines under mild conditions from amidine hydrochlorides and the recently described potassium 2-cyano-2-fluoroethenolate was developed. A broad substrate scope was tested and mostly excellent yields were obtained. The synthesis of fluorinated aminopyrazoles from the same fluorinated precursor could be demonstrated but proceeded with lower efficiency.
Collapse
Affiliation(s)
- Tobias Lucas
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jule-Philipp Dietz
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
19
|
Design, properties and applications of fluorinated and fluoroalkylated N-containing monosaccharides and their analogues. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.109364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Synthesis of nucleoside phosphonate analogs having phosphonodifluoromethylene moieties and their biological activities. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Devereaux ZJ, He CC, Zhu Y, Roy HA, Cunningham NA, Hamlow LA, Berden G, Oomens J, Rodgers MT. Structures and Relative Glycosidic Bond Stabilities of Protonated 2'-Fluoro-Substituted Purine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1521-1536. [PMID: 31111413 DOI: 10.1007/s13361-019-02222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
The 2'-substituent is the primary distinguishing feature between DNA and RNA nucleosides. Modifications to this critical position, both naturally occurring and synthetic, can produce biologically valuable nucleoside analogues. The unique properties of fluorine make it particularly interesting and medically useful as a synthetic nucleoside modification. In this work, the effects of 2'-fluoro modification on the protonated gas-phase purine nucleosides are examined using complementary tandem mass spectrometry and computational methods. Direct comparisons are made with previous studies on related nucleosides. Infrared multiple photon dissociation action spectroscopy performed in both the fingerprint and hydrogen-stretching regions allows for the determination of the experimentally populated conformations. The populated conformers of protonated 2'-fluoro-2'-deoxyadenosine, [Adofl+H]+, and 2'-fluoro-2'-deoxyguanosine, [Guofl+H]+, are highly parallel to their respective canonical DNA and RNA counterparts. Both N3 and N1 protonation sites are accessed by [Adofl+H]+, stabilizing syn and anti nucleobase orientations, respectively. N7 protonation and anti nucleobase orientation dominates in [Guofl+H]+. Spectroscopically observable intramolecular hydrogen-bonding interactions with fluorine allow more definitive sugar puckering determinations than possible for the canonical systems. [Adofl+H]+ adopts C2'-endo sugar puckering, whereas [Guofl+H]+ adopts both C2'-endo and C3'-endo sugar puckering. Energy-resolved collision-induced dissociation experiments with survival yield analyses provide relative glycosidic bond stabilities. The N-glycosidic bond stabilities of the protonated 2'-fluoro-substituted purine nucleosides are found to exceed those of their canonical analogues. Further, the N-glycosidic bond stability is found to increase with increasing electronegativity of the 2'-substituent, i.e., H < OH < F. The N-glycosidic bond stability is also greater for the adenine nucleoside analogues than the guanine nucleoside analogues.
Collapse
Affiliation(s)
- Zachary J Devereaux
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - C C He
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - H A Roy
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - N A Cunningham
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA.
| |
Collapse
|
22
|
Yates MK, Seley-Radtke KL. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res 2019; 162:5-21. [PMID: 30529089 PMCID: PMC6349489 DOI: 10.1016/j.antiviral.2018.11.016] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Abstract
This is the second of two invited articles reviewing the development of nucleoside analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. As with the first paper, rather than providing a chronological account, we have chosen to examine particular examples of structural modifications made to nucleoside analogues that have proven fruitful as various antiviral, anticancer, and other therapeutics. The first review covered the more common, and in most cases, single modifications to the sugar and base moieties of the nucleoside scaffold. This paper focuses on more recent developments, especially nucleoside analogues that contain more than one modification to the nucleoside scaffold. We hope that these two articles will provide an informative historical perspective of some of the successfully designed analogues, as well as many candidate compounds that encountered obstacles.
