1
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
2
|
Pitirollo O, Di Benedetto R, Henriques P, Gasperini G, Mancini F, Carducci M, Massai L, Rossi O, Volbeda AG, Codée JDC, Berlanda Scorza F, Moriel DG, Necchi F, Lay L, Adamo R, Micoli F. Elucidating the role of N-acetylglucosamine in Group A Carbohydrate for the development of an effective glycoconjugate vaccine against Group A Streptococcus. Carbohydr Polym 2023; 311:120736. [PMID: 37028871 DOI: 10.1016/j.carbpol.2023.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate against Group A Streptococcus infections. Native GAC consists of a polyrhamnose (polyRha) backbone with N-acetylglucosamine (GlcNAc) at every second rhamnose residue. Both native GAC and the polyRha backbone have been proposed as vaccine components. Here, chemical synthesis and glycoengineering were used to generate a panel of different length GAC and polyrhamnose fragments. Biochemical analyses were performed confirming that the epitope motif of GAC is composed of GlcNAc in the context of the polyrhamnose backbone. Conjugates from GAC isolated and purified from a bacterial strain and polyRha genetically expressed in E. coli and with similar molecular size to GAC were compared in different animal models. The GAC conjugate elicited higher anti-GAC IgG levels with stronger binding capacity to Group A Streptococcus strains than the polyRha one, both in mice and in rabbits. This work contributes to the development of a vaccine against Group A Streptococcus suggesting GAC as preferable saccharide antigen to include in the vaccine.
Collapse
Affiliation(s)
- Olimpia Pitirollo
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | | | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Anne Geert Volbeda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands.
| | | | - Danilo Gomes Moriel
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
3
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
4
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
5
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
6
|
Khatun F, Dai CC, Rivera-Hernandez T, Hussein WM, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Immunogenicity Assessment of Cell Wall Carbohydrates of Group A Streptococcus via Self-Adjuvanted Glyco-lipopeptides. ACS Infect Dis 2021; 7:390-405. [PMID: 33533246 DOI: 10.1021/acsinfecdis.0c00722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying the immunogenic moieties and their precise structure of carbohydrates plays an important role for developing effective carbohydrate-based subunit vaccines. This study assessed the structure-immunogenicity relationship of carbohydrate moieties of a single repeating unit of group A carbohydrate (GAC) present on the cell wall of group A Streptococcus (GAS) using a rationally designed self-adjuvanted lipid-core peptide, instead of a carrier protein. Immunological evaluation of fully synthetic glyco-lipopeptides (particle size: 300-500 nm) revealed that construct consisting of higher rhamnose moieties (trirhamnosyl-lipopeptide) was able to induce enhanced immunogenic activity in mice, and GlcNAc moiety was not found to be an essential component of immunogenic GAC mimicked epitope. Trirhamnosyl-lipopeptide also showed 75-97% opsonic activity against four different clinical isolates of GAS and was comparable to a subunit peptide vaccine (J8-lipopeptide) which illustrated 65-96% opsonic activity.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Zhao Y, Wang S, Wang G, Li H, Guo Z, Gu G. Synthesis and immunological studies of group AStreptococcuscell-wall oligosaccharide–streptococcal C5a peptidase conjugates as bivalent vaccines. Org Chem Front 2019. [DOI: 10.1039/c9qo00651f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convergent synthesis of GAS cell-wall oligosaccharides and their efficient conjugation with the ScpA193 carrier protein to generate glycoconjugates as potential bivalent vaccines were reported.
Collapse
Affiliation(s)
- Yisheng Zhao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Hui Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| | - Zhongwu Guo
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology
- Shandong University
- Qingdao 266237
- China
| |
Collapse
|
8
|
Multivalent display of minimal Clostridium difficile glycan epitopes mimics antigenic properties of larger glycans. Nat Commun 2016; 7:11224. [PMID: 27091615 PMCID: PMC4838876 DOI: 10.1038/ncomms11224] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort. Immunologically-active glycans are promising vaccine candidates but can be difficult to synthesize. Here, the authors show that pentavalent display of a minimal disaccharde epitope on a chemical scaffold can mimic a native C. difficile glycan antigen, representing a simple approach to synthetic vaccine production.
