1
|
Dhamija S, Bhutani G, Jayachandran A, De AK. A Revisit on Impulsive Stimulated Raman Spectroscopy: Importance of Spectral Dispersion of Chirped Broadband Probe. J Phys Chem A 2022; 126:1019-1032. [PMID: 35142494 DOI: 10.1021/acs.jpca.1c10566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The usefulness of a chirped broadband probe and spectral dispersion to obtain Raman spectra under nonresonant/resonant impulsive excitation is revisited. A general methodology is presented that inherently takes care of phasing the time-domain low-frequency oscillations without probe pulse compression and retrieves the absolute phase of the oscillations. As test beds, neat solvents (CCl4, CHCl3, and CH2Cl2) are used. Observation of periodic intensity modulation along detection wavelengths for particular modes is explained using a simple electric field interaction picture. This method is extended to diatomic molecule (iodine) and polyatomic molecules (Nile blue and methylene blue) to assign vibrational frequencies in ground/excited electronic state that are supported by density functional theory calculations. A comparison between frequency-domain and time-domain counterparts, i.e., stimulated Raman scattering and impulsive stimulated Raman scattering using degenerate pump-probe pairs is presented, and most importantly, it is shown how impulsive stimulated Raman scattering using chirped broadband probe retains unique advantages offered by both.
Collapse
Affiliation(s)
- Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ajay Jayachandran
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
2
|
Natan A, Schori A, Owolabi G, Cryan JP, Glownia JM, Bucksbaum PH. Resolving multiphoton processes with high-order anisotropy ultrafast X-ray scattering. Faraday Discuss 2021; 228:123-138. [PMID: 33565543 DOI: 10.1039/d0fd00126k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first results on experimentally measured ultrafast X-ray scattering of strongly driven molecular iodine and analysis of high-order anisotropic components of the scattering signal. We discuss the technical details of retrieving high fidelity high-order anisotropy components from the measured scattering data and outline a method to analyze such signals using Legendre decomposition. We describe how anisotropic motions can be extracted from the various Legendre orders using simulated anisotropic scattering signals and Fourier analysis. We implement the method on the measured signal and observe a multitude of dissociation and vibration motions simultaneously arising from various multiphoton transitions occurring in the sample. We use the anisotropic scattering information to disentangle the different processes and assign their dissociation velocities on the Angstrom and femtosecond scales de novo.
Collapse
Affiliation(s)
- Adi Natan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Aviad Schori
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Grace Owolabi
- Department of Electrical Engineering and Computer Science, Howard University, Washington DC 20059, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. and Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. and Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Introduction to State-of-the-Art Multidimensional Time-Resolved Spectroscopy Methods. Top Curr Chem (Cham) 2018; 376:28. [DOI: 10.1007/s41061-018-0206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
|
4
|
Natural and artificial light-harvesting systems utilizing the functions of carotenoids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2015.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Hashimoto H, Sugisaki M, Yoshizawa M. Ultrafast time-resolved vibrational spectroscopies of carotenoids in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:69-78. [PMID: 25223589 DOI: 10.1016/j.bbabio.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 11/16/2022]
Abstract
This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Hashimoto
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan; Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Mitsuru Sugisaki
- Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayuki Yoshizawa
- Department of Physics, Graduate School of Science, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Yue O, Bremer MT, Pestov D, Gord JR, Roy S, Dantus M. Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing. J Phys Chem A 2012; 116:8138-41. [PMID: 22747235 DOI: 10.1021/jp3010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate a single-beam coherent anti-Stokes Raman scattering (CARS) technique for gas-phase thermometry that assesses the species-specific local gas temperature by single-shot time-to-frequency mapping of Raman-coherence dephasing. The proof-of-principle experiments are performed with air in a temperature-controlled gas cell. Impulsive excitation of molecular vibrations by an ultrashort pump/Stokes pulse is followed by multipulse probing of the 2330 cm(-1) Raman transition of N(2). This sequence of colored probe pulses, delayed in time with respect to each other and corresponding to three isolated spectral bands, imprints the coherence dephasing onto the measured CARS spectrum. For calibration purposes, the dephasing rates are recorded at various gas temperatures, and the relationship is fitted to a linear regression. The calibration data are then used to determine the gas temperature and are shown to provide better than 15 K accuracy. The described approach is insensitive to pulse energy fluctuations and can, in principle, gauge the temperature of multiple chemical species in a single laser shot, which is deemed particularly valuable for temperature profiling of reacting flows in gas-turbine combustors.
