1
|
Zhang C, Cheng L. Atomic Mean-Field Approach within Exact Two-Component Theory Based on the Dirac-Coulomb-Breit Hamiltonian. J Phys Chem A 2022; 126:4537-4553. [PMID: 35763592 DOI: 10.1021/acs.jpca.2c02181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An extension of the exact two-component theory with atomic mean-field integrals (the X2CAMF scheme) to the treatment of the Breit term together with efficient implementation using an atomic Dirac-Coulomb-Breit Hartree-Fock program is reported. The accuracy of the X2CAMF scheme for treating the contributions from the Breit term to the molecular properties is demonstrated using benchmark calculations of equilibrium bond lengths, harmonic frequencies, and dipole moments for molecules containing elements across the periodic table. Calculations of the properties for molecules containing period four elements aiming at high accuracy as well as for Th- and U-containing molecules are also presented and compared with experimental results to demonstrate the usefulness of the X2CAMF scheme in combination with accurate treatments of electron correlation by the coupled-cluster (CC) methods. The combination of CC methods and the X2CAMF scheme shows potential to extend the accuracy of CC calculations to heavy elements, e.g., to computational heavy-element thermochemistry.
Collapse
Affiliation(s)
- Chaoqun Zhang
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Rusakova IL, Rusakov YY. Quantum chemical calculations of 77 Se and 125 Te nuclear magnetic resonance spectral parameters and their structural applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:359-407. [PMID: 33095923 DOI: 10.1002/mrc.5111] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
An accurate quantum chemical (QC) modeling of 77 Se and 125 Te nuclear magnetic resonance (NMR) spectra is deeply involved in the NMR structural assignment for selenium and tellurium compounds that are of utmost importance both in organic and inorganic chemistry nowadays due to their huge application potential in many fields, like biology, medicine, and metallurgy. The main interest of this review is focused on the progress in QC computations of 77 Se and 125 Te NMR chemical shifts and indirect spin-spin coupling constants involving these nuclei. Different computational methodologies that have been used to simulate the NMR spectra of selenium and tellurium compounds since the middle of the 1990s are discussed with a strong emphasis on their accuracy. A special accent is placed on the calculations resorting to the relativistic methodologies, because taking into account the relativistic effects appreciably influences the precision of NMR calculations of selenium and, especially, tellurium compounds. Stereochemical applications of quantum chemical calculations of 77 Se and 125 Te NMR parameters are discussed so as to exemplify the importance of integrated approach of experimental and computational NMR techniques.
Collapse
Affiliation(s)
- Irina L Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| | - Yuriy Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
| |
Collapse
|
3
|
Ikabata Y, Nakai H. Picture-change correction in relativistic density functional theory. Phys Chem Chem Phys 2021; 23:15458-15474. [PMID: 34278401 DOI: 10.1039/d1cp01773j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Relativistic quantum chemical calculations are performed based on one of two physical pictures, namely the Dirac picture and the Schrödinger picture. With regard to the latter, the so-called picture-change effect (PCE) and picture-change correction (PCC) have been studied. The PCE, which is the change in the expectation value associated with the transformation, is not commonly a minor effect. The electron density, which is given by the expectation value of the density operator, is a fundamental variable in relativistic density functional theory (RDFT). Thus, performing the PCC in RDFT calculations is essential not only in terms of numerical agreement with the Dirac picture, but also from the viewpoint of fundamental theory. This paper explains theories and numerical studies of PCE and PCC in RDFT after overviewing those in properties, which involves the authors' works on the development of RDFT in the Schrödinger picture and relativistic exchange-correlation functionals based on picture-change-corrected variables.
Collapse
Affiliation(s)
- Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan. and Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
4
|
Zhang B, Vandezande JE, Reynolds RD, Schaefer HF. Spin–Orbit Coupling via Four-Component Multireference Methods: Benchmarking on p-Block Elements and Tentative Recommendations. J Chem Theory Comput 2018; 14:1235-1246. [DOI: 10.1021/acs.jctc.7b00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boyi Zhang
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jonathon E. Vandezande
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan D. Reynolds
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Bučinský L, Jayatilaka D, Grabowsky S. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth. J Phys Chem A 2016; 120:6650-69. [PMID: 27434184 DOI: 10.1021/acs.jpca.6b05769] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.
