1
|
El Hilali M, Reux B, Debiton E, Leal F, Galmier MJ, Vivier M, Chezal JM, Miot-Noirault E, Coudert P, Weber V. Linker structure-activity relationships in fluorodeoxyglucose chlorambucil conjugates for tumor-targeted chemotherapy. Bioorg Med Chem 2017; 25:5692-5708. [PMID: 28927903 DOI: 10.1016/j.bmc.2017.08.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 01/18/2023]
Abstract
Nitrogen mustards, such as chlorambucil (CLB), can cause adverse side-effects due to ubiquitous distribution in non-target organs. To minimize this toxicity, strategies of tumor-targeting drug delivery have been developed, where a cytotoxic warhead is linked to a tumor-cell-specific small ligand. Malignant cells exhibit marked glucose avidity and an accelerated metabolism by aerobic glycolysis, known as the Warburg effect, and recognized as a hallmark of cancer. A targeting approach exploiting the Warburg effect by conjugation of CLB to 2-fluoro-2-deoxyglucose (FDG) was previously reported and identified two peracetylated glucoconjugates 2 and 3 with promising antitumor activities in vivo. These results prompted us to investigate the importance of the spacer in this tumor-targeting glucose-based conjugates. Here we report the chemical synthesis and an in vitro cytotoxicity evaluation, using a 5-member panel of human tumor cell lines and human fibroblasts, of 16 new CLB glucoconjugates in which the alkylating drug is attached to the C-1 position of FDG via different linkages. We studied the structure-activity relationships in the linker, and evidenced the positive impact of an aromatic linker on in vitro cytotoxicity: compound 51 proved to be the most active FDG-CLB glucoside, characterized by a bis-aromatic spacer tethered to CLB through an amide function.
Collapse
Affiliation(s)
- Mostafa El Hilali
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Bastien Reux
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Eric Debiton
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Fernand Leal
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Marie-Josephe Galmier
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Magali Vivier
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Pascal Coudert
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France
| | - Valérie Weber
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
3
|
Khaled A, Piotrowska O, Dominiak K, Augé C. Exploring specificity of glycosyltransferases: synthesis of new sugar nucleotide related molecules as putative donor substrates. Carbohydr Res 2007; 343:167-78. [PMID: 18048019 DOI: 10.1016/j.carres.2007.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 10/23/2007] [Accepted: 11/07/2007] [Indexed: 11/26/2022]
Abstract
We investigated the specificity of glycosyltransferases toward donor substrates in two complementary directions. First we prepared simple N-acetyl-alpha-D-glucosamine 1-diphosphates: methyl-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-diphosphate, benzyl-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-diphosphate, 4-phenylbutyl-(2-acetamido-2-deoxy-alpha-D-glucopyranosyl)-diphosphate, by the coupling of the corresponding activated alkyl phosphates with N-acetyl-alpha-D-glucosamine 1-phosphate. These diphosphates as well as 2-acetamido-2-deoxy-alpha-D-glucopyranose 1-diphosphate, tested as donors of N-acetylglucosamine in a reaction catalyzed by Neisseria meningitidis N-acetylglucosaminyltransferase (LgtA), proved to be devoid of activity. Evaluated as inhibitors, only 2-acetamido-2-deoxy-alpha-D-glucopyranose 1-diphosphate showed some inhibitory activity with an IC50 value of 7 mM. In the second approach, we prepared sugar nucleotide mimics having the diphosphate bridge replaced by the oxycarbonylaminosulfonyl linker. The surrogate of GDP-Fuc was synthesized as a 9:1 alpha/beta anomeric mixture, in 40% yield, starting from chlorosulfonyl isocyanate, perbenzylated l-fucopyranose, and a guanosine derivative, protected on the exocyclic amine and secondary hydroxyl functions of ribose. Then two deprotection steps, hydrogenolysis and enzymatic hydrolysis catalyzed by penicillin G amidase afforded the target molecule to be tested as fucose donor with recombinant human alpha-(1-->3/4)-fucosyltransferase (FucT-III). Tested as a 4:1 alpha/beta anomeric mixture, both in the absence and in the presence of cationic cofactors, this new guanosine fucose conjugate proved to be ineffective. Its inhibitory activity toward FucT-III evaluated through a competition fluorescence assay was very poor (IC50 value of 20 mM). The surrogate of UDP-GlcNAc that was already known as its protected acetylated derivative, tested as N-acetylglucosamine donor with LgtA in the presence of Mn(2+) turned out not to be active either.
Collapse
Affiliation(s)
- Amira Khaled
- Glycochimie Moléculaire et Macromoléculaire, Laboratoire de Chimie Organique Multifonctionnelle, UMR 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, Bâtiment 420, Univ Paris-Sud, F-91405 Orsay, France
| | | | | | | |
Collapse
|
4
|
Seitz O, Heinemann I, Mattes A, Waldmann H. Synthetic peptide conjugates—tailor-made probes for the biology of protein modification and protein processing. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(00)01115-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Koeller KM, Wong CH. Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem Rev 2000; 100:4465-94. [PMID: 11749355 DOI: 10.1021/cr990297n] [Citation(s) in RCA: 347] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K M Koeller
- Department of Chemistry, The Scripps Research Institute and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037
| | | |
Collapse
|
7
|
Eisele F, Owen DJ, Waldmann H. Peptide conjugates as tools for the study of biological signal transduction. Bioorg Med Chem 1999; 7:193-224. [PMID: 10218812 DOI: 10.1016/s0968-0896(98)00204-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Today, many biological phenomena are being investigated and understood in molecular detail, and organic chemistry is increasingly being directed towards biological phenomena. This review is intended to highlight this interplay of organic chemistry and biology, using biological signal transduction as an example. Lipo-, glyco-, phospho- and nucleoproteins play key roles in the processes whereby chemical signals are passed across cell membranes and further to the cell nucleus. For the study of the biological phenomena associated with these protein conjugates, structurally well-defined peptides containing the characteristic linkage region of the peptide backbone with the lipid, the carbohydrate or the phosphoric acid ester can provide valuable tools. The multi-functionality and pronounced acid- and base-lability of such compounds renders their synthesis a formidable challenge to conventional organic synthesis. However, the recent development of enzymatic protecting groups, provides one of the central techniques which, when coupled with classic chemical synthesis, can provide access to these complex and sensitive biologically relevant peptide conjugates under particularly mild conditions and with high selectivity.
Collapse
Affiliation(s)
- F Eisele
- Universität Karlsruhe, Institut für Organische Chemie, Germany
| | | | | |
Collapse
|