1
|
The Molecular Bases of the Interaction between a Saponin from the Roots of Gypsophila paniculata L. and Model Lipid Membranes. Int J Mol Sci 2022; 23:ijms23063397. [PMID: 35328818 PMCID: PMC8949875 DOI: 10.3390/ijms23063397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 01/27/2023] Open
Abstract
In view of the possible medical applications of saponins, the molecular structure of a GOTCAB saponin from the roots of Gypsophila paniculata L. was determined by NMR. The biological activity of saponins may depend on the interaction with cell membranes. To obtain more insight in the mechanism of membrane-related saponin function, an experimental and theoretical study was conducted. Ternary lipid systems composed of sphingomyelin, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and cholesterol were used as models of mammalian cell membranes. The membrane–saponin interaction was studied experimentally by monitoring surface pressure in the monomolecular films formed at the air–aqueous subphase interface. The behavior of GOTCAB saponin in a water box and model monolayer systems was characterized by molecular dynamics simulations. The results obtained showed that, in the systems used, cholesterol had a decisive effect on the interaction between GOTCAB and phosphocholine or sphingomyelin as well as on its location within the lipid film.
Collapse
|
2
|
McCalpin SD, Ravula T, Ramamoorthy A. Saponins Form Nonionic Lipid Nanodiscs for Protein Structural Studies by Nuclear Magnetic Resonance Spectroscopy. J Phys Chem Lett 2022; 13:1705-1712. [PMID: 35156801 PMCID: PMC9548298 DOI: 10.1021/acs.jpclett.1c04185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Structural studies of membrane proteins in native-like environments require the development of diverse membrane mimetics. Currently there is a need for nanodiscs formed with nonionic belt molecules to avoid nonphysiological electrostatic interactions between the membrane system and protein of interest. Here, we describe the formation of lipid nanodiscs from the phospholipid DMPC and a class of nonionic glycoside natural products called saponins. The morphology, surface characteristics, and magnetic alignment properties of the saponin nanodiscs were characterized by light scattering and solid-state NMR experiments. We determined that preparing nanodiscs with high saponin/lipid ratios reduced their size, diminished their ability to spontaneously align in a magnetic field, and favored insertion of individual saponin molecules in the lipid bilayer surface. Further, purification of saponin nanodiscs allowed flipping of the orientation of aligned nanodiscs by 90°. Finally, we found that aligned saponin nanodiscs provide a sufficient alignment medium to allow the measurement of residual dipolar couplings (RDCs) in aqueous cytochrome c.
Collapse
Affiliation(s)
- Samuel D. McCalpin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Thirupathi Ravula
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
- Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
- Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Corresponding Author:
| |
Collapse
|
3
|
Gevrenova R, Doytchinova I, Kołodziej B, Henry M. In-depth characterization of the GOTCAB saponins in seven cultivated Gypsophila L. species (Caryophyllaceae) by liquid chromatography coupled with quadrupole-Orbitrap mass spectrometer. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Korchowiec B, Gorczyca M, Wojszko K, Janikowska M, Henry M, Rogalska E. Impact of two different saponins on the organization of model lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1963-73. [PMID: 26055895 DOI: 10.1016/j.bbamem.2015.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis.
Collapse
Affiliation(s)
- Beata Korchowiec
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland.
| | - Marcelina Gorczyca
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland
| | - Kamila Wojszko
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland; Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France
| | - Maria Janikowska
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, ul. R. Ingardena 3, 30-060 Krakow, Poland; Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, ul. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Max Henry
- Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France
| | - Ewa Rogalska
- Structure et Réactivité des Systèmes Moléculaires Complexes, BP 239, CNRS/Université de Lorraine, 54506 Vandoeuvre-lès-Nancy cedex, France.