Collapse
|
9
|
Auzanneau FI, Borrelli S, Pinto BM. Synthesis and immunological activity of an oligosaccharide-conjugate as a vaccine candidate against Group A Streptococcus. Bioorg Med Chem Lett 2013; 23:6038-42. [PMID: 24103300 DOI: 10.1016/j.bmcl.2013.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022]
Abstract
The synthesis and immunogenicity of a tetanus toxoid (TT)-conjugate of the hexasaccharide portion of the cell-wall polysaccharide (CWPS) of the Group A Streptococcus (GAS) is described. The synthesis relies on the reaction of an allyl glycoside of the hexasaccharide with cysteamine, followed by the reaction of the resultant amine with diethyl squarate to give the monoethyl squarate adduct. Subsequent reaction with the lysine ε-amino groups on TT gives the glycoconjugate containing 30 hexasaccharide haptens per TT molecule. The immunogenicity in mice is similar to that obtained with a native CWPS-TT conjugate, validating the glycoconjugate as a vaccine candidate against GAS infections.
Collapse
|
10
|
Kabanova A, Margarit I, Berti F, Romano MR, Grandi G, Bensi G, Chiarot E, Proietti D, Swennen E, Cappelletti E, Fontani P, Casini D, Adamo R, Pinto V, Skibinski D, Capo S, Buffi G, Gallotta M, Christ WJ, Stewart Campbell A, Pena J, Seeberger PH, Rappuoli R, Costantino P. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine 2010; 29:104-14. [DOI: 10.1016/j.vaccine.2010.09.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/13/2010] [Accepted: 09/09/2010] [Indexed: 02/01/2023]
|
11
|
Thermodynamics and density of binding of a panel of antibodies to high-molecular-weight capsular polysaccharides. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:37-42. [PMID: 19005020 DOI: 10.1128/cvi.00290-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between antipolysaccharide (anti-PS) antibodies and their antigens was investigated by the use of isothermal titration calorimetry to determine the thermodynamic binding constant (K), the change in the enthalpy of binding (DeltaH), and the binding density (N) to high-molecular-weight PSs. From these values, the change in the entropy of binding (DeltaS) was calculated. The thermodynamic parameters of binding to high-molecular-weight capsular PSs are reported for two monoclonal antibodies (MAbs) with different specificities for meningococcal serogroup C PS, five MAbs specific for different pneumococcal serotypes, and the Fab fragments of two antipneumococcal MAbs. The K values were in the range of 10(6) to 10(7) M(-1), and these values were 1 to 2 orders of magnitude greater than the previously reported K values derived from antibody-oligosaccharide interactions. The DeltaH associated with binding was favorable for each MAb and Fab fragment. The DeltaS associated with binding was also generally favorable for both the MAbs and the Fab fragments, with the exception of the anti-serotype 14 MAb and its Fab fragment. N provides information regarding how densely MAbs or Fabs can bind along PS chains and, as expressed in terms of monosaccharides, was very similar for the seven MAbs, with an average of 12 monosaccharides per bound MAb. The value of N for each Fab was smaller, with five or seven monosaccharides per bound Fab. These results suggest that steric interactions between antibody molecules are a major influence on the values of N of high-affinity MAbs to capsular PSs.
Collapse
|
12
|
Johnson MA, Pinto BM. Structural and functional studies of Peptide-carbohydrate mimicry. Top Curr Chem (Cham) 2008; 273:55-116. [PMID: 23605459 DOI: 10.1007/128_2007_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognizedby carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processingenzymes, and lectins have been identified. These peptides are potentially useful as vaccines andtherapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthenor modify immune responses induced by carbohydrate antigens. However, peptides that bind specificallyto carbohydrate-binding proteins may not necessarily show the corresponding biological activity, andfurther selection based on biochemical studies is always required. The degree of structural mimicryrequired to generate the desired biological activity is therefore an interesting question. This reviewwill discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy,X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studiesprovide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimeticcompounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the designof new therapeutic compounds will also be presented.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Rd., MB-44, 92037, La Jolla, CA, USA,