Collapse
Affiliation(s)
- Lukáš Bučinský
- Institute of Physical Chemistry and Chemical Physics FCHPT, Slovak University of Technology , Radlinskeho 9, Bratislava SK-812 37, Slovakia
| | - Dylan Jayatilaka
- School of Chemistry and Biochemistry, The University of Western Australia , 35 Stirling Highway, Perth WA 6009, Australia
| | - Simon Grabowsky
- Fachbereich 2 - Biologie/Chemie, Universität Bremen , Leobener Straβe NW2, 28359 Bremen, Germany
| |
Collapse
|
6
|
Bučinský L, Malček M, Biskupič S, Jayatilaka D, Büchel GE, Arion VB. Spin contamination analogy, Kramers pairs symmetry and spin density representations at the 2-component unrestricted Hartree–Fock level of theory. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
First principles approach to the electronic structure, magnetic anisotropy and spin relaxation in mononuclear 3d-transition metal single molecule magnets. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.10.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Bučinský L, Kucková L, Malček M, Kožíšek J, Biskupič S, Jayatilaka D, Büchel GE, Arion VB. Picture change error in quasirelativistic electron/spin density, Laplacian and bond critical points. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
|
10
|
Malček M, Bučinský L, Biskupič S, Jayatilaka D. The quasirelativistic contact interaction and effective electron and spin densities at the nucleus: A model based on weighting the electron density with the finite Gaussian nucleus model. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Laury ML, Wilson AK. Examining the heavyp-block with a pseudopotential-based composite method: Atomic and molecular applications of rp-ccCA. J Chem Phys 2012; 137:214111. [DOI: 10.1063/1.4768420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Affiliation(s)
- Takahito Nakajima
- Computational Molecular Science Research Team, Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minami, Cyuo, Kobe, Hyogo 650-0047, Japan
| | - Kimihiko Hirao
- Director, Advanced Institute for Computational Science, RIKEN, 7-1-26 Minatojima-minami, Cyuo, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
13
|
Wüllen CV. A Quasirelativistic Two-component Density Functional and Hartree-Fock Program. ACTA ACUST UNITED AC 2010. [DOI: 10.1524/zpch.2010.6114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
This work describes the implementation of an efficient two-component quasirelativistic density functional and Hartree-Fock program. The fact that the basis functions are real can be exploited if a special internal representation of operators and density matrices is used. This also leads to a considerable reduction of the effort in the closed shell case. While in most applications to open shell molecules, the noncollinear approach to define a relativistic spin density is preferable, the collinear approach finds its application in the calculation of magnetic anisotropy energies. Linear algebra steps in the SCF procedure have a higher relative weight compared to the nonrelativistic case, therefore some care was necessary to make them fast when parallelizing the code. The quasirelativistic Hamiltonians that have been implemented are the ´zeroth-order regular approximation´ (ZORA) Hamiltonian, the Douglas-Kroll-Hess Hamiltonian up to the sixth order, together with an accurate approximation to treat the picture change effect of the electron interaction, and effective core potential (ECP) matrix elements. Geometry gradients are available for the ZORA and ECP methods.