| |
Collapse
|
5
|
Holmes SE, Bachran C, Fuchs H, Weng A, Melzig MF, Flavell SU, Flavell DJ. Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacol Immunotoxicol 2014; 37:42-55. [PMID: 25347443 DOI: 10.3109/08923973.2014.971964] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Saponinum album (SA) is a complex mixture of triterpenoid saponins previously shown to augment the cytotoxicity of the type I ribosome-inactivating protein saporin and an EGF-saporin target toxin that could potentially be used to improve the therapeutic window of targeted toxins. OBJECTIVE To investigate the augmentative property of SA on saporin and saporin-based immunotoxins (IT) directed against five different cell surface target molecules on human leukemia and lymphoma cells. MATERIALS AND METHODS After determining the optimum dose of SA for each cell line, the extent of SA-mediated augmentation was established for saporin and five saporin-based ITs using XTT and an annexin V apoptosis assay. Immunospecificity was investigated using three different blocking assays. Dose-scheduling was also investigated using the XTT assay. RESULTS Uncorrected SA-mediated augmentation ranged at best from 31.5 million-fold to, at worse, 174-fold. However, when the calculated fold-increases were adjusted for the non-immunospecific effects of SA on an off-target IT, the true augmentative effects of SA were found to be largely non-immunospecific. Antibody blocking studies demonstrated that the augmentative effect of SA was only partially immunospecific. Separate exposure of target cells to IT and SA at different times demonstrated that immunospecific augmentation of IT by SA could be achieved but only if cells were exposed to IT first and SA second. CONCLUSIONS SA significantly, although variably, augments the cytotoxicity of saporin and saporin-based immunotoxins. Concomitant exposure to both IT and SA can result in non-immunospecific cytotoxicity that can be overcome by temporally separating exposure to each.
Collapse
Affiliation(s)
- Suzanne E Holmes
- The Simon Flavell Leukaemia Research Laboratory, Southampton General Hospital , Southampton , UK
| | | | | | | | | | | | | |
Collapse
|
6
|
Stalhberger T, Simenel C, Clavaud C, Eijsink VGH, Jourdain R, Delepierre M, Latgé JP, Breton L, Fontaine T. Chemical organization of the cell wall polysaccharide core of Malassezia restricta. J Biol Chem 2014; 289:12647-56. [PMID: 24627479 DOI: 10.1074/jbc.m113.547034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malassezia species are ubiquitous residents of human skin and are associated with several diseases such as seborrheic dermatitis, tinea versicolor, folliculitis, atopic dermatitis, and scalp conditions such as dandruff. Host-Malassezia interactions and mechanisms to evade local immune responses remain largely unknown. Malassezia restricta is one of the most predominant yeasts of the healthy human skin, its cell wall has been investigated in this paper. Polysaccharides in the M. restricta cell wall are almost exclusively alkali-insoluble, showing that they play an essential role in the organization and rigidity of the M. restricta cell wall. Fractionation of cell wall polymers and carbohydrate analyses showed that the polysaccharide core of the cell wall of M. restricta contained an average of 5% chitin, 20% chitosan, 5% β-(1,3)-glucan, and 70% β-(1,6)-glucan. In contrast to other yeasts, chitin and chitosan are relatively abundant, and β-(1,3)-glucans constitute a minor cell wall component. The most abundant polymer is β-(1,6)-glucans, which are large molecules composed of a linear β-(1,6)-glucan chains with β-(1,3)-glucosyl side chain with an average of 1 branch point every 3.8 glucose unit. Both β-glucans are cross-linked, forming a huge alkali-insoluble complex with chitin and chitosan polymers. Data presented here show that M. restricta has a polysaccharide organization very different of all fungal species analyzed to date.
Collapse
Affiliation(s)
- Thomas Stalhberger
- From the Unité des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Timité G, Mitaine-Offer AC, Miyamoto T, Ramezani M, Rustaiyan A, Mirjolet JF, Duchamp O, Lacaille-Dubois MA. Structure elucidation of new oleanane-type glycosides from three species of Acanthophyllum. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:370-374. [PMID: 20209583 DOI: 10.1002/mrc.2577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
From the roots of three species of Acanthophyllum (Caryophyllaceae), two new gypsogenic acid glycosides, 1 and 2, were isolated, 1 from A. sordidum and A. lilacinum, 2 from A. elatius and A. lilacinum, together with three known saponins, glandulosides B and C, and SAPO50. The structures of 1 and 2 were established mainly by 2D NMR techniques as 23-O-beta-D-galactopyranosylgypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-galactopyranoside (1) and gypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-galactopyranoside (2). The cytotoxicity of several of these saponins was evaluated against two human colon cancer cell lines (HT-29 and HCT 116).