| | | |
Collapse
|
13
|
Phalipon A, Costachel C, Grandjean C, Thuizat A, Guerreiro C, Tanguy M, Nato F, Vulliez-Le Normand B, Bélot F, Wright K, Marcel-Peyre V, Sansonetti PJ, Mulard LA. Characterization of functional oligosaccharide mimics of the Shigella flexneri serotype 2a O-antigen: implications for the development of a chemically defined glycoconjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2006; 176:1686-94. [PMID: 16424198 DOI: 10.4049/jimmunol.176.3.1686] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protection against reinfection with noncapsulated Gram-negative bacteria, such as Shigella, an enteroinvasive bacterium responsible for bacillary dysentery, is mainly achieved by Abs specific for the O-Ag, the polysaccharide part of the LPS, the major bacterial surface Ag. The use of chemically defined glycoconjugates encompassing oligosaccharides mimicking the protective determinants carried by the O-Ag, thus expected to induce an efficient anti-LPS Ab response, has been considered an alternative to detoxified LPS-protein conjugate vaccines. The aim of this study was to identify such functional oligosaccharide mimics of the S. flexneri serotype 2a O-Ag. Using protective murine mAbs specific for S. flexneri serotype 2a and synthetic oligosaccharides designed to analyze the contribution of each sugar residue of the branched pentasaccharide repeating unit of the O-Ag, we demonstrated that the O-Ag exhibited an immunodominant serotype-specific determinant. We also showed that elongating the oligosaccharide sequence improved Ab recognition. From these antigenicity data, selected synthetic oligosaccharides were assessed for their potential to mimic the O-Ag by analyzing their immunogenicity in mice when coupled to tetanus toxoid via single point attachment. Our results demonstrated that induction of an efficient serotype 2a-specific anti-O-Ag Ab response was dependent on the length of the oligosaccharide sequence. A pentadecasaccharide representing three biological repeating units was identified as a potential candidate for further development of a chemically defined glycoconjugate vaccine against S. flexneri 2a infection.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale Unité 389.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Michon F, Moore SL, Kim J, Blake MS, Auzanneau FI, Johnston BD, Johnson MA, Pinto BM. Doubly branched hexasaccharide epitope on the cell wall polysaccharide of group A streptococci recognized by human and rabbit antisera. Infect Immun 2005; 73:6383-9. [PMID: 16177309 PMCID: PMC1230941 DOI: 10.1128/iai.73.10.6383-6389.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of epitope specificities associated with the cell wall polysaccharide antigen of group A streptococci were identified in a polyclonal rabbit antiserum induced in rabbits by whole group A streptococci and in polyclonal convalescent human antisera from children that had recovered from streptococcal A infections. The identification was achieved by using a series of synthetic oligosaccharides, glycoconjugates, and bacterial polysaccharide inhibitors to inhibit the binding of the group A helical polysaccharide to the polyclonal antisera. The exclusively dominant epitope expressed in the convalescent human antisera was the doubly branched extended helical hexasaccharide with the structure alpha-L-Rhap(1-->2)[beta-D-GlcpNAc(1-->3)]alpha-L-Rhap(1-->3)alpha-L-Rhap(1-->2)[beta-D-GlcpNAc(1-->3)]alpha-L-Rhap. The hexasaccharide epitope also bound with the highest immunoreactivity to the rabbit antiserum. In contrast, the human antisera did not show significant binding to the singly branched pentasaccharide with the structure alpha-L-Rhap(1-->2)alpha-L-Rhap(1-->3)alpha-L-Rhap(1-->2)[beta-D-GlcpNAc(1-->3)]alpha-L-Rhap or the branched trisaccharide alpha-L-Rhap(1-->2)[beta-D-GlcpNAc(1-->3)]alpha-l-Rhap, although both these haptens bound significantly to the same rabbit antiserum, albeit with less immunoreactivity than the hexasaccharide. Inhibition studies using streptococcal group A and B rabbit antisera and the inhibitors indicated above also suggested that the group A carbohydrate, unlike the group B streptococcal polysaccharide, does not contain the disaccharide alpha-L-Rhap(1-->2)alpha-L-Rhap motif at its nonreducing chain terminus, stressing the importance of mapping the determinant specificities of these two important streptococcal subcapsular group polysaccharides to fully understand the serological relationships between group A and group B streptococci.