Collapse
|
14
|
Yang P, Warnke I, Martin RL, Hay PJ. Theoretical Studies of the sp2 versus sp3 C−H Bond Activation Chemistry of 2-Picoline by (C5Me5)2An(CH3)2 Complexes (An = Th, U). Organometallics 2008. [DOI: 10.1021/om700927n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ping Yang
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Ingolf Warnke
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | | | - P. Jeffrey Hay
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
15
|
Chiodo S, Russo N. Determination of spin-orbit coupling contributions in the framework of density functional theory. J Comput Chem 2008; 29:912-20. [DOI: 10.1002/jcc.20847] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Ganyushin D, Neese F. First-principles calculations of zero-field splitting parameters. J Chem Phys 2007; 125:24103. [PMID: 16848573 DOI: 10.1063/1.2213976] [Citation(s) in RCA: 265] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, an implementation of an approach to calculate the zero-field splitting (ZFS) constants in the framework of ab initio methods such as complete active space self-consistent field, multireference configuration interaction, or spectroscopy oriented configuration interaction is reported. The spin-orbit coupling (SOC) contribution to ZFSs is computed using an accurate multicenter mean-field approximation for the Breit-Pauli Hamiltonian. The SOC parts of ZFS constants are obtained directly after diagonalization of the SOC operator in the basis of a preselected number of roots of the spin-free Hamiltonian. This corresponds to an infinite order treatment of the SOC in terms of perturbation theory. The spin-spin (SS) part is presently estimated in a mean-field fashion and appears to yield results close to the more complete treatments available in the literature. Test calculations for the first- and second-row atoms as well as first-row transition metal atoms and a set of diatomic molecules show accurate results for the SOC part of ZFSs. SS contributions have been found to be relatively small but not negligible (exceeding 1 cm(-1) for oxygen molecule). At least for the systems studied in this work, it is demonstrated that the presented method provides much more accurate estimations for the SOC part of ZFS constants than the emerging density functional theory approaches.
Collapse
Affiliation(s)
- Dmitry Ganyushin
- Lehrstuhl für Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | | |
Collapse
|
17
|
Neese F. Importance of direct spin-spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J Am Chem Soc 2007; 128:10213-22. [PMID: 16881651 DOI: 10.1021/ja061798a] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work reports the evaluation of several theoretical approaches to the zero-field splitting (ZFS) in transition metal complexes. The experimentally well-known complex [Mn(acac)3] is taken as an example. The direct spin-spin contributions to the ZFS have been calculated on the basis of density functional theory (DFT) or complete active space self-consistent field (CASSCF) wave functions and have been found to be much more important than previously assumed. The contributions of the direct term may exceed approximately 1 cm(-1) in magnitude and therefore cannot be neglected in any treatment that aims at a realistic quantitative modeling of the ZFS. In the DFT framework, two different variants to treat the spin-orbit coupling (SOC) term have been evaluated. The first approach is based on previous work by Pederson, Khanna, and Kortus, and the second is based on a "quasi-restricted" DFT treatment which is rooted in our previous work on ZFS. Both approaches provide very similar results and underestimate the SOC contribution to the ZFS by a factor of 2 or more. The SOC is represented by an accurate multicenter spin-orbit mean-field (SOMF) approximation which is compared to the popular effective DFT potential-derived SOC operator. In addition to the DFT results, direct "infinite order" ab initio calculations of the SOC contribution to the ZFS based on CASSCF wave functions, the spectroscopy-oriented configuration interaction (SORCI), and the difference-dedicated CI (DDCI) approach are reported. In general, the multireference ab initio results provide a more realistic description of the ZFS in [Mn(acac)3]. The conclusions likely carry over to many other systems. This is attributed to the explicit treatment of the multiplet effects which are of dominant importance, since the calculations demonstrate that, even in the high-spin d4 system MnIII, the spin-flip excitations make the largest contribution to the SOC. It is demonstrated that the ab initio methods can be used even for somewhat larger molecules (the present calculations were done with more than 500 basis functions) in a reasonable time frame. Much more economical but still fairly reasonable results have been achieved with the INDO/S treatment based on CASSCF and SOC-CI wave functions.
Collapse
Affiliation(s)
- Frank Neese
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany.
| |
Collapse
|
18
|
Neese F, Petrenko T, Ganyushin D, Olbrich G. Advanced aspects of ab initio theoretical optical spectroscopy of transition metal complexes: Multiplets, spin-orbit coupling and resonance Raman intensities. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2006.05.019] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
van Wüllen C. Relativistic Density Functional Calculations on Small Molecules. THEORETICAL AND COMPUTATIONAL CHEMISTRY 2004. [DOI: 10.1016/s1380-7323(04)80037-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Iliaš M, Kellö V, Visscher L, Schimmelpfennig B. Inclusion of mean-field spin–orbit effects based on all-electron two-component spinors: Pilot calculations on atomic and molecular properties. J Chem Phys 2001. [DOI: 10.1063/1.1413510] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|