Collapse
Affiliation(s)
- Gaoussou Timité
- Laboratoire de Pharmacognosie, UMIB, UPRES EA 3660, Faculté de Pharmacie, Université de Bourgogne, 7 bd. Jeanne D' Arc, BP 87900, 21079 Dijon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Weng A, Bachran C, Fuchs H, Krause E, Stephanowitz H, Melzig MF. Enhancement of saporin cytotoxicity by Gypsophila saponins--more than stimulation of endocytosis. Chem Biol Interact 2009; 181:424-9. [PMID: 19615984 DOI: 10.1016/j.cbi.2009.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/04/2009] [Accepted: 07/09/2009] [Indexed: 11/25/2022]
Abstract
Saporin is a type I ribosome-inactivating protein with N-glycosidase activity. It removes adenine residues from the 28S ribosomal RNA resulting in inhibition of protein synthesis. Recently we have shown that saporin exerts no cytotoxicity on seven human cell lines. However, the combination of saporin with a special mixture of Gypsophila saponins (Soapwort saponins) from Gypsophila paniculata L. (baby's breath) rendered saporin to a potent cytotoxin comparable to viscumin, a highly toxic type II ribosome-inactivating protein. In this study we investigated whether the enhancement of the saporin-cytotoxicity by Gypsophila saponins is mediated by a saponin-triggered modulation of endocytosis, exocytosis or impaired degradation processes of his-tagged saporin ((his)saporin) in ECV-304 cells. For this purpose (his)saporin was labelled with tritium and cytotoxicity of the toxin alone and in combination with Gypsophila saponins was scrutinized. The transport and degradation processes of (his)saporin were not different in Gypsophila saponin-treated and control cells. However, after ultracentrifugation of a post-nuclear supernatant the amount of cytosolic (his)saporin was significantly higher in saponin-treated cells than in cells, which were only incubated with (his)saporin. This indicates a saponin mediated endosomal escape of saporin.
Collapse
Affiliation(s)
- A Weng
- Institute of Pharmacy, Free University Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Weng A, Görick C, Melzig MF. Enhancement of toxicity of saporin-based toxins by Gypsophila saponins--kinetic of the saponin. Exp Biol Med (Maywood) 2009; 234:961-6. [PMID: 19491365 DOI: 10.3181/0902-bc-71] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Saponins are amphiphilic substances consisting of a hydrophobic backbone with one or two hydrophilic sugar units. Recently it was shown that saponinum album (SA) from Gypsophila paniculata L. enhanced cytotoxicity of a saporin-based chimeric toxin (up to 385,000-fold) as well as the toxicity of saporin (up to 100,000-fold) with N-glycosidase activity. Previously we have shown that toxicity of other N-glycosidases such as ricin A-chain, nigrin b, and toxins such as diphtheria toxin or microcystin-LR was not enhanced by SA. This points to a specific SA-dependent mechanism of toxicity enhancement on saporin and saporin-based toxins. Although the cytotoxicity enhancing effect was observed in up to 10 different cell lines, nothing is known about the kinetic of SA under cell culture conditions. Therefore SA was titrated, and the uptake respective liberation profile of SA was investigated in ECV-304 cells. Treatment of cells with [(3)H]-SA leads to an immediate uptake of saponin molecules. After cells were saturated with [(3)H]-SA, a first equilibrium (first eq.) was reached. The first eq. was disturbed by washing until a second equilibrium was reached between the activity observed within cells and that seen in the supernatant. After a further extensive washing, a small portion of saponin molecules remained durable associated with the cell. This portion was sufficient to induce a drastic toxicity enhancement on saporin indicating a long-lasting sensitization of cells against the toxin.