Collapse
|
15
|
Clément MJ, Fortuné A, Phalipon A, Marcel-Peyre V, Simenel C, Imberty A, Delepierre M, Mulard LA. Toward a better understanding of the basis of the molecular mimicry of polysaccharide antigens by peptides: the example of Shigella flexneri 5a. J Biol Chem 2005; 281:2317-32. [PMID: 16251186 DOI: 10.1074/jbc.m510172200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein conjugates of oligosaccharides or peptides that mimic complex bacterial polysaccharide antigens represent alternatives to the classical polysaccharide-based conjugate vaccines developed so far. Hence, a better understanding of the molecular basis ensuring appropriate mimicry is required in order to design efficient carbohydrate mimic-based vaccines. This study focuses on the following two unrelated sets of mimics of the Shigella flexneri 5a O-specific polysaccharide (O-SP): (i) a synthetic branched pentasaccharide known to mimic the average solution conformation of S. flexneri 5a O-SP, and (ii) three nonapeptides selected upon screening of phage-displayed peptide libraries with two protective murine monoclonal antibodies (mAbs) of the A isotype specific for S. flexneri 5a O-SP. By inducing anti-O-SP antibodies upon immunization in mice when appropriately presented to the immune system, the pentasaccharide and peptides p100c and p115, but not peptide p22, were qualified as mimotopes of the native antigen. NMR studies based on transferred NOE (trNOE) experiments revealed that both kinds of mimotopes had an average conformation when bound to the mAbs that was close to that of their free form. Most interestingly, saturation transfer difference (STD) experiments showed that the characteristic turn conformations adopted by the major conformers of p100c and p115, as well as of p22, are clearly involved in mAb binding. These latter experiments also showed that the branched glucose residue of the pentasaccharide was a key part of the determinant recognized by the protective mAbs. Finally, by using NMR-derived pentasaccharide and peptide conformations coupled to STD information, models of antigen-antibody interaction were obtained. Most interestingly, only one model was found compatible with experimental data when large O-SP fragments were docked into one of the mIgA-binding sites. This newly made available system provides a new contribution to the understanding of the molecular mimicry of complex polysaccharides by peptides and short oligosaccharides.
Collapse
Affiliation(s)
- Marie-Jeanne Clément
- Unité de RMN des Biomolécules, URA CNRS 2185, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vaz de Andrade E, Freitas SM, Ventura MM, Maranhão AQ, Brigido MM. Thermodynamic basis for antibody binding to Z-DNA: comparison of a monoclonal antibody and its recombinant derivatives. Biochim Biophys Acta Gen Subj 2005; 1726:293-301. [PMID: 16214293 DOI: 10.1016/j.bbagen.2005.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/24/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.
Collapse
|
17
|
Petrov K, Dion M, Hoffmann L, Dintinger T, Defontaine A, Tellier C. Bivalent Fv antibody fragments obtained by substituting the constant domains of a fab fragment with heterotetrameric molybdopterin synthase. J Mol Biol 2004; 341:1039-48. [PMID: 15328616 DOI: 10.1016/j.jmb.2004.06.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 06/16/2004] [Accepted: 06/18/2004] [Indexed: 11/30/2022]
Abstract
The antibody Fv fragment is the smallest functional unit of an antibody but for practical use, the VH/VL interface requires stabilization, which is usually accomplished by a peptide linker that joins the two variable domains to form a single chain Fv fragment (scFv). An alternative format to scFv is proposed that (i) allows stabilization of the Fv fragment, and (ii) restores the bivalency of the antibody as a pseudo-F(ab')2 format. This new antibody fragment was constructed by replacing the CHI and CL domains of the Fab fragment with heterotetrameric molybdopterin synthase (MPTS). We found that this format, named MoaFv, improved significantly the cytoplasmic expression of the Fv as a soluble protein in BL21 or Origami Escherichia coli strains. This MoaFv format is expressed as a homogeneous heterotetrameric protein with a Mr value of 110 kDa containing two functional binding sites as revealed by active site titration. In its native condition at 37 degrees C or in the presence of urea, this format was nearly as stable as the corresponding scFv, indicating that non-covalent interactions between the MPTS subunits can replace the covalent peptide linker in scFv. Finally, this MoaFv construct could be a useful format when bivalency is desirable to improve the functional avidity.
Collapse
Affiliation(s)
- Kliment Petrov
- UMR-CNRS n degrees 6204, Biotechnoligie, Biocatalyse et Bioréegulation, Nates cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Zeng Y, Kong F. Synthesis of a hexasaccharide fragment of group E streptococci polysaccharide and the tetrasaccharide repeating unit of E. coli O7:K98:H6. Carbohydr Res 2004; 339:1503-10. [PMID: 15178394 DOI: 10.1016/j.carres.2004.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Syntheses of a hexasaccharide, the dimer of the repeating unit of the group E streptococci polysaccharide, and a tetrasaccharide, the repeating unit of the E. coli O7:K98:H6, were achieved by constructing alternate alpha-L-(1-->2)- and alpha-L-(1-->3)-linked L-rhamnopyranose backbones and substituting with beta-linked D-glucopyranose side chains for the former, and a D-glucopyranosyluronate branch for the latter, respectively, at O-2 of the L-rhamnose ring.