Collapse
Affiliation(s)
- Mary K Yates
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
23
|
Seley-Radtke KL, Yates MK. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res 2018; 154:66-86. [PMID: 29649496 PMCID: PMC6396324 DOI: 10.1016/j.antiviral.2018.04.004] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
This is the first of two invited articles reviewing the development of nucleoside-analogue antiviral drugs, written for a target audience of virologists and other non-chemists, as well as chemists who may not be familiar with the field. Rather than providing a simple chronological account, we have examined and attempted to explain the thought processes, advances in synthetic chemistry and lessons learned from antiviral testing that led to a few molecules being moved forward to eventual approval for human therapies, while others were discarded. The present paper focuses on early, relatively simplistic changes made to the nucleoside scaffold, beginning with modifications of the nucleoside sugars of Ara-C and other arabinose-derived nucleoside analogues in the 1960's. A future paper will review more recent developments, focusing especially on more complex modifications, particularly those involving multiple changes to the nucleoside scaffold. We hope that these articles will help virologists and others outside the field of medicinal chemistry to understand why certain drugs were successfully developed, while the majority of candidate compounds encountered barriers due to low-yielding synthetic routes, toxicity or other problems that led to their abandonment.
Collapse
Affiliation(s)
- Katherine L Seley-Radtke
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Mary K Yates
- 1000 Hilltop Circle, Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
24
|
Arimitsu S, Nakasone M, Gima E. Diastereoselective synthesis of 5,5-disubstituted 3,3-difluorotetrahydrofurans. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Liu Y, Peng Y, Lu J, Wang J, Ma H, Song C, Liu B, Qiao Y, Yu W, Wu J, Chang J. Design, synthesis, and biological evaluation of new 1,2,3-triazolo-2'-deoxy-2'-fluoro- 4'-azido nucleoside derivatives as potent anti-HBV agents. Eur J Med Chem 2017; 143:137-149. [PMID: 29174810 DOI: 10.1016/j.ejmech.2017.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/23/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
Novel drugs are urgently needed to combat hepatitis B virus (HBV) infection due to drug-resistant virus. In this paper, a series of novel 4-monosubstituted 2'-deoxy-2'-β-fluoro-4'-azido-β-d-arabinofuranosyl 1,2,3-triazole nucleoside analogues (1a-g) were designed, synthesized and screened for in vitro anti-HBV activity. At 5.0 μM in the cellular model, all the synthetic compounds display activities comparable to that of the positive control, lamivudine at 20 μM. Of the compounds tested, the amide-substituted analogue (1a) shows the most promising anti-HBV activity and low cytotoxicity in the cell model. In particular, it retains excellent activity against lamivudine-resistant HBV mutants. In duck HBV (DHBV)-infected duck models, both the serum and liver DHBV DNA levels (67.4% and 53.3%, respectively) were reduced markedly by the treatment with 1a. Analysis of the structure of HBV polymer/1a-triphosphate (1a-TP) complex shows that 1a-TP is stabilized by specific van der Waals interactions with the enzyme residues arising from 4-amino-1,2,3-triazole and the 4'-azido group.
Collapse
Affiliation(s)
- Yuan Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Youmei Peng
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, PR China
| | - Jingjing Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Jingwen Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Haoran Ma
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Bingjie Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Yan Qiao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China
| | - Jie Wu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China.
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China.
| |
Collapse
|
26
|
α-Geminal disubstituted pyrrolidine iminosugars and their C-4-fluoro analogues: Synthesis, glycosidase inhibition and molecular docking studies. Bioorg Med Chem 2017; 25:5148-5159. [DOI: 10.1016/j.bmc.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/24/2022]
|
27
|
Fluorinated nucleosides as an important class of anticancer and antiviral agents. Future Med Chem 2017; 9:1809-1833. [DOI: 10.4155/fmc-2017-0095] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fluorine-containing nucleoside analogs (NAs) represent a significant class of the US FDA-approved chemotherapeutics widely used in the clinic. The incorporation of fluorine into drug-like agents modulates lipophilic, electronic and steric parameters, thus influencing pharmacodynamic and pharmacokinetic properties of drugs. Fluorine can block oxidative metabolism of drugs and the formation of undesired metabolites by changing H-bonding interactions. In this review, we focus our attention on chemical fluorination reagents and methods used in the NAs field, including positron emission tomography radiochemistry. We briefly discuss both the cellular biology and clinical properties of FDA-approved and fluorine-containing nucleoside/nucleotide analogs in development as well as common resistance mechanisms associated with their use. Finally, we emphasize pronucleotide strategies used to improve therapeutic outcome of NAs in the clinic.