Collapse
Affiliation(s)
- Alexander Weng
- Institute of Pharmacy, Free University of Berlin, Königin-Luise Str. 2+4, 14195 Berlin, Germany
| | | | | |
Collapse
|
11
|
Meesapyodsuk D, Balsevich J, Reed DW, Covello PS. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding beta-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. PLANT PHYSIOLOGY 2007; 143:959-69. [PMID: 17172290 PMCID: PMC1803722 DOI: 10.1104/pp.106.088484] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Saponaria vaccaria (Caryophyllaceae), a soapwort, known in western Canada as cowcockle, contains bioactive oleanane-type saponins similar to those found in soapbark tree (Quillaja saponaria; Rosaceae). To improve our understanding of the biosynthesis of these saponins, a combined polymerase chain reaction and expressed sequence tag approach was taken to identify the genes involved. A cDNA encoding a beta-amyrin synthase (SvBS) was isolated by reverse transcription-polymerase chain reaction and characterized by expression in yeast (Saccharomyces cerevisiae). The SvBS gene is predominantly expressed in leaves. A S. vaccaria developing seed expressed sequence tag collection was developed and used for the isolation of a full-length cDNA bearing sequence similarity to ester-forming glycosyltransferases. The gene product of the cDNA, classified as UGT74M1, was expressed in Escherichia coli, purified, and identified as a triterpene carboxylic acid glucosyltransferase. UGT74M1 is expressed in roots and leaves and appears to be involved in monodesmoside biosynthesis in S. vaccaria.
Collapse
|
12
|
Gevrenova R, Voutquenne-Nazabadioko L, Harakat D, Prost E, Henry M. Complete 1H- and 13C NMR assignments of saponins from roots of Gypsophila trichotoma Wend. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2006; 44:686-91. [PMID: 16685746 DOI: 10.1002/mrc.1827] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The assignments of 1H and 13C NMR spectra of two new aminoacyl triterpene saponins from roots of Gypsophila trichotoma Wend. are reported. In addition to 1D NMR methods, 2D NMR techniques (COSY, TOCSY, ROESY, HSQC, HMBC, and HSQC-TOCSY) were used for the assignments. The structures were completed by analysis of HR-ESI-MS and ESI-MS(n).
Collapse
Affiliation(s)
- Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine, 2 Dunav street, 1000 Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
13
|
Rochd M, Fons F, Chahlaoui A, Henry M. How to characterize three caryophyllaceous species by the mean of the ratio of two glucuronide prosaponins? ACTA ACUST UNITED AC 2004. [DOI: 10.1080/12538078.2004.10515430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Gaidi G, Miyamoto T, Ramezani M, Lacaille-Dubois MA. Glandulosides A-D, triterpene saponins from Acanthophyllum glandulosum. JOURNAL OF NATURAL PRODUCTS 2004; 67:1114-1118. [PMID: 15270563 DOI: 10.1021/np040001v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Four novel triterpenoid saponins, glandulosides A (1), B (2), C (3), and D (4), together with two known saponins (5 and 6) have been isolated from the roots of Acanthophyllum glandulosum. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FABMS. The new compounds were characterized as 23-O-beta-D-galactopyranosylgypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[beta-d-galactopyranosyl-(1-->6)]-beta-D-galactopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-3-O-acetyl-beta-D-fucopyranoside (2), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-3,4-di-O-acetyl-beta-D-fucopyranoside (3), and 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-l-rhamnopyranosyl-(1-->2)-[3-O-acetyl-beta-D-quinovopyranosyl-(1-->4)]-beta-D-fucopyranoside (4).
Collapse
Affiliation(s)
- Ghezala Gaidi
- Laboratoire de Pharmacognosie, Unité de Molécules d'Intérêt Biologique (UMIB), EA 3660, Faculté de Pharmacie, Université de Bourgogne, 7, Boulevard Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | | | | | | |
Collapse
|
15
|
Clément MJ, Imberty A, Phalipon A, Pérez S, Simenel C, Mulard LA, Delepierre M. Conformational studies of the O-specific polysaccharide of Shigella flexneri 5a and of four related synthetic pentasaccharide fragments using NMR and molecular modeling. J Biol Chem 2003; 278:47928-36. [PMID: 12925526 DOI: 10.1074/jbc.m308259200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of a program for the development of synthetic vaccines against the pathogen Shigella flexneri, we used a combination of NMR and molecular modeling methods to study the conformations of the O-specific polysaccharide (O-SP) of S. flexneri 5a and of four related synthetic pentasaccharide fragments. The NMR study, based on the analysis of 1H and 13C chemical shifts, the evaluation of inter-residue distances, and the measurement of one- and three-bond heteronuclear coupling constants, showed that the conformation of one of the four pentasaccharides is similar to that of the native O-SP in solution. Interestingly, inhibition enzyme-linked immunosorbent assay demonstrated that a protective monoclonal antibody specific for S. flexneri 5a has a greater affinity for this pentasaccharide than for the others. We carried out a complete conformational search on the pentasaccharides using the CICADA algorithm interfaced with MM3 force field. We calculated Boltzmann-averaged inter-residue distances and 3JC,H coupling constants for the different conformational families and compared the results with NMR data for all pentasaccharides. Our experimental data are consistent with only one conformational family. We also used molecular modeling data to build models of the O-SP with the molecular builder program POLYS. The models that are in agreement with NMR data adopt right-handed 3-fold helical structures in which the branched glucosyl residue points outwards.
