1
|
Zhang X, Huang Q, Guo Z, Cai F, Kang Q, Bai L. Acarbose glycosylation by AcbE for the production of acarstatins with enhanced α-amylase inhibitory activity. Synth Syst Biotechnol 2024; 9:359-368. [PMID: 38559426 PMCID: PMC10981011 DOI: 10.1016/j.synbio.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Acarbose is a potent glycosidase inhibitor widely used in the clinical treatment of type 2 diabetes mellitus (T2DM). Various acarbose analogs have been identified while exploring compounds with improved pharmacological properties. In this study, we found that AcbE from Actinoplanes sp. SE50/110 catalyzes the production of acarbose analogs that exhibit significantly improved inhibitory activity towards α-amylase than acarbose. Recombinant AcbE mainly catalyzed the formation of two new compounds, namely acarstatins A and B, using acarbose as substrate. Using high-resolution mass spectrometry, nuclear magnetic resonance, and glycosidase hydrolysis, we elucidated their chemical structures as O-α-d-maltosyl-(1 → 4)-acarbose and O-α-d-maltotriosyl-(1 → 4)-acarbose, respectively. Acarstatins A and B exhibited 1584- and 1478-fold greater inhibitory activity towards human salivary α-amylase than acarbose. Furthermore, both acarstatins A and B exhibited complete resistance to microbiome-derived acarbose kinase 1-mediated phosphorylation and partial resistance to acarbose-preferred glucosidase-mediated hydrolysis. Therefore, acarstatins A and B have great potential as candidate therapeutic agents for T2DM.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qungang Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyue Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feifei Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- College of Life Science, Tarim University, Alar, 843300, China
| |
Collapse
|
2
|
Al-Mustafa A, Al-Tawarah M, Al-Sheraideh MS, Al-Zahrany FA. Phytochemical analysis, antioxidant and in vitro β-galactosidase inhibition activities of Juniperus phoenicea and Calicotome villosa methanolic extracts. BMC Chem 2021; 15:55. [PMID: 34607602 PMCID: PMC8491401 DOI: 10.1186/s13065-021-00781-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background Juniperus Phoenicea (JP) and Calicotome Villosa (CV) are used by Jordanian populations as herbal remedies in traditional medicine. Herein, the phytochemical contents of their methanolic extracts were analyzed and their antioxidant as well as in vitro anti- β-Galactosidase activities were evaluated; their effect on β-Galactosidase enzyme kinetics was evaluated and the thermodynamic of the enzyme was determined. Methods The antioxidant activity of JP and CV crude methanolic extracts was evaluated using 1,1-diphenyl,2-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays; however, the effect of the plants’ crude extracts on β-Galactosidase activity and kinetics was evaluated in vitro. Moreover, total phenolic, flavonoids, and flavonols content in plants’ extracts were determined and expressed in Gallic acid equivalent (mg GAE/g dry extract) or rutin equivalent (mg RE/g dry extract). Results Phytochemical screening of the crude extracts of JP and CV leaves revealed the presence of phenols, alkaloids, flavonoids, terpenoids, anthraquinones, and glycosides. Flavonoids and flavonols contents were significantly higher in JP than in CV (p < 0.05). Furthermore, an analogous phenolic content was detected in both JP and CV methanolic extracts (103.6 vs 99.1 mg GAE/g extract). The ability of JP extract to scavenge DPPH radicals was significantly higher than that of CV extract with IC50 = 11.1 μg/ml and 15.6 μg/ml, respectively. However, their extracts revealed relatively similar antioxidant capacities in FRAP assay; their activity was concentration dependent. The JP extract inhibited β—galactosidase enzyme activity with a significant IC50 value compared to CV extract; they exhibited their inhibitory activities at IC50 values 65 µg/ml and 700 µg/ml, respectively. Rutin revealed anti-β-galactosidase activity at IC50 = 75 µg/ml. The mode of inhibition of β-galactosidase by JP, CV, and rutin was non-competitive, mixed, and competitive inhibition, respectively. Thermodynamic and enzyme inactivation kinetics revealed that β-galactosidase has a half-life time of 108 min at 55 °C, activation energy of 208.88 kJ mol−1 and the inactivation kinetics follows a first-order reaction with k-values 0.0023–0.0862 min−1 and positive entropy of inactivation (∆S°) values at various temperatures, indicating non-significant processes of aggregation. Conclusions The methanolic extracts of JP and CV possess anti-hyperglycemic and antioxidant activities with potential pharmaceutical applications.
