1
|
A Comparison of the Transglycosylation Capacity between the Guar GH27 Aga27A and Bacteroides GH36 BoGal36A α-Galactosidases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The transglycosylation behavior and capacity of two clan GH-D α-galactosidases, BoGal36A from the gut bacterium Bacteroides ovatus and Aga27A from the guar plant, was investigated and compared. The enzymes were screened for the ability to use para-nitrophenyl-α-galactoside (pNP-Gal), raffinose and locust bean gum (LBG) galactomannan as glycosyl donors with the glycosyl acceptors methanol, propanol, allyl alcohol, propargyl alcohol and glycerol using mass spectrometry. Aga27A was, in general, more stable in the presence of the acceptors. HPLC analysis was developed and used as a second screening method for reactions using raffinose or LBG as a donor substrate with methanol, propanol and glycerol as acceptors. Time-resolved reactions were set up with raffinose and methanol as the donor and acceptor, respectively, in order to develop an insight into the basic transglycosylation properties, including the ratio between the rate of transglycosylation (methyl galactoside synthesis) and rate of hydrolysis. BoGal36A had a somewhat higher ratio (0.99 compared to 0.71 for Aga27A) at early time points but was indicated to be more prone to secondary (product) hydrolysis in prolonged incubations. The methyl galactoside yield was higher when using raffinose (48% for BoGal36A and 38% for Aga27A) compared to LBG (27% for BoGal36A and 30% for Aga27A).
Collapse
|
2
|
Selection and mutational analyses of the substrate interacting residues of a chitinase from Enterobacter cloacae subsp. cloacae (EcChi2) to improve transglycosylation. Int J Biol Macromol 2020; 165:2432-2441. [PMID: 33096170 DOI: 10.1016/j.ijbiomac.2020.10.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
Abstract
Transglycosylation (TG) by Enterobacter cloacae subsp. cloacae chitinase 2 (EcChi2) has been deciphered by site-directed mutagenesis. EcChi2 originally displayed feeble TG with chitin oligomer with a degree of polymerization (DP4), for a short duration. Based on the 3D modelling and molecular docking analyses, we altered the substrate interactions at the substrate-binding cleft, catalytic center, and catalytic groove of EcChi2 by mutational approach to improve TG. The mutation of W166A and T277A increased TG by EcChi2 and also affected its catalytic efficiency on the polymeric substrates. Whereas, R171A had a drastically decreased hydrolytic activity but, retained TG activity. In the increased hydrolytic activity of the T277A, altered interactions with the substrates played an indirect role in the catalysis. Mutation of the central Asp, in the conserved DxDxE motif, to Ala (D314A) and Asn (D314N) conversion yielded DP5-DP8 TG products. The quantifiable TG products (DP5 and DP6) increased to 8% (D314A) and 7% (D314N), resulting in a hyper-transglycosylating mutant. Mutation of W276A and W398A resulted in the loss of TG activity, indicating that the aromatic residues (W276 and W398) at +1 and +2 subsites are essential for the TG activity of EcChi2.
Collapse
|
3
|
Bakunina I, Slepchenko L, Anastyuk S, Isakov V, Likhatskaya G, Kim N, Tekutyeva L, Son O, Balabanova L. Characterization of Properties and Transglycosylation Abilities of Recombinant α-Galactosidase from Cold-Adapted Marine Bacterium Pseudoalteromonas KMM 701 and Its C494N and D451A Mutants. Mar Drugs 2018; 16:E349. [PMID: 30250010 PMCID: PMC6213131 DOI: 10.3390/md16100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
A novel wild-type recombinant cold-active α-d-galactosidase (α-PsGal) from the cold-adapted marine bacterium Pseudoalteromonas sp. KMM 701, and its mutants D451A and C494N, were studied in terms of their structural, physicochemical, and catalytic properties. Homology models of the three-dimensional α-PsGal structure, its active center, and complexes with D-galactose were constructed for identification of functionally important amino acid residues in the active site of the enzyme, using the crystal structure of the α-galactosidase from Lactobacillus acidophilus as a template. The circular dichroism spectra of the wild α-PsGal and mutant C494N were approximately identical. The C494N mutation decreased the efficiency of retaining the affinity of the enzyme to standard p-nitrophenyl-α-galactopiranoside (pNP-α-Gal). Thin-layer chromatography, matrix-assisted laser desorption/ionization mass spectrometry, and nuclear magnetic resonance spectroscopy methods were used to identify transglycosylation products in reaction mixtures. α-PsGal possessed a narrow acceptor specificity. Fructose, xylose, fucose, and glucose were inactive as acceptors in the transglycosylation reaction. α-PsGal synthesized -α(1→6)- and -α(1→4)-linked galactobiosides from melibiose as well as -α(1→6)- and -α(1→3)-linked p-nitrophenyl-digalactosides (Gal₂-pNP) from pNP-α-Gal. The D451A mutation in the active center completely inactivated the enzyme. However, the substitution of C494N discontinued the Gal-α(1→3)-Gal-pNP synthesis and increased the Gal-α(1→4)-Gal yield compared to Gal-α(1→6)-Gal-pNP.