Collapse
Affiliation(s)
- Youlin Zeng
- Research Center for Eco-Environmental Sciences, Academia Sinica, PO Box 2871, Beijing 100085, PR China
| | | |
Collapse
|
19
|
Johnson MA, Pinto BM. NMR spectroscopic and molecular modeling studies of protein–carbohydrate and protein–peptide interactions. Carbohydr Res 2004; 339:907-28. [PMID: 15010299 DOI: 10.1016/j.carres.2003.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 12/17/2003] [Indexed: 11/19/2022]
Abstract
Investigations of the conformations of carbohydrates, their analogues and their molecular mimics are described, with emphasis on structural and functional information that can be gained by NMR spectroscopic techniques in combination with molecular modeling. The transferred nuclear Overhauser effect (trNOE) has been employed to determine the bound conformations of carbohydrates and other bioactive molecules in complex with protein receptors. The corresponding experiments in the rotating frame (trROE) and selective editing experiments (e.g., QUIET-NOESY) are used to eliminate indirect cross-relaxation pathways (spin diffusion), thereby minimizing errors in the data used for calculation of conformations. Saturation transfer difference NMR experiments reveal detailed information about intermolecular contacts between ligand and protein. Computational techniques are integrated with NMR-derived information to construct structural models of these bioactive molecules and of their complexes with proteins. Recent investigations into the nature of molecular mimicry with regard to protein-ligand interactions are described, along with applications in determining the mode of action of enzyme inhibitors. The results are relevant for the design of the next generation of drug and vaccine candidates.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | |
Collapse
|
20
|
Clément MJ, Imberty A, Phalipon A, Pérez S, Simenel C, Mulard LA, Delepierre M. Conformational studies of the O-specific polysaccharide of Shigella flexneri 5a and of four related synthetic pentasaccharide fragments using NMR and molecular modeling. J Biol Chem 2003; 278:47928-36. [PMID: 12925526 DOI: 10.1074/jbc.m308259200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As part of a program for the development of synthetic vaccines against the pathogen Shigella flexneri, we used a combination of NMR and molecular modeling methods to study the conformations of the O-specific polysaccharide (O-SP) of S. flexneri 5a and of four related synthetic pentasaccharide fragments. The NMR study, based on the analysis of 1H and 13C chemical shifts, the evaluation of inter-residue distances, and the measurement of one- and three-bond heteronuclear coupling constants, showed that the conformation of one of the four pentasaccharides is similar to that of the native O-SP in solution. Interestingly, inhibition enzyme-linked immunosorbent assay demonstrated that a protective monoclonal antibody specific for S. flexneri 5a has a greater affinity for this pentasaccharide than for the others. We carried out a complete conformational search on the pentasaccharides using the CICADA algorithm interfaced with MM3 force field. We calculated Boltzmann-averaged inter-residue distances and 3JC,H coupling constants for the different conformational families and compared the results with NMR data for all pentasaccharides. Our experimental data are consistent with only one conformational family. We also used molecular modeling data to build models of the O-SP with the molecular builder program POLYS. The models that are in agreement with NMR data adopt right-handed 3-fold helical structures in which the branched glucosyl residue points outwards.