Collapse
Affiliation(s)
- Ahmed Al-Mustafa
- Department of Biological Sciences, Faculty of Science, Mutah University, Mutah, P.O. Box 7, Karak, 61710, Jordan.
| | - Mohammad Al-Tawarah
- Department of Biological Sciences, Faculty of Science, Mutah University, Mutah, P.O. Box 7, Karak, 61710, Jordan
| | | | - Fatema Attia Al-Zahrany
- Chemistry Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Li S, Yin L, Yi J, Zhang LM, Yang L. Insight into interaction mechanism between theaflavin-3-gallate and α-glucosidase using spectroscopy and molecular docking analysis. J Food Biochem 2020; 45:e13550. [PMID: 33150631 DOI: 10.1111/jfbc.13550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
To elucidate the α-glucosidase (α-GC) inhibitory mechanism of theaflavin-3-gallate (TF-3-G), their interaction mechanism was investigated using spectroscopy and molecular docking analysis. The inhibition ratio of TF-3-G against α-GC was determined to be 92.3%. Steady fluorescence spectroscopy showed that TF-3-G effectively quenched the intrinsic fluorescence of α-GC through static quenching, forming a stable complex through hydrophobic interactions. Formation of the TF-3-G/α-GC complex was also confirmed by resonance light scattering spectroscopy. Synchronous fluorescence spectroscopy and circular dichroism spectroscopy indicated that the secondary structure of α-GC was changed by TF-3-G. Molecular docking was used to simulate TF-3-G/α-GC complex formation, showing that TF-3-G might be inserted into the hydrophobic region around the active site of ɑ-GC, and bind with the catalytic Asp215 and Asp352 residues. The ɑ-GC inhibitory mechanism of TF-3-G was mainly attributed to the change in ɑ-GC secondary structure caused by the complex formation. PRACTICAL APPLICATIONS: α-Glucosidase (α-GC) can hydrolyze the glycosidic bonds of starch and oligosaccharides in food and release glucose. Therefore, the inhibition of α-GC activity has been used to treat postprandial hyperglycemia and type 2 diabetes mellitus. Theaflavin-3-gallate (TF-3-G), a flavonoid found in the fermentation products of black tea, exhibits strong inhibition of α-GC activity. However, the α-GC inhibitory mechanism of TF-3-G is unclear. This study aids understanding of this mechanism, and proposed a possibly basic theory for improving the medicinal value of TF-3-G in diabetes therapy.
Collapse
Affiliation(s)
- Siyuan Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lin Yin
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Juzhen Yi
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Kong B, Yang T, Hou P, Li CH, Zou HY, Huang CZ. Enzyme‐triggered fluorescence turn‐off/turn‐on of carbon dots for monitoring β‐glucosidase and its inhibitor in living cells. LUMINESCENCE 2019; 35:222-230. [DOI: 10.1002/bio.3717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Bo Kong
- Key Laboratory of Luminescence and Real‐Time Analytical Chemistry (Southwest University)Ministry of Education, College of Pharmaceutical Sciences, Southwest University Chongqing China
| | - Tong Yang
- Key Laboratory of Luminescence and Real‐Time Analytical Chemistry (Southwest University)Ministry of Education, College of Pharmaceutical Sciences, Southwest University Chongqing China
- College of Chemistry and Chemical EngineeringYunnan Normal University Kunming Yunnan China
| | - Peng Hou
- Key Laboratory of Luminescence and Real‐Time Analytical Chemistry (Southwest University)Ministry of Education, College of Pharmaceutical Sciences, Southwest University Chongqing China
| | - Chun Hong Li
- Key Laboratory of Luminescence and Real‐Time Analytical Chemistry (Southwest University)Ministry of Education, College of Pharmaceutical Sciences, Southwest University Chongqing China
| | - Hong Yan Zou
- Key Laboratory of Luminescence and Real‐Time Analytical Chemistry (Southwest University)Ministry of Education, College of Pharmaceutical Sciences, Southwest University Chongqing China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real‐Time Analytical Chemistry (Southwest University)Ministry of Education, College of Pharmaceutical Sciences, Southwest University Chongqing China
- Chongqing Key Laboratory of Biomedical Analysis, Chongqing Science & Technology CommissionCollege of Chemistry and Chemical Engineering, Southwest University Chongqing China
| |
Collapse
|
5
|
Synthesis of novel N-glycoside derivatives via CuSCN-catalyzed reactions and their SGLT2 inhibition activities. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.05.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Lahiri R, Palanivel A, Kulkarni SA, Vankar YD. Synthesis of Isofagomine–Pyrrolidine Hybrid Sugars and Analogues of (−)-Steviamine and (+)-Hyacinthacine C5 Using 1,3-Dipolar Cycloaddition Reactions. J Org Chem 2014; 79:10786-800. [DOI: 10.1021/jo5016745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rima Lahiri