Collapse
Affiliation(s)
- Irina Bakunina
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Lubov Slepchenko
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Stanislav Anastyuk
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Vladimir Isakov
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Galina Likhatskaya
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Natalya Kim
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - Liudmila Tekutyeva
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Oksana Son
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| | - Larissa Balabanova
- Laboratory of Enzyme Chemistry, Laboratory of Marine Biochemistry, Laboratory of Bioassays and Mechanism of action of Biologically Active Substances, Laboratory of Instrumental and Radioisotope Testing Methods, Group of NMR-Spectroscopy of G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russia.
- School of Economics and Management, School of Natural Sciences of Far Eastern Federal University, Russky Island, Vladivostok 690022, Russia.
| |
Collapse
|
4
|
Stratilová B, Klaudiny J, Řehulka P, Stratilová E, Mészárosová C, Garajová S, Pavlatovská B, Řehulková H, Kozmon S, Šesták S, Firáková Z, Vadkertiová R. Characterization of a long-chain α-galactosidase from Papiliotrema flavescens. World J Microbiol Biotechnol 2018; 34:19. [PMID: 29302817 DOI: 10.1007/s11274-017-2403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/22/2017] [Indexed: 11/30/2022]
Abstract
α-Galactosidases are assigned to the class of hydrolases and the subclass of glycoside hydrolases (GHs). They belong to six GH families and include the only characterized α-galactosidases from yeasts (GH 27, Saccharomyces cerevisiae). The present study focuses on an investigation of the lactose-inducible α-galactosidase produced by Papiliotrema flavescens. The enzyme was present on the surface of cells and in the cytosol. Its temperature optimum was about 60 °C and the pH optimum was 4.8; the pH stability ranged from 3.2 to 6.6. This α-galactosidase also exhibited transglycosylation activity. The cytosol α-galactosidase with a molecular weight about 110 kDa, was purified using a combination of liquid chromatography techniques. Three intramolecular peptides were determined by the partial structural analysis of the sequences of the protein isolated, using MALDI-TOF/TOF mass spectrometry. The data obtained recognized the first yeast α-galactosidase, which belongs to the GH 36 family. The bioinformatics analysis and homology modeling of a 210 amino acids long C-terminal sequence (derived from cDNA) confirmed the correctness of these findings. The study was also supplemented by the screening of capsular cryptococcal yeasts, which produce the surface lactose-inducible α- and β-galactosidases. The production of the lactose-inducible α-galactosidases was not found to be a general feature within the yeast strains examined and, therefore, the existing hypothesis on the general function of this enzyme in cryptococcal capsule rearrangement cannot be confirmed.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.,Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Jaroslav Klaudiny
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Pavel Řehulka
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50001, Hradec Králové, Czech Republic
| | - Eva Stratilová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Csilla Mészárosová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Soňa Garajová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Barbora Pavlatovská
- Institute of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Helena Řehulková
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 50001, Hradec Králové, Czech Republic
| | - Stanislav Kozmon
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Zuzana Firáková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Renáta Vadkertiová
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
5
|
Morales-Quintana L, Faúndez C, Herrera R, Zavaleta V, Ravanal MC, Eyzaguirre J, Moya-León MA. Biochemical and structural characterization of Penicillium purpurogenum α-D galactosidase: Binding of galactose to an alternative pocket may explain enzyme inhibition. Carbohydr Res 2017. [DOI: 10.1016/j.carres.2017.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Hu Y, Tian G, Zhao L, Wang H, Ng TB. A protease-resistant α-galactosidase from Pleurotus djamor with broad pH stability and good hydrolytic activity toward raffinose family oligosaccharides. Int J Biol Macromol 2017; 94:122-130. [DOI: 10.1016/j.ijbiomac.2016.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