Collapse
Affiliation(s)
- Marie-Jeanne Clément
- Unité de RMN des Biomolécules, URA CNRS 2185, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Mulard LA, Clément MJ, Segat-Dioury F, Delepierre M. Synthesis and NMR study of a linear pentasaccharide fragment of the Shigella flexneri 5a O-specific polysaccharide. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00148-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Triterpenoid saponins from Caryophyllaceae family. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1572-5995(02)80004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
18
|
Gaidi G, Miyamoto T, Lacaille-Dubois MA. Junceosides A-C, new triterpene saponins from Arenaria juncea. JOURNAL OF NATURAL PRODUCTS 2001; 64:1533-1537. [PMID: 11754605 DOI: 10.1021/np010353r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three novel triterpenoid saponins, junceosides A (1), B (2), and C (3), together with two known saponins have been isolated from the roots of Arenaria juncea. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FABMS. The new compounds were characterized as 3-O-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-glucopyranosyl(1-->3)-[beta-D-xylopyranosyl-(1-->4)]-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (1), 3-O-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-galactopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (2), and 3-O-beta-D-xylopyranosyl-(1-->3)-[beta-D-galactopyranosyl-(1-->2)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-beta-D-fucopyranoside (3).
Collapse
Affiliation(s)
- G Gaidi
- Laboratoire de Pharmacognosie, Unité de Molécules d'Intérêt Biologique, JE 2244, Faculté de Pharmacie, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | | | | |
Collapse
|
19
|
Gaidi G, Miyamoto T, Rustaiyan A, Lacaille-Dubois MA. Three new acylated triterpene saponins from Acanthophyllum squarrosum. JOURNAL OF NATURAL PRODUCTS 2001; 64:920-924. [PMID: 11473424 DOI: 10.1021/np010002c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three new triterpenoid saponins, 1-3, were isolated from the roots of Acanthophyllum squarrosum. Their structures were established mainly by 2D NMR techniques as 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl-gypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-beta-D-xylopyranosyl-(1-->4)-3-O-acetyl-alpha-L-rhamnopyranosyl-(1-->2)-3,4-di-O-acetyl-beta-D-fucopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosyl-gypsogenin-28-O-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-[5-O-acetyl-alpha-L-arabinofuranosyl-(1-->3)]-4-O-acetyl-beta-D-fucopyranoside (2), and 3-O-beta-D-glucopyranosyl-quillaic acid-28-O-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6)]-beta-D-glucopyranoside (3).
Collapse
Affiliation(s)
- G Gaidi
- Laboratoire de Pharmacognosie, Unité MIB, JE 2244, Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon, Cedex France
| | | | | | | |
Collapse
|
20
|
Roumestand C, Canet D. Extending the excitation sculpting concept for selective excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2000; 147:331-339. [PMID: 11097822 DOI: 10.1006/jmre.2000.2206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nowadays, excitation sculpting is probably the most efficient way to achieve selectivity in an NMR experiment, since it associates very clean frequency selection with "user-friendliness." In the present report, it is shown that the excitation sculpting concept, originally based on a double pulse field gradient echo acting on a selected transverse magnetization, can be extended through new experiments designed to act on longitudinal magnetization. This leads to outstanding performances, especially when the transverse relaxation rate is a limiting factor as, for example, in the case of biological macromolecules. Several new sequences are proposed, aiming at the selection of magnetization aligned either/both on a transverse axis or/and on the z-axis. Their potentialities are illustrated in light of different applications including multiplet-selective excitation, band-selective excitation, and water suppression.