Collapse
|
28
|
De S, De Jonghe S, Herdewijn P. Synthesis of a 3'-Fluoro-3'-deoxytetrose Adenine Phosphonate. J Org Chem 2017; 82:9464-9478. [PMID: 28849659 DOI: 10.1021/acs.joc.7b01482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new synthetic route to a 3'-fluoro-3'-deoxytetrose adenine phosphonate has been developed. The synthesis starts from l-xylose and key steps include the stereospecific introduction of the phosphonomethoxy group and adenine. In addition, a regioselective fluorination reaction allows access to the desired 3'-fluoro-3'-deoxytetrose moiety. This methodology allows the straightforward synthesis of a 3'-fluoro-3'-deoxytetrose adenine phosphonate and can be expanded toward the synthesis of other types of 3'-fluoro nucleoside phosphonates.
Collapse
Affiliation(s)
- Swarup De
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research , Herestraat 49, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research , Herestraat 49, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research , Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
29
|
Ramaswamy A, Smyrnova D, Froeyen M, Maiti M, Herdewijn P, Ceulemans A. Molecular Dynamics of Double Stranded Xylo-Nucleic Acid. J Chem Theory Comput 2017; 13:5028-5038. [PMID: 28742346 DOI: 10.1021/acs.jctc.7b00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Xylo-nucleic acid (XyloNA) is a synthetic analogue of ribo-nucleic acid (RNA), where the ribose sugar has been replaced by xylose. We present a molecular dynamics study of the conformational evolution of XyloNA double strand oligomers derived from A-RNA through the substitution of β-d-ribofuranose by β-d-xylofuranose and having lengths of 8, 16, and 29 base pairs, using a set of independent all-atom simulations performed at various time scales ranging from 55 to 100 ns, with one long 500 ns simulation of the 29-mer. In order to validate the robustness of XyloNA conformation, a set of simulations using various cutoff distances and solvation box dimensions has also been performed. These independent simulations reveal the uncoiling or elongation of the initial conformation to form an open ladder type transient state conformation and the subsequent formation of a highly flexible duplex with a tendency to coil in a left-handed fashion. The observed open ladder conformation is in line with recently obtained NMR data on the XyloNA 8-mer derived using 5'-d(GUGUACAC)-3'. The observed negative interbase pair twist leads to the observed highly flexible left-handed duplex, which is significantly less rigid than the stable left-handed dXyloNA duplex having a strong negative twist. A comparison between the xylo-analogues of DNA and RNA shows a clear distinction between the helical parameters, with implications for the pairing mechanism.
Collapse
Affiliation(s)
- Amutha Ramaswamy
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium.,Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry 605014, India
| | - Daryna Smyrnova
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Mathy Froeyen
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Mohitosh Maiti
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, KULeuven , Herestraat 49, B-3000 Leuven, Belgium
| | - Arnout Ceulemans
- Laboratory for Quantum Chemistry, KULeuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
30
|
Ferraboschi P, Ciceri S, Grisenti P. Synthesis of Antitumor Fluorinated Pyrimidine Nucleosides. ORG PREP PROCED INT 2017. [DOI: 10.1080/00304948.2017.1290994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Mal’kina AG, Nosyreva VV, Shemyakina OA, Albanov AI, Trofimov BA. Regio- and stereoselective modification of cytosine with cyanopropargylic alcohols. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Yang W, Ma H, Yang Q, Wang J, Liu Y, Yang Q, Wu J, Song C, Chang J. The first example of palladium-catalyzed cascade amidine arylation–intramolecular ester amidation for the synthesis of hypoxanthines: application to the synthesis of 8-azanebularine analogues. Org Biomol Chem 2017; 15:379-386. [DOI: 10.1039/c6ob02121b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic route toward 8-azanebularines has been developed by involving a cycloaddition and a cascade amidine arylation–intramolecular ester amidation reaction.