|
7
|
Hu Y, Tian G, Geng X, Zhang W, Zhao L, Wang H, Ng TB. A protease-resistant α-galactosidase from Pleurotus citrinopileatus with broad substrate specificity and good hydrolytic activity on raffinose family oligosaccharides. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Zhou J, Liu Y, Lu Q, Zhang R, Wu Q, Li C, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a Glycoside Hydrolase Family 27 α-Galactosidase from Pontibacter Reveals Its Novel Salt-Protease Tolerance and Transglycosylation Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2315-2324. [PMID: 26948050 DOI: 10.1021/acs.jafc.6b00255] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
α-Galactosidases are of great interest in various applications. A glycoside hydrolase family 27 α-galactosidase was cloned from Pontibacter sp. harbored in a saline soil and expressed in Escherichia coli. The purified recombinant enzyme (rAgaAHJ8) was little or not affected by 3.5-30.0% (w/v) NaCl, 10.0-100.0 mM Pb(CH3COO)2, 10.0-60.0 mM ZnSO4, or 8.3-100.0 mg mL(-1) trypsin and by most metal ions and chemical reagents at 1.0 and 10.0 mM concentrations. The degree of synergy on enzymatic degradation of locust bean gum and guar gum by an endomannanase and rAgaAHJ8 was 1.22-1.54. In the presence of trypsin, the amount of reducing sugars released from soybean milk treated by rAgaAHJ8 was approximately 3.8-fold compared with that treated by a commercial α-galactosidase. rAgaAHJ8 showed transglycosylation activity when using sucrose, raffinose, and 3-methyl-1-butanol as the acceptors. Furthermore, potential factors for salt adaptation of the enzyme were presumed.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Yu Liu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Lu
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Chunyan Li
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- College of Life Sciences, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Kunming, Yunnan 650500, People's Republic of China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University , Kunming, Yunnan 650500, People's Republic of China
| |
Collapse
|
9
|
Stockinger LW, Eide KB, Dybvik AI, Sletta H, Vårum KM, Eijsink VG, Tøndervik A, Sørlie M. The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1494-501. [DOI: 10.1016/j.bbapap.2015.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/29/2015] [Accepted: 06/23/2015] [Indexed: 11/25/2022]
|
10
|
Borisova AS, Ivanen DR, Bobrov KS, Eneyskaya EV, Rychkov GN, Sandgren M, Kulminskaya AA, Sinnott ML, Shabalin KA. α-Galactobiosyl units: thermodynamics and kinetics of their formation by transglycosylations catalysed by the GH36 α-galactosidase from Thermotoga maritima. Carbohydr Res 2014; 401:115-21. [PMID: 25486100 DOI: 10.1016/j.carres.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
Broad regioselectivity of α-galactosidase from Thermotoga maritima (TmGal36A) is a limiting factor for application of the enzyme in the directed synthesis of oligogalactosides. However, this property can be used as a convenient tool in studies of thermodynamics of a glycosidic bond. Here, a novel approach to energy difference estimation is suggested. Both transglycosylation and hydrolysis of three types of galactosidic linkages were investigated using total kinetics of formation and hydrolysis of pNP-galactobiosides catalysed by monomeric glycoside hydrolase family 36 α-galactosidase from T. maritima, a retaining exo-acting glycoside hydrolase. We have estimated transition state free energy differences between the 1,2- and 1,3-linkage (ΔΔG(‡)0 values were equal 5.34 ± 0.85 kJ/mol) and between 1,6-linkage and 1,3-linkage (ΔΔG(‡)0=1.46 ± 0.23 kJ/mol) in pNP-galactobiosides over the course of the reaction catalysed by TmGal36A. Using the free energy difference for formation and hydrolysis of glycosidic linkages (ΔΔG(‡)F-ΔΔG(‡)H), we found that the 1,2-linkage was 2.93 ± 0.47 kJ/mol higher in free energy than the 1,3-linkage, and the 1,6-linkage 4.44 ± 0.71 kJ/mol lower.