Collapse
Affiliation(s)
- Orin Yue
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48823, USA
| | | | | | | | | | | |
Collapse
|
7
|
Yu G, Song Y, Wang Y, He X, Liu Y, Liu W, Yang Y. Watching the coherence of multiple vibrational states in organic dye molecules by using supercontinuum probing photon echo spectroscopy. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Sugisaki M, Fujii R, Cogdell RJ, Hashimoto H. Linear and nonlinear optical responses in bacteriochlorophyll a. PHOTOSYNTHESIS RESEARCH 2008; 95:309-316. [PMID: 17926140 DOI: 10.1007/s11120-007-9266-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 05/25/2023]
Abstract
Nonlinear optical responses of bacteriochlorophyll a (BChl a) were investigated by means of the three-pulse four-wave mixing (FWM) technique under the resonant excitation into the Q ( y ) band. The experimental results are explained by a theoretical model calculation including the Brownian oscillation mode of the solvent. We have determined the spectral density, which is the most important function with which to calculate optical signals. The linear absorption spectrum can be reproduced fairly well when the vibronic oscillation modes of the solvent together with those of BChl a are properly taken into consideration. The FWM signal was also calculated using the spectral density. It was found that a simple two-level model could not explain the experimental result. The effect of the higher-order interactions is discussed.
Collapse
Affiliation(s)
- Mitsuru Sugisaki
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan.
| | | | | | | |
Collapse
|
9
|
Dantus M, Lozovoy VV. Experimental Coherent Laser Control of Physicochemical Processes. Chem Rev 2004; 104:1813-59. [PMID: 15080713 DOI: 10.1021/cr020668r] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcos Dantus
- Department of Chemistry and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
10
|
Comstock M, Lozovoy VV, Dantus M. Femtosecond photon echo measurements of electronic coherence relaxation between the X(1Σg+) and B(3Π0u+) states of I2 in the presence of He, Ar, N2, O2, C3H8. J Chem Phys 2003. [DOI: 10.1063/1.1603739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Kakuta M, Jayawickrama DA, Wolters AM, Manz A, Sweedler JV. Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation. Anal Chem 2003; 75:956-60. [PMID: 12622391 DOI: 10.1021/ac026076q] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.
Collapse
Affiliation(s)
- Masaya Kakuta
- Department of Chemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London, SW7 2AY, U.K
| | | | | | | | | |
Collapse
|
12
|
Grimberg BI, Lozovoy VV, Dantus M, Mukamel S. Ultrafast Nonlinear Spectroscopic Techniques in the Gas Phase and Their Density Matrix Representation. J Phys Chem A 2002. [DOI: 10.1021/jp010451l] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bruna I. Grimberg
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
| | - Vadim V. Lozovoy
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
| | - Marcos Dantus
- Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824
| | - Shaul Mukamel
- Department of Chemistry and Rochester Theory Center for Optical Science and Engineering, University of Rochester, P.O. RC Box 270216, Rochester, New York 14627
| |
Collapse
|
13
|
Photon echo pulse sequences with femtosecond shaped laser pulses as a vehicle for molecule-based quantum computation. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(01)01388-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Faeder J, Pinkas I, Knopp G, Prior Y, Tannor DJ. Vibrational polarization beats in femtosecond coherent anti-Stokes Raman spectroscopy: A signature of dissociative pump–dump–pump wave packet dynamics. J Chem Phys 2001. [DOI: 10.1063/1.1412253] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
15
|
|
16
|
|