Collapse
Affiliation(s)
- Wu Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Haoran Ma
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Qian Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Jingwen Wang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Yuan Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Qinghua Yang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Jie Wu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Chuanjun Song
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Henan Province 450001
- China
| |
Collapse
|
33
|
Mahmoud S, Li H, McBrayer TR, Bassit L, Hammad SF, Coats SJ, Amblard F, Schinazi RF. Synthesis and antiviral evaluation of fluorinated acyclo-nucleosides and their phosphoramidates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 36:66-82. [PMID: 27759481 DOI: 10.1080/15257770.2016.1218023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A novel series of tetrafluoro and hexafluoro acyclic nucleosides and their phosphoramidates were successfully prepared from commercially available 2,2,3,3-tetrafluoro-1,4-butanediol and 2,2,3,3,4,4-hexafluoro-1,5-pentanediol in four to six steps. Their ability to block HIV, HCV, HSV-1, and HBV replication along with their cytotoxicity toward HepG2, human lymphocyte, CEM, and Vero cells was assessed.
Collapse
Affiliation(s)
- Sawsan Mahmoud
- a Center for AIDS Research , Laboratory of Biochemical Pharmacology , Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia , USA.,b Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Helwan University , Helwan , Egypt
| | - Hao Li
- a Center for AIDS Research , Laboratory of Biochemical Pharmacology , Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia , USA
| | | | - Leda Bassit
- a Center for AIDS Research , Laboratory of Biochemical Pharmacology , Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia , USA
| | - Sherif F Hammad
- b Department of Pharmaceutical Chemistry , Faculty of Pharmacy, Helwan University , Helwan , Egypt
| | | | - Franck Amblard
- a Center for AIDS Research , Laboratory of Biochemical Pharmacology , Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia , USA
| | - Raymond F Schinazi
- a Center for AIDS Research , Laboratory of Biochemical Pharmacology , Department of Pediatrics , Emory University School of Medicine , Atlanta , Georgia , USA
| |
Collapse
|
34
|
Mitsukawa Y, Hibi M, Matsutani N, Horinouchi N, Takahashi S, Ogawa J. A novel nucleoside hydrolase from Lactobacillus buchneri LBK78 catalyzing hydrolysis of 2'-O-methylribonucleosides. Biosci Biotechnol Biochem 2016; 80:1568-76. [PMID: 27180876 DOI: 10.1080/09168451.2016.1182853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
2'-O-Methylribonucleosides (2'-OMe-NRs) are promising raw materials for nucleic acid drugs because of their high thermal stability and nuclease tolerance. In the course of microbial screening for metabolic activity toward 2'-OMe-NRs, Lactobacillus buchneri LBK78 was found to decompose 2'-O-methyluridine (2'-OMe-UR). The enzyme responsible was partially purified from L. buchneri LBK78 cells by a four-step purification procedure, and identified as a novel nucleoside hydrolase. This enzyme, LbNH, belongs to the nucleoside hydrolase superfamily, and formed a homotetrameric structure composed of subunits with a molecular mass around 34 kDa. LbNH hydrolyzed 2'-OMe-UR to 2'-O-methylribose and uracil, and the kinetic constants were Km of 0.040 mM, kcat of 0.49 s(-1), and kcat/Km of 12 mM(-1) s(-1). In a substrate specificity analysis, LbNH preferred ribonucleosides and 2'-OMe-NRs as its hydrolytic substrates, but reacted weakly with 2'-deoxyribonucleosides. In a phylogenetic analysis, LbNH showed a close relationship with purine-specific nucleoside hydrolases from trypanosomes.