Collapse
Affiliation(s)
- Anna S Borisova
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia; Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dina R Ivanen
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia
| | - Kirill S Bobrov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia
| | - Elena V Eneyskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia
| | - Georgy N Rychkov
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia; St. Petersburg State Polytechnical University, 29 Politechnicheskaya str., 195251 St. Petersburg, Russia
| | - Mats Sandgren
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna A Kulminskaya
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia; St. Petersburg State Polytechnical University, 29 Politechnicheskaya str., 195251 St. Petersburg, Russia.
| | - Michael L Sinnott
- Department of Chemical Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Konstantin A Shabalin
- National Research Center "Kurchatov Institute", B.P. Konstantinov Petersburg Nuclear Physics Institute, Orlova Roscha, 188300 Gatchina, Russia; St. Petersburg State Polytechnical University, 29 Politechnicheskaya str., 195251 St. Petersburg, Russia
| |
Collapse
|
11
|
Dušan V, Nenad M, Dejan B, Filip B, Segal AM, Dejan S, Jovana T, Aleksandra D. The specificity of α-glucosidase from Saccharomyces cerevisiae differs depending on the type of reaction: hydrolysis versus transglucosylation. Appl Microbiol Biotechnol 2014; 98:6317-28. [PMID: 24682477 DOI: 10.1007/s00253-014-5587-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/30/2014] [Accepted: 02/01/2014] [Indexed: 12/27/2022]
Abstract
Our investigation of the catalytic properties of Saccharomyces cerevisiae α-glucosidase (AGL) using hydroxybenzyl alcohol (HBA) isomers as transglucosylation substrates and their glucosides in hydrolytic reactions demonstrated interesting findings pertaining to the aglycon specificity of this important enzyme. AGL specificity increased from the para(p)- to the ortho(o)-HBA isomer in transglucosylation, whereas such AGL aglycon specificity was not seen in hydrolysis, thus indicating that the second step of the reaction (i.e., binding of the glucosyl acceptor) is rate-determining. To study the influence of substitution pattern on AGL kinetics, we compared AGL specificity, inferred from kinetic constants, for HBA isomers and other aglycon substrates. The demonstrated inhibitory effects of HBA isomers and their corresponding glucosides on AGL-catalyzed hydrolysis of p-nitrophenyl α-glucoside (PNPG) suggest that HBA glucosides act as competitive, whereas HBA isomers are noncompetitive, inhibitors. As such, we postulate that aromatic moieties cannot bind to an active site unless an enzyme-glucosyl complex has already formed, but they can interact with other regions of the enzyme molecule resulting in inhibition.
Collapse
Affiliation(s)
- Veličković Dušan
- Faculty of Chemistry, University of Belgrade, Studentski trg 12, 11000, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Veličković DV, Dimitrijević AS, Bihelović FJ, Jankov RM, Milosavić N. Study of the kinetic parameters for synthesis and hydrolysis of pharmacologically active salicin isomer catalyzed by baker’s yeast maltase. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2011. [DOI: 10.1134/s0036024411130346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Zakariassen H, Hansen MC, Jøranli M, Eijsink VGH, Sørlie M. Mutational Effects on Transglycosylating Activity of Family 18 Chitinases and Construction of a Hypertransglycosylating Mutant. Biochemistry 2011; 50:5693-703. [DOI: 10.1021/bi2002532] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Henrik Zakariassen
- Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| | - Mona Cecilie Hansen
- Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| | - Maje Jøranli
- Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| | - Vincent G. H. Eijsink
- Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| | - Morten Sørlie
- Department of Chemistry Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway
| |
Collapse
|
14
|