Collapse
Affiliation(s)
- C Roumestand
- Centre de Biochimie Structurale, CNRS-UMR 9955, INSERM-U414, Faculté de Pharmacie, Université de Montpellier I, 15 Avenue Charles Flahault, 34060 Montpellier Cedex 1, France.
| | | |
Collapse
|
21
|
Gaidi G, Miyamoto T, Rustaiyan A, Laurens V, Lacaille-Dubois MA. Two new biologically active triterpene saponins from Acanthophyllum squarrosum. JOURNAL OF NATURAL PRODUCTS 2000; 63:1497-1502. [PMID: 11087591 DOI: 10.1021/np000212+] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Two novel triterpenoid saponins (1 and 2) have been isolated from the roots of Acanthophyllum squarrosum. The structures were established mainly by a combination of 2D NMR techniques as 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-be ta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3 )-b eta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->4)-[alpha-L- rhamnopyranosyl-(1-->3)]-beta-D-fucopyranoside (1) and 3-O-beta-D-glucopyranosylgypsogenin-28-O-alpha-L-rhamnopyranosyl-( 1-- >2)-alpha-L-arabinopyranosyl-(1-->2)-[beta-D-glucopyranosyl-(1-->6 )]- beta-D-glucopyranoside (2). Compound 1 showed a moderate concentration-dependent immunomodulatory effect in an in vitro lymphocyte proliferation assay.
Collapse
Affiliation(s)
- G Gaidi
- Laboratoire de Pharmacognosie, Unité MIB, Faculté de Pharmacie, Université de Bourgogne, 7 Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latgé JP. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 2000; 275:27594-607. [PMID: 10869365 DOI: 10.1074/jbc.m909975199] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physical and biological properties of the fungal cell wall are determined by the composition and arrangement of the structural polysaccharides. Cell wall polymers of fungi are classically divided into two groups depending on their solubility in hot alkali. We have analyzed the alkali-insoluble fraction of the Aspergillus fumigatus cell wall, which is the fraction believed to be responsible for fungal cell wall rigidity. Using enzymatic digestions with recombinant endo-beta-1,3-glucanase and chitinase, fractionation by gel filtration, affinity chromatography with immobilized lectins, and high performance liquid chromatography, several fractions that contained specific interpolysaccharide covalent linkages were isolated. Unique features of the A. fumigatus cell wall are (i) the absence of beta-1,6-glucan and (ii) the presence of a linear beta-1, 3/1,4-glucan, never previously described in fungi. Galactomannan, chitin, and beta-1,3-glucan were also found in the alkali-insoluble fraction. The beta-1,3-glucan is a branched polymer with 4% of beta-1,6 branch points. Chitin, galactomannan, and the linear beta-1, 3/1,4-glucan were covalently linked to the nonreducing end of beta-1, 3-glucan side chains. As in Saccharomyces cerevisiae, chitin was linked via a beta-1,4 linkage to beta-1,3-glucan. The data obtained suggested that the branching of beta-1,3-glucan is an early event in the construction of the cell wall, resulting in an increase of potential acceptor sites for chitin, galactomannan, and the linear beta-1,3/1,4-glucan.
Collapse
Affiliation(s)
- T Fontaine
- Laboratoire des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jia Z, Koike K, Nikaido T. Major triterpenoid saponins from saponaria officinalis. JOURNAL OF NATURAL PRODUCTS 1998; 61:1368-1373. [PMID: 9834154 DOI: 10.1021/np980167u] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two major triterpenoid saponins, named saponariosides A and B, were isolated from the whole plants of Saponaria officinalis and were respectively defined to be 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-be ta-D-glucuronopyranosyl quillaic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)-beta-D-4-O-ac etylquinovopyranosyl-(1-->4)]-beta-D-fucopyranoside (1); 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-be ta-D-glucuronopyranosyl quillaic acid 28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha- L-rhamnopyranosyl-(1-->2)-[beta-D-4-O-acetylquinovopyranosyl-(1-->4)] -beta-D-fucopyranoside (2). Their structures were established on the basis of extensive NMR (DEPT, DQF-COSY, HOHAHA, HETCOR, HMBC, and NOESY) and MS studies as well as chemical degradation.
Collapse
Affiliation(s)
- Z Jia
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | | | | |
Collapse
|