Collapse
Affiliation(s)
- Yuuki Mitsukawa
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Makoto Hibi
- b Industrial Microbiology, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Narihiro Matsutani
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Nobuyuki Horinouchi
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Satomi Takahashi
- b Industrial Microbiology, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| | - Jun Ogawa
- a Division of Applied Life Sciences, Graduate School of Agriculture , Kyoto University , Sakyo-ku, Kyoto , Japan
| |
Collapse
|
35
|
Li YX, Iwaki R, Kato A, Jia YM, Fleet GWJ, Zhao X, Xiao M, Yu CY. Fluorinated Radicamine A and B: Synthesis and Glycosidase Inhibition. European J Org Chem 2016. [DOI: 10.1002/ejoc.201501453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Sicilia G, Davis AL, Spain SG, Magnusson JP, Boase NRB, Thurecht KJ, Alexander C. Synthesis of 19F nucleic acid–polymer conjugates as real-time MRI probes of biorecognition. Polym Chem 2016. [DOI: 10.1039/c5py01883h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficacy of novel 19F nucleic acid–polymer conjugates as sensitive and selective in vitro reporters of DNA binding events is demonstrated through a number of rapid-acquisition MR sequences.
Collapse
Affiliation(s)
| | | | | | | | - Nathan R. B. Boase
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- Centre for Advanced Imaging
| | - Kristofer J. Thurecht
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St Lucia
- Australia
- Centre for Advanced Imaging
| | | |
Collapse
|
37
|
Li YX, Kinami K, Hirokami Y, Kato A, Su JK, Jia YM, Fleet GWJ, Yu CY. Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars: synthesis and glycosidase inhibition. Org Biomol Chem 2016; 14:2249-63. [DOI: 10.1039/c5ob02474a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars have been synthesized from cyclic nitrones and assayed against various glycosidases.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Yuki Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Jia-Kun Su
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
38
|
Dixit PP, Dixit PP, Thore SN. Hybrid triazoles: Design and synthesis as potential dual inhibitor of growth and efflux inhibition in tuberculosis. Eur J Med Chem 2015; 107:38-47. [PMID: 26562541 DOI: 10.1016/j.ejmech.2015.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/27/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022]
Abstract
Efflux inhibition is proven bacterial machinery responsible for removal of bacterial wastage including antibiotics. Recently, efflux inhibitors (EI) have been tested with encouraging results as an adjuvant therapy for treatment of tuberculosis (TB). Although, EI have emerged as innovative approach of treatment for multi drug resistant (MDR) & extensively drug resistant tuberculosis (XDR-TB), toxicity profile limits their wider use. To address this issue, we have attempted synthesizing hybrid molecules those results by combining known EI and triazole. This synthesis was aimed to arrive at structure that possesses pharmacophore from known EI. Synthesized molecules were evaluated as growth inhibitors (GI) and Efflux inhibitor of TB initially against Mycobacterium smegmatis mc(2)155. Pharmacologically active compounds were then tested for their cytotoxicity to further narrow down search. Most active compounds 144, 145, 154 and 163 were then tested for their GEI action against Mycobacterium tuberculosis (Mtb). Synthesized compounds were also tested for their synergistic action with first line and second line anti-TB drugs and ethidium bromide (EtBr). We arrived at compound 135 as most potent dual inhibitor of tuberculosis.
Collapse
Affiliation(s)
- Prasad P Dixit
- Department of Chemistry, Vinayakrao Patil Mahavidyalaya, Vaijapur, 423701 Dist Aurangabad, Maharashtra, India
| | - Prashant P Dixit
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University, Sub-Center, Osmanabad, 413501, Dist. Osmanabad, Maharashtra, India
| | - Shivajirao N Thore
- Department of Chemistry, Vinayakrao Patil Mahavidyalaya, Vaijapur, 423701 Dist Aurangabad, Maharashtra, India.