Svastits-Dücső L, Nguyen QD, Lefler DD, Rezessy-Szabó JM. Effects of galactomannan as carbon source on production of α-galactosidase by Thermomyces lanuginosus: Fermentation, purification and partial characterisation. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Weignerová L, Simerská P, Křen V. α-Galactosidases and their applications in biotransformations. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802583416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Osanjo G, Dion M, Drone J, Solleux C, Tran V, Rabiller C, Tellier C. Directed evolution of the alpha-L-fucosidase from Thermotoga maritima into an alpha-L-transfucosidase. Biochemistry 2007; 46:1022-33. [PMID: 17240986 DOI: 10.1021/bi061444w] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha-L-fucosidase from Thermotoga maritima (Tm alpha fuc) was converted into alpha-L-transfucosidase variants by directed evolution. The wild-type enzyme catalyzes oligosaccharide synthesis by transfer of a fucosyl residue from a pNP-fucoside donor to pNP-fucoside (self-condensation) with alpha-(1-->3) regioselectivity or pNP-galactoside (transglycosylation) with alpha-(1-->2) regioselectivity at low yields (7%). The wild-type enzyme was submitted to one cycle of mutagenesis, followed by rational recombination of the selected mutations, which allowed identification of variants with improved transferase activity. The transferase and hydrolytic kinetics of all the mutants were assessed by NMR methods and capillary electrophoresis. It was shown that the best mutant exhibited a dramatic 32-fold increase in the transferase/hydrolytic kinetic ratio, while keeping 60% of the overall wild-type enzyme activity. Accordingly, the maximum yield of a specific transglycosylation product [pNP-Gal-alpha-(1-->2)-Fuc] reached more than 60% compared to 7% with WT enzyme at equimolar and low concentrations of donor and acceptor (10 mM). Such an improvement was obtained with only three mutations (T264A, Y267F, L322P), which were all located in the second amino acid shell of the fucosidase active site. Molecular modeling suggested that some of these mutations (T264A, Y267F) cause a reorientation of the amino acids that are in direct contact with the substrates, resulting in a better docking energy. Such mutants with high transglycosidase activity may constitute novel enzymatic tools for the synthesis of fucooligosaccharides.
Collapse
Affiliation(s)
- George Osanjo
- Université de Nantes, Nantes Atlantique Universités, UMR CNRS 6204, Biotechnologie, Biocatalyse, Biorégulation, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, Nantes, F- 44322 France
| | | | | | | | | | | | | |
Collapse
|
17
|
Simerská P, Kuzma M, Monti D, Riva S, Macková M, Křen V. Unique transglycosylation potential of extracellular α-d-galactosidase from Talaromyces flavus. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcatb.2006.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Eneyskaya EV, Ivanen DR, Shabalin KA, Kulminskaya AA, Backinowsky LV, Brumer Iii H, Neustroev KN. Chemo-enzymatic synthesis of 4-methylumbelliferyl β-(1→4)-d-xylooligosides: new substrates for β-d-xylanase assays. Org Biomol Chem 2005; 3:146-51. [PMID: 15602610 DOI: 10.1039/b409583a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transglycosylation catalyzed by a beta-D-xylosidase from Aspergillus sp. was used to synthesize a set of 4-methylumbelliferyl (MU) beta-1-->4-D-xylooligosides having the common structure [beta-D-Xyl-(1-->4)]2-5-beta-D-Xyl-MU. MU xylobioside synthesized chemically by the condensation of protected MU beta-D-xylopyranoside with ethyl 2,3,4-tri-O-acetyl-1-thio-beta-D-xylopyranoside was used as a substrate for transglycosylation with the beta-D-xylosidase from Aspergillus sp. to produce higher MU xylooligosides. The structures of oligosaccharides obtained were established by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. MU beta-D-xylooligosides synthesized were tested as fluorogenic substrates for the GH-10 family beta-D-xylanase from Aspergillus orizae and the GH-11 family beta-D-xylanase I from Trichoderma reesei. Both xylanases released the aglycone from MU xylobioside and the corresponding trioside. With substrates having d.p. 4 and 5, the enzymes manifested endolytic activities, splitting off MU, MUX, and MUX2 primarily.