Collapse
Affiliation(s)
- Marie-Jeanne Clément
- Unité de RMN des Biomolécules, URA CNRS 2185, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris, Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Johnson MA, Höög C, Pinto BM. A novel modeling protocol for protein receptors guided by bound-ligand conformation. Biochemistry 2003; 42:1842-53. [PMID: 12590571 DOI: 10.1021/bi020608f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel protocol for protein homology modeling is described, in which uncertainty in protein structure is resolved by applying the criterion that the protein must bind to a complementary ligand. A diverse library of protein models is created and then screened by docking with ligands of known conformation. The more accurate protein models form higher-quality docked complexes, and the quality of the fit is used to select the best models. The effectiveness of this technique with both natural and unnatural ligands is demonstrated by modeling the Fv fragment of an antibody and comparing the results to known crystal structures.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| | | | | |
Collapse
|
22
|
Johnson MA, Pinto BM. Saturation transfer difference 1D-TOCSY experiments to map the topography of oligosaccharides recognized by a monoclonal antibody directed against the cell-wall polysaccharide of group A streptococcus. J Am Chem Soc 2002; 124:15368-74. [PMID: 12487612 DOI: 10.1021/ja020983v] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new saturation transfer difference 1D-TOCSY NMR experiment that allows the investigation of complex ligands interacting with proteins and its application in the mapping of which portions of oligosaccharide ligands (epitope) interact with a complementary antibody are described. The interaction between trisaccharide and hexasaccharide ligands, corresponding to fragments of the cell-wall polysaccharide of Streptococcus Group A, and a monoclonal antibody directed against the polysaccharide is investigated at the molecular level. The polysaccharide consists of alternating alpha-(1-->2) and alpha-(1-->3) linked L-rhamnopyranose (Rha) residues with branching N-acetyl-D-glucopyranosylamine (GlcNAc) residues linked beta-(1-->3) to alternate rhamnopyranose rings. The epitope is proven to consist not only of the immunodominant GlcNAc sugar but also of an entire branched trisaccharide repeating unit. The experimental NMR data serve to check and validate the computed models of the oligosaccharide-antibody complexes.
Collapse
Affiliation(s)
- Margaret A Johnson
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.
| | | |
Collapse
|
23
|
Höög C, Rotondo A, Johnston BD, Pinto BM. Synthesis and conformational analysis of a pentasaccharide corresponding to the cell-wall polysaccharide of the Group A Streptococcus. Carbohydr Res 2002; 337:2023-36. [PMID: 12433468 DOI: 10.1016/s0008-6215(02)00218-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and conformational analysis of a pentasaccharide corresponding to a fragment of the cell-wall polysaccharide (CWPS) of the bacteria Streptococcus Group A are described. The polysaccharide consists of alternating alpha-(1 --> 2)- and alpha-(1 --> 3)-linked L-rhamnopyranose (Rhap) residues with branching 2-acetamido-2-deoxy-D-glucopyranose (GlcpNAc) residues linked beta-(1 --> 3) to alternate rhamnose rings. The pentasaccharide is of interest as a possible terminal unit on the CWPS, for use in a vaccine. The syntheses employed a trichloroacetimidate glycosyl donor. Molecular dynamics (MD) calculations of the pentasaccharide with the force fields CVFF and PARM22, both in gas phase and with explicit water present, gave different predictions for the flexibility and preferred conformational space. Metropolis Monte Carlo (MMC) calculations with the HSEA force field were also performed. Experimental data were obtained from 1D transient NOE measurements. Complete build-up curves were compared to those obtained by full relaxation matrix calculations in order to derive a model of the conformation. Overall, the best fit between experimental and calculated data was obtained with MMC simulations using the HSEA force field. Molecular dynamics and MMC simulations of a tetrasaccharide corresponding to the Group A-variant polysaccharide, which differs in structure from Group A in lacking the GlcpNAc residues, were also performed for purposes of comparison.
Collapse
Affiliation(s)
- Christer Höög
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | | | |
Collapse
|
24
|
Johnson MA, Rotondo A, Pinto BM. NMR studies of the antibody-bound conformation of a carbohydrate-mimetic peptide. Biochemistry 2002; 41:2149-57. [PMID: 11841205 DOI: 10.1021/bi011927u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transferred nuclear Overhauser enhancement (TRNOE) experiments have been performed at 800 MHz to investigate the bound conformation of the hexapeptide DRPVPY, a functional molecular mimic of the group A Streptococcus cell-wall polysaccharide. The hexapeptide binds to the monoclonal antibody SA-3, mimicking the branched trisaccharide repeating unit, L-Rha-alpha-(1 --> 2)-(D-GlcNAc-beta-(1 --> 3))-alpha-L-Rha (Rha, rhamnose; GlcNAc, N-acetylglucosamine). The peptide adopts a tight turn conformation with close contacts between the side chains of valine and tyrosine. Relaxation network editing experiments (QUIET-NOESY) were used to confirm the validity of the observed contacts and to evaluate the presence of spin diffusion pathways. Saturation transfer difference (STD-NMR) experiments with selective saturation of protein resonances revealed enhancements of many of the peptide resonances due to close contacts between the peptide and the protein within the antibody combining site.
Collapse
Affiliation(s)
- Margaret A Johnson
- Departments of Chemistry and of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|