| |
Collapse
|
39
|
Jadhav SB, Fatema S, Farooqui M. WITHDRAWN: Tetra-block conjugates: Synthesis and pharmacological evaluation of thiazolo[3,2-a]pyrimidinones as dual inhibitor of tuberculosis and inflammation. Bioorg Med Chem Lett 2015. [DOI: 10.1016/j.bmcl.2015.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Affiliation(s)
- Steven E. Patterson
- 1The Center for Drug Design, The University of Minnesota, 516 Delaware St SE, Minneapolis, MN 55432, USA, e-mail:
| |
Collapse
|
41
|
Chen Z, Ku TC, Seley-Radtke KL. Thiophene-expanded guanosine analogues of Gemcitabine. Bioorg Med Chem Lett 2015; 25:4274-6. [PMID: 26316465 PMCID: PMC4579529 DOI: 10.1016/j.bmcl.2015.07.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
Abstract
The chemotherapeutic drug Gemcitabine, 2',2'-difluoro-2'-deoxycytidine, has long been the standard of care for a number of cancers. Gemcitabine's chemotherapeutic properties stem from its 2',2'-difluoro-2'-deoxyribose sugar, which mimics the natural nucleoside, but also disrupts nucleic acid synthesis, leading to cell death. As a result, numerous analogues have been prepared to further explore the biological implications for this structural modification. In that regard, a thieno-expanded guanosine analogue was of interest due to biological activity previously observed for the tricyclic heterobase scaffold. Several analogues were prepared, including the McGuigan ProTide, however the parent nucleoside exhibited the best chemotherapeutic activity, specifically against breast cancer cell lines (89.53% growth inhibition).
Collapse
Affiliation(s)
- Zhe Chen
- University of Maryland, Baltimore County, Department of Chemistry & Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Therese C Ku
- University of Maryland, Baltimore County, Department of Chemistry & Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Katherine L Seley-Radtke
- University of Maryland, Baltimore County, Department of Chemistry & Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
42
|
Bockman MR, Kalinda AS, Petrelli R, De la Mora-Rey T, Tiwari D, Liu F, Dawadi S, Nandakumar M, Rhee KY, Schnappinger D, Finzel BC, Aldrich CC. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors. J Med Chem 2015; 58:7349-7369. [PMID: 26299766 PMCID: PMC4667793 DOI: 10.1021/acs.jmedchem.5b00719] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), responsible for both latent and symptomatic tuberculosis (TB), remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with K(D)s ≤ 2 nM. Additionally, we obtained high-resolution cocrystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhancement in accumulation of a C-2'-α analogue over the corresponding C-2'-β analogue, consistent with their differential whole-cell activity.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alvin S. Kalinda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA,Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA
| | - Riccardo Petrelli
- Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA
| | - Teresa De la Mora-Rey
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Feng Liu
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Surrendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Madhumitha Nandakumar
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Barry C. Finzel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA,Center for Drug Design, Academic Health Center, University of Minnesota, MN 55455 USA,Corresponding Author Footnote: To whom correspondence should be addressed. Phone 612-625-7956. Fax 612-626-3114.
| |
Collapse
|
43
|
Martínez-Montero S, Deleavey GF, Martín-Pintado N, Fakhoury JF, González C, Damha MJ. Locked 2'-Deoxy-2',4'-Difluororibo Modified Nucleic Acids: Thermal Stability, Structural Studies, and siRNA Activity. ACS Chem Biol 2015; 10:2016-23. [PMID: 26053215 DOI: 10.1021/acschembio.5b00218] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
2'-Deoxy-2',4'-difluorouridine (2',4'-diF-rU) was readily incorporated into DNA and RNA oligonucleotides via standard solid phase synthesis protocols. NMR and thermal denaturation (Tm) data of duplexes was consistent with the 2',4'-diF-rU nucleotides adopting a rigid North (RNA-like) sugar conformation, as previously observed for the nucleoside monomer. The impact of this modification on Tm is neutral when incorporated within RNA:RNA duplexes, mildly destabilizing when located in the RNA strand of a DNA:RNA duplex, and highly destabilizing when inserted in the DNA strand of DNA:RNA and DNA:DNA duplexes. Molecular dynamics calculations suggest that the destabilization effect in DNA:DNA and DNA:RNA duplexes is the result of structural distortions created by A/B junctions within the helical structures. Quantum mechanics calculations suggest that the "neutral" effect imparted to A-form duplexes is caused by alterations in charge distribution that compensate the stabilizing effect expected for a pure North-puckered furanose sugar. 2',4'-diF-RNA modified siRNAs were able to trigger RNA interference with excellent efficiency. Of note, incorporation of a few 2',4'-diF-rU residues in the middle of the guide (antisense) strand afforded siRNAs that were more potent than the corresponding siRNAs containing LNA and 2'-F-ANA modifications, and as active as the 2'-F-RNA modified siRNAs.