Collapse
Affiliation(s)
- Elena V Eneyskaya
- Petersburg Nuclear Physics Institute, Russian Academy of Science, Molecular and Radiation Biology Division, Gatchina, 188300, Russia
| | | | | | | | | | | | | |
Collapse
|
19
|
Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M. Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1→3)-β-glucosidase from the white-rot fungus Phanerochaete chrysosporium. Carbohydr Res 2004; 339:2851-7. [PMID: 15582611 DOI: 10.1016/j.carres.2004.09.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 11/23/2022]
Abstract
To elucidate the interaction between substrate inhibition and substrate transglycosylation of retaining glycoside hydrolases (GHs), a steady-state kinetic study was performed for the GH family 3 glucan (1-->3)-beta-glucosidase from the white-rot fungus Phanerochaete chrysosporium, using laminarioligosaccharides as substrates. When laminaribiose was incubated with the enzyme, a transglycosylation product was detected by thin-layer chromatography. The product was purified by size-exclusion chromatography, and was identified as a 6-O-glucosyl-laminaribiose (beta-D-Glcp-(1-->6)-beta-D-Glcp-(1-->3)-D-Glc) by 1H NMR spectroscopy and electrospray ionization mass spectrometry analysis. In steady-state kinetic studies, an apparent decrease of laminaribiose hydrolysis was observed at high concentrations of the substrate, and the plots of glucose production versus substrate concentration were thus fitted to a modified Michaelis-Menten equation including hydrolytic and transglycosylation parameters (K(m), K(m2), k(cat), k(cat2)). The rate of 6-O-glucosyl-laminaribiose production estimated by high-performance anion-exchange chromatography coincided with the theoretical rate calculated using these parameters, clearly indicating that substrate inhibition of this enzyme is fully explained by substrate transglycosylation. Moreover, when K(m), k(cat), and affinity for glucosyl-enzyme intermediates (K(m2)) were estimated for laminarioligosaccharides (DP=3-5), the K(m) value of laminaribiose was approximately 5-9 times higher than those of the other oligosaccharides (DP=3-5), whereas the K(m2) values were independent of the DP of the substrates. The kinetics of transglycosylation by the enzyme could be well interpreted in terms of the subsite affinities estimated from the hydrolytic parameters (K(m) and k(cat)), and a possible mechanism of transglycosylation is proposed.
Collapse
Affiliation(s)
- Rie Kawai
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
20
|
Golubev AM, Nagem RAP, Brandão Neto JR, Neustroev KN, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Savel'ev AN, Polikarpov I. Crystal structure of alpha-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J Mol Biol 2004; 339:413-22. [PMID: 15136043 DOI: 10.1016/j.jmb.2004.03.062] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 03/15/2004] [Accepted: 03/23/2004] [Indexed: 11/18/2022]
Abstract
The crystal structures of alpha-galactosidase from the mesophilic fungus Trichoderma reesei and its complex with the competitive inhibitor, beta-d-galactose, have been determined at 1.54 A and 2.0 A resolution, respectively. The alpha-galactosidase structure was solved by the quick cryo-soaking method using a single Cs derivative. The refined crystallographic model of the alpha-galactosidase consists of two domains, an N-terminal catalytic domain of the (beta/alpha)8 barrel topology and a C-terminal domain which is formed by an antiparallel beta-structure. The protein contains four N-glycosylation sites located in the catalytic domain. Some of the oligosaccharides were found to participate in inter-domain contacts. The galactose molecule binds to the active site pocket located in the center of the barrel of the catalytic domain. Analysis of the alpha-galactosidase- galactose complex reveals the residues of the active site and offers a structural basis for identification of the putative mechanism of the enzymatic reaction. The structure of the alpha-galactosidase closely resembles those of the glycoside hydrolase family 27. The conservation of two catalytic Asp residues, identified for this family, is consistent with a double-displacement reaction mechanism for the alpha-galactosidase. Modeling of possible substrates into the active site reveals specific hydrogen bonds and hydrophobic interactions that could explain peculiarities of the enzyme kinetics.