- Department
of Chemistry, Indian Institute of Technology Kanpur Kanpur 208016, India
| | - Ashokkumar Palanivel
- Department
of Chemistry, Indian Institute of Technology Kanpur Kanpur 208016, India
| | - Sudhir A. Kulkarni
- VLife Sciences Technologies Pvt. Ltd., second
Floor Anaahat, Plot No. 5, Ram Indu Park, Baner Road, Pune 411045, India
| | - Yashwant D. Vankar
- Department
of Chemistry, Indian Institute of Technology Kanpur Kanpur 208016, India
| |
Collapse
|
7
|
A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1967-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Daba T, Kojima K, Inouye K. Kinetic and thermodynamic analysis of the inhibitory effects of maltose, glucose, and related carbohydrates on wheat β-amylase. Enzyme Microb Technol 2013; 52:251-7. [DOI: 10.1016/j.enzmictec.2013.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
9
|
Lahiri R, Suman Reddy Y, Kulkarni SA, Vankar YD. Synthesis of unnatural indolizidines, pyrrolizidine and C-alkyl iminosugars from sugar derived hemiaminals. RSC Adv 2013. [DOI: 10.1039/c3ra43510e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
10
|
Kumar A, Alam MA, Rani S, Vankar YD. Synthesis of 1,4-dideoxy-1,4-iminoheptitol and 1,5-dideoxy-1,5-iminooctitols from d-xylose. Carbohydr Res 2010; 345:1142-8. [DOI: 10.1016/j.carres.2010.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/05/2010] [Accepted: 04/18/2010] [Indexed: 10/19/2022]
|
11
|
Yamamoto K, Noguchi S, Takada N, Miyairi K, Hashimoto M. Synthesis of a trigalacturonic acid analogue mimicking the expected transition state in the glycosidases. Carbohydr Res 2010; 345:572-85. [PMID: 20138256 DOI: 10.1016/j.carres.2009.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
A trigalacturonic acid analogue carrying a cyclohexene framework in place of the central pyranose ring was synthesized as a molecular probe for the mechanistic investigation of endo-polygalacturonase 1 (endo-PG 1). Preliminary enzymatic studies revealed that this analogue inhibited endo-PG 1 activity by about 30% at 0.3mM concentration.
Collapse
Affiliation(s)
- Kazunori Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki 036-8561, Japan
| | | | | | | | | |
Collapse
|
12
|
Use of Cellulase Inhibitors to Produce Cellobiose. Appl Biochem Biotechnol 2010; 162:1379-90. [DOI: 10.1007/s12010-010-8915-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/17/2010] [Indexed: 11/26/2022]
|
13
|
Nam SH, Moon YH, Kang J, Kim YM, Robyt JF, Kim D. Synthesis, structural analysis and application of novel acarbose-fructoside using levansucrase. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Feng Y, Jiang JX, Zhu LW. Recent developments in activities, utilization and sources of cellulase. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11632-009-0028-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Karnchanatat A, Petsom A, Sangvanich P, Piapukiew J, Whalley AJ, Reynolds CD, Gadd GM, Sihanonth P. A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Optimization of Oligosaccharide Synthesis from Cellobiose by Dextransucrase. Appl Biochem Biotechnol 2007; 148:189-98. [DOI: 10.1007/s12010-007-8042-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
17
|
Yoon SH, Robyt JF. Study of the inhibition of four alpha amylases by acarbose and its 4IV-α-maltohexaosyl and 4IV-α-maltododecaosyl analogues. Carbohydr Res 2003; 338:1969-80. [PMID: 14499573 DOI: 10.1016/s0008-6215(03)00293-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acarbose analogues, 4IV-maltohexaosyl acarbose (G6-Aca) and 4IV-maltododecaosyl acarbose (G12-Aca), were prepared by the reaction of cyclomaltodextrin glucanyltransferase with cyclomaltohexaose and acarbose. The inhibition kinetics of acarbose and the two acarbose analogues were studied for four different alpha-amylases: Aspergillus oryzae, Bacillus amyloliquefaciens, human salivary, and porcine pancreatic alpha-amylases. The three inhibitors showed mixed, noncompetitive inhibition, for all four alpha-amylases. The acarbose inhibition constants, Ki, for the four alpha-amylases were 270, 13, 1.27, and 0.80 microM, respectively; the Ki values for G6-Aca were 33, 37, 14, and 7 nM, respectively; and the G12-Aca Ki constants were 59, 81, 18, and 11 nM, respectively. The G6-Aca and G12-Aca analogues are the most potent alpha-amylase inhibitors observed, with Ki values one to three orders of magnitude more potent than acarbose, which itself was one to three orders of magnitude more potent than other known alpha-amylase inhibitors.