Collapse
Affiliation(s)
- Saúl Martínez-Montero
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Glen F. Deleavey
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Nerea Martín-Pintado
- Instituto de Química Física Rocasolano, CSIC, C/. Serrano 119, 28006 Madrid, Spain
| | - Johans F. Fakhoury
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Carlos González
- Instituto de Química Física Rocasolano, CSIC, C/. Serrano 119, 28006 Madrid, Spain
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
44
|
Dawadi S, Viswanathan K, Boshoff HI, Barry CE, Aldrich CC. Investigation and conformational analysis of fluorinated nucleoside antibiotics targeting siderophore biosynthesis. J Org Chem 2015; 80:4835-50. [PMID: 25916415 PMCID: PMC4674167 DOI: 10.1021/acs.joc.5b00550] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance represents one of the greatest threats to public health. The adenylation inhibitor 5'-O-[N-(salicyl)sulfamoyl]adenosine (SAL-AMS) is the archetype for a new class of nucleoside antibiotics that target iron acquisition in pathogenic microorganisms and is especially effective against Mycobacterium tuberculosis, the causative agent of tuberculosis. Strategic incorporation of fluorine at the 2' and 3' positions of the nucleoside was performed by direct fluorination to enhance activity and improve drug disposition properties. The resulting SAL-AMS analogues were comprehensively assessed for biochemical potency, whole-cell antitubercular activity, and in vivo pharmacokinetic parameters. Conformational analysis suggested a strong preference of fluorinated sugar rings for either a 2'-endo, 3'-exo (South), or a 3'-endo,2'-exo (North) conformation. The structure-activity relationships revealed a strong conformational bias for the C3'-endo conformation to maintain potent biochemical and whole-cell activity, whereas improved pharmacokinetic properties were associated with the C2'-endo conformation.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Kishore Viswanathan
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
45
|
Yang Q, Kang J, Zheng L, Wang XJ, Wan N, Wu J, Qiao Y, Niu P, Wang SQ, Peng Y, Wang Q, Yu W, Chang J. Synthesis and biological evaluation of 4-substituted fluoronucleoside analogs for the treatment of hepatitis B virus infection. J Med Chem 2015; 58:3693-703. [PMID: 25905540 DOI: 10.1021/jm5012963] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of 4-substituted fluoronucleosides have been synthesized in order to address the toxicity issue of the parent compound 7, and after in vitro evaluation, the cyclopropylamino analog 1f was selected for in vivo study. In mice, this compound exhibited a significantly improved toxicity profile. Administered orally, compound 1f was well-tolerated at a dose up to 3 g/kg and showed insignificant toxicity on white blood cells and a low mutagenic effect at dosages up to 80 mg/kg (single) or 20 mg/kg/day (5 days). In duck HBV (DHBV)-infected duck models, both the serum and liver DHBV DNA levels (74.2 and 82.1%, respectively) were markedly reduced by the treatment of 1f at a dose of 1 mg/kg/day for 10 days. In addition, both the viral DNA levels had a lower degree of recovery after withdrawal of the test compound for 3 days.