Collapse
Affiliation(s)
- A M Golubev
- Petersburg Nuclear Physics Institute, Gatchina, St Petersburg, 188300, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Borriss R, Krah M, Brumer H, Kerzhner MA, Ivanen DR, Eneyskaya EV, Elyakova LA, Shishlyannikov SM, Shabalin KA, Neustroev KN. Enzymatic synthesis of 4-methylumbelliferyl (1-->3)-beta-D-glucooligosaccharides-new substrates for beta-1,3-1,4-D-glucanase. Carbohydr Res 2003; 338:1455-67. [PMID: 12829391 DOI: 10.1016/s0008-6215(03)00199-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transglycosylation reactions catalyzed by beta-1,3-D-glucanases (laminaranases) were used to synthesize a number of 4-methylumbelliferyl (MeUmb) (1-->3)-beta-D-gluco-oligosaccharides having the common structure [beta-D-Glcp-(1-->3)](n)-beta-D-Glcp-MeUmb, where n=1-5. The beta-1,3-D-glucanases used were purified from the culture liquid of Oerskovia sp. and from a homogenate of the marine mollusc Spisula sachalinensis. Laminaran and curdlan were used as (1-->3)-beta-D-glucan donor substrates, while MeUmb-beta-D-glucoside (MeUmbGlcp) was employed as a transglycosylation acceptor. Modification of [beta-D-Glcp-(1-->3)](2)-beta-D-Glcp-MeUmb (MeUmbG(3)) gives 4,6-O-benzylidene-D-glucopyranosyl or 4,6-O-ethylidene-D-glucopyranosyl groups at the non-reducing end of artificial oligosaccharides. The structures of all oligosaccharides obtained were solved by 1H and 13C NMR spectroscopy and electrospray tandem mass spectrometry. The synthetic oligosaccharides were shown to be substrates for a beta-1,3-1,4-D-glucanase from Rhodothermus marinus, which releases MeUmb from beta-di- and beta-triglucosides and from acetal-protected beta-triglucosides. When acting upon substrates with d.p.>3, the enzyme exhibits an endolytic activity, primarily cleaving off MeUmbGlcp and MeUmbG(2).
Collapse
Affiliation(s)
- Rainer Borriss
- AG Bakteriengenetik, Institut fur Biologie, Humboldt Universität Berlin Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zechel DL, Reid SP, Stoll D, Nashiru O, Warren RAJ, Withers SG. Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from cellulomonas fimi. Biochemistry 2003; 42:7195-204. [PMID: 12795616 DOI: 10.1021/bi034329j] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical mechanism of a retaining beta-mannosidase from Cellulomonas fimi has been characterized through steady-state kinetic analyses with a range of substrates, coupled with chemical rescue studies on both the wild-type enzyme and mutants in which active site carboxyl groups have been replaced. Studies with a series of aryl beta-mannosides of vastly different reactivities (pK(a)(lg) = 4-10) allowed kinetic isolation of the glycosylation and deglycosylation steps. Substrate inhibition was observed for all but the least reactive of these substrates. Brønsted analysis of k(cat) revealed a downward breaking plot (beta(lg) = -0.54 +/- 0.05) that is consistent with a change in rate-determining step (glycosylation to deglycosylation), and this was confirmed by partitioning studies with ethylene glycol. The pH dependence of k(cat)/K(m) follows an apparent single ionization of a group of pK(a) = 7.65 that must be protonated for catalysis. The tentative assignment of E429 as the acid-base catalyst of Man2A on the basis of sequence alignments with other family 2 glycosidases was confirmed by the increased turnover rate observed for the mutant E429A in the presence of azide and fluoride, leading to the production of beta-mannosyl azide and beta-mannosyl fluoride, respectively. A pH-dependent chemical rescue of E429A activity is also observed with citrate. Substantial oxocarbenium ion character at the transition state was demonstrated by the alpha-deuterium kinetic isotope effect for Man2A E429A of alpha-D(V) = 1.12 +/- 0.01. Surprisingly, this isotope effect was substantially greater in the presence of azide (alpha-D(V) = 1.166 +/- 0.009). Likely involvement of acid/base catalysis was revealed by the pH dependence of k(cat) for Man2A E429A, which follows a bell-shaped profile described by pK(a) values of 6.1 and 8.4, substantially different from that of the wild-type enzyme. The glycosidic bond cleaving activity of Man2A E519A and E519S nucleophile mutants is restored with azide and fluoride and appears to correlate with the corresponding "glycosynthase" activities. The contribution of the substrate 2-hydroxyl to stabilization of the Man2A glycosylation transition state (DeltaDeltaG() = 5.1 kcal mol(-1)) was probed using a 2-deoxymannose substrate. This value, surprisingly, is comparable to that found from equivalent studies with beta-glucosidases despite the geometric differences at C-2 and the importance of hydrogen bonding at that position. Modes of stabilizing the mannosidase transition state are discussed.