Collapse
Affiliation(s)
- Seung-Heon Yoon
- Laboratory of Carbohydrate Chemistry and Enzymology, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
18
|
Yoon SH, Mukerjea R, Robyt JF. Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr Res 2003; 338:1127-32. [PMID: 12706980 DOI: 10.1016/s0008-6215(03)00097-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The specificity of Saccharomyces cerevisiae yeast on the removal of carbohydrates by fermentation was studied. The common monosaccharides, D-glucose, D-fructose, D-mannose, and D-galactose were completely removed; D-glucuronic acid and D-ribose were partially removed; but D-xylose, D-rhamnose, and L-sorbose were not removed and were completely resistant. Of four glycosides, methyl and phenyl alpha- and beta-D-glucopyranosides, three of the four were partially removed and methyl beta-D-glucopyranoside was not removed. The disaccharides, maltose, sucrose, and turanose were completely removed, while cellobiose, lactose, and melibiose were completely resistant. Isomaltose and alpha,alpha-trehalose were partially removed. Maltotriose and raffinose were partially removed, but isomaltotriose and melezitose were completely resistant. The tetrasaccharides, maltotetraose, isomaltotetraose, and acarbose, were completely resistant. Further, the yeast enzymes did not alter any of the resistant carbohydrates by transglycosylation or condensation reactions or by any other types of reactions.
Collapse
Affiliation(s)
- Seung-Heon Yoon
- Laboratory of Carbohydrate Chemistry and Enzymology, 4252 Molecular Biology Building, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
19
|
Yoon SH, Robyt JF. Synthesis of acarbose analogues by transglycosylation reactions of Leuconostoc mesenteroides B-512FMC and B-742CB dextransucrases. Carbohydr Res 2002; 337:2427-35. [PMID: 12493227 DOI: 10.1016/s0008-6215(02)00350-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two new acarbose analogues were synthesized by the reaction of acarbose with sucrose and dextransucrases from Leuconostoc mesenteroides B-512FMC and B-742CB. The major products for each reaction were subjected to yeast fermentation, and then separated and purified by Bio-Gel P2 gel permeation chromatography and descending paper chromatography. The structures of the products were determined by one- and two-dimensional 1H and 13C NMR spectroscopy and by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). B-512FMC-dextransucrase produced one major acarbose product, 2(I)-alpha-D-glucopyranosylacarbose and B-742CB-dextransucrase produced two major acarbose products, 2(I)-alpha-D-glucopyranosylacarbose and 3(IV)-alpha-D-glucopyranosylacarbose.
Collapse
Affiliation(s)
- Seung-Heon Yoon
- Laboratory of Carbohydrate Chemistry and Enzymology, 4252 Molecular Biology BLDG, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
20
|
Yoon SH, Robyt JF. Addition of maltodextrins to the nonreducing-end of acarbose by reaction of acarbose with cyclomaltohexaose and cyclomaltodextrin glucanyltransferase. Carbohydr Res 2002; 337:509-16. [PMID: 11890888 DOI: 10.1016/s0008-6215(02)00018-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
New kinds of acarbose analogues were synthesized by the reaction of acarbose with cyclomaltohexaose and cyclomaltodextrin glucanyltransferase (CGTase). Three major CGTase coupling products were separated and purified by Bio-Gel P2 gel-permeation chromatography. Digestion of the three products by beta-amylase and glucoamylase showed that they were composed of maltohexaose (G6), maltododecaose (G12), and maltooctadecaose (G18), respectively, attached to the nonreducing-end of acarbose. 13C NMR of the glucoamylase product (D-glucopyranosyl-acarbose) showed that the D-glucose moiety was attached alpha- to the C-4-OH group of the nonreducing-end cyclohexene ring of acarbose, indicating that the maltodextrins were attached alpha-(1-->4) to the nonreducing-end cyclohexene of acarbose.
Collapse
Affiliation(s)
- Seung-Heon Yoon
- Laboratory of Carbohydrate Chemistry and Enzymology, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
21
|
Renaudet O, Dumy P. Synthesis of glycosylated-β(1-4)-amino(methoxy) and -oxyamino carbohydrate analogues. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00079-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|