Collapse
Affiliation(s)
- Qinghua Yang
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.,⊥Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Jinfeng Kang
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Liyun Zheng
- ‡Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, PR China
| | - Xue-Jun Wang
- §Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Na Wan
- ‡Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, PR China
| | - Jie Wu
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yan Qiao
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pengfei Niu
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Sheng-Qi Wang
- §Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Youmei Peng
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.,‡Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, PR China
| | - Qingduan Wang
- ‡Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, PR China
| | - Wenquan Yu
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junbiao Chang
- †College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.,⊥Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| |
Collapse
|
46
|
Zhou X, Szeker K, Jiao LY, Oestreich M, Mikhailopulo IA, Neubauer P. Synthesis of 2,6-Dihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400966] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Phae-nok S, Soorukram D, Kuhakarn C, Reutrakul V, Pohmakotr M. Silver-Mediated Decarboxylative Fluorination of Paraconic Acids: A Direct Entry to β-Fluorinated γ-Butyrolactones. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Ingale SA, Leonard P, Tran QN, Seela F. Duplex DNA and DNA-RNA hybrids with parallel strand orientation: 2'-deoxy-2'-fluoroisocytidine, 2'-deoxy-2'-fluoroisoguanosine, and canonical nucleosides with 2'-fluoro substituents cause unexpected changes on the double helix stability. J Org Chem 2015; 80:3124-38. [PMID: 25742047 DOI: 10.1021/acs.joc.5b00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligonucleotides with parallel or antiparallel strand orientation incorporating 2'-fluorinated 2'-deoxyribonucleosides with canonical nucleobases or 2'-deoxy-2'-fluoroisocytidine ((F)iCd, 1c) and 2'-deoxy-2'-fluoroisoguanosine ((F)iGd, 3c) were synthesized. To this end, the nucleosides 1c and 3c as well as the phosphoramidite building blocks 19 and 23 were prepared and employed in solid-phase oligonucleotide synthesis. Unexpectedly, (F)iCd is not stable during oligonucleotide deprotection (55 °C, aq NH3) and was converted to a cyclonucleoside (14). Side product formation was circumvented when oligonucleotides were deprotected under mild conditions (aq ammonia-EtOH, rt). Oligonucleotides containing 2'-fluoro substituents ((F)iCd, (F)iGd and fluorinated canonical 2'-deoxyribonucleosides) stabilize double-stranded DNA, RNA, and DNA-RNA hybrids with antiparallel strand orientation. Unexpected strong stability changes are observed for oligonucleotide duplexes with parallel chains. While fluorinated oligonucleotides form moderately stable parallel stranded duplexes with complementary DNA, they do not form stable hybrids with RNA. Furthermore, oligoribonucleotide duplexes with parallel strand orientation are extremely unstable. It is anticipated that nucleic acids with parallel chains might be too rigid to accept sugar residues in the N-conformation as observed for ribonucleosides or 2'-deoxy-2'-fluororibonucleosides. These observations might explain why nature has evolved the principle of antiparallel chain orientation and has not used the parallel chain alignment.
Collapse
Affiliation(s)
- Sachin A Ingale
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Quang Nhat Tran
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,‡Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
49
|
A linear synthesis of gemcitabine. Carbohydr Res 2015; 406:71-5. [PMID: 25681996 DOI: 10.1016/j.carres.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/20/2022]
Abstract
Gemcitabine, 2'-deoxy-2',2'-difluorocytidine, is currently prescribed against a number of cancers. Here we report a linear synthesis of gemcitabine with a high-yielding direct conversion of 3,5-di-O-benzoyl-2-deoxy-2,2-difluororibose into the corresponding glycosyl urea as the key step, followed by conventional conversion to the cytosine base via the uracil derivative. The process proceeded with modest anomeric selectivity.
Collapse
|
50
|
Iannazzo L, Laisné G, Fonvielle M, Braud E, Herbeuval JP, Arthur M, Etheve-Quelquejeu M. Synthesis of 3′-Fluoro-tRNA Analogues for Exploring Non-ribosomal Peptide Synthesis in Bacteria. Chembiochem 2015; 16:477-86. [DOI: 10.1002/cbic.201402523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/08/2022]
|