Collapse
Affiliation(s)
- David L Zechel
- PENCE and Department of Chemistry and Microbiology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | | | | | | | | | | |
Collapse
|
23
|
Eneyskaya EV, Brumer H, Backinowsky LV, Ivanen DR, Kulminskaya AA, Shabalin KA, Neustroev KN. Enzymatic synthesis of beta-xylanase substrates: transglycosylation reactions of the beta-xylosidase from Aspergillus sp. Carbohydr Res 2003; 338:313-25. [PMID: 12559729 DOI: 10.1016/s0008-6215(02)00467-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A beta-D-xylosidase with molecular mass of 250+/-5 kDa consisting of two identical subunits was purified to homogeneity from a cultural filtrate of Aspergillus sp. The enzyme manifested high transglycosylation activity in transxylosylation with p-nitrophenyl beta-D-xylopyranoside (PNP-X) as substrate, resulting in regio- and stereoselective synthesis of p-nitrophenyl (PNP) beta-(1-->4)-D-xylooligosaccharides with dp 2-7. All transfer products were isolated from the reaction mixtures by HPLC and their structures established by electrospray mass spectrometry and 1H and 13C NMR spectroscopy. The glycosides synthesised, beta-Xyl-1-->(4-beta-Xyl-1-->)(n)4-beta-Xyl-OC6H4NO2-p (n=1-5), were tested as chromogenic substrates for family 10 beta-xylanase from Aspergillus orizae (XynA) and family 11 beta-xylanase I from Trichoderma reesei (XynT) by reversed-phase HPLC and UV-spectroscopy techniques. The action pattern of XynA against the foregoing PNP beta-(1-->4)-D-xylooligosaccharides differed from that of XynT in that the latter released PNP mainly from short PNP xylosides (dp 2-3) while the former liberated PNP from the entire set of substrates synthesised.
Collapse
Affiliation(s)
- Elena V Eneyskaya
- Petersburg Nuclear Physics Institute, Russian Academy of Science, Molecular and Radiation Biology Division, Gatchina, 188350, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Shabalin KA, Kulminskaya AA, Savel’ev AN, Shishlyannikov SM, Neustroev KN. Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00482-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Eneyskaya EV, Kulminskaya AA, Kalkkinen N, Nifantiev NE, Arbatskii NP, Saenko AI, Chepurnaya OV, Arutyunyan AV, Shabalin KA, Neustroev KN. An alpha-L-fucosidase from Thermus sp. with unusually broad specificity. Glycoconj J 2001; 18:827-34. [PMID: 12441672 DOI: 10.1023/a:1021163720282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An alpha-L-fucosidase (E.C. 3.2.1.51) exhibiting a wide aglycon specificity expressed in ability of cleaving alpha1 --> 6-, alpha1 -->3-, alpha1 --> 4-, and alpha1 --> 2-O-fucosyl bonds in fucosylated oligosaccharides, has been isolated from culture filtrate of Thermus sp. strain Y5. The alpha-L-fucosidase hydrolyzes p-nitrophenyl alpha-L-fucopyranoside with V(max) of 12.0 +/- 0.1 microM/min/mg and K(m) = 0.20 +/- 0.05 mM and is able to cleave off about 90% of total L-fucose from pronase-treated fractions of fucosyl-containing glycoproteins and about 30% from the native glycoproteins. The purified enzyme is a tetramer with a molecular mass of 240 +/- 10 kDa consisting of four identical subunits with a molecular mass of 61.0 +/- 0.5 kDa. The N-terminal sequence showed homology to some alpha-L-fucosidases from microbial and plant sources. Hydrolysis of p-nitrophenyl alpha-L-fucopyranoside occurs with retention of the anomeric configuration. Transglycosylating activity of the alpha-L-fucosidase was demonstrated in reactions with such acceptors as alcohols, N-acetylglucosamine and N-acetylgalactosamine while no transglycosylation products were observed in the reaction with p-nitrophenyl alpha-L-fucopyranoside. The enzyme can be classified in glycosyl hydrolase family 29.
Collapse
Affiliation(s)
- E V Eneyskaya
- Molecular and Radiation Biophysics Division, Petersburg Nuclear Physics Institute, Russian Academy of Science, 188300 Gatchina, Orlova roscha, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weignerová L, Hun̆ková Z, Kuzma M, Kr̆en V. Enzymatic synthesis of three pNP-α-galactobiopyranosides: application of the library of fungal α-galactosidases. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1381-1177(00)00076-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|