1
|
Pal R, Chattaraj PK. Electrophilicity index revisited. J Comput Chem 2023; 44:278-297. [PMID: 35546516 DOI: 10.1002/jcc.26886] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/03/2023]
Abstract
This review aims to be a comprehensive, authoritative, critical, and accessible review of general interest to the chemistry community; because the electrophilicity index is a very useful global reactivity descriptor defined within a conceptual density functional theory framework. Our group has also introduced electrophilicity based new global and local reactivity descriptors and also new associated electronic structure principles, which are important indicators of structure, stability, bonding, reactivity, interactions, and dynamics in a wide variety of physico-chemical systems and processes. This index along with its local counterpart augmented by the associated electronic structure principles could properly explain molecular vibrations, internal rotations and various types of chemical reactions. The concept of the electrophilicity index has been extended to dynamical processes, excited states, confined environment, spin-dependent and temperature-dependent situations, biological activity, site selectivity, aromaticity, charge removal and acceptance, presence of external perturbation through solvents, external electric and magnetic fields, and so forth. Although electrophilicity and its local variant can adequately interpret the behavior of a wide variety of systems and different physico-chemical processes involving them, their predictive potential remains to be explored. An exhaustive review on all these aspects will set the tone of the future research in that direction.
Collapse
Affiliation(s)
- Ranita Pal
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | |
Collapse
|
2
|
Chołuj M, Lipkowski P, Bartkowiak W. HeH + under Spatial Confinement. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248997. [PMID: 36558130 PMCID: PMC9787572 DOI: 10.3390/molecules27248997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
In the present study, the influence of spatial confinement on the bond length as well as dipole moment, polarizability and (hyper)polarizabilities of HeH+ ion was analyzed. The effect of spatial confinement was modelled by cylindrically symmetric harmonic oscillator potential, that can be used to mimic high pressure conditions. Based on the conducted research it was found that the spatial confinement significantly affects the investigated properties. Increasing the confinement strength leads to a substantial decrease of their values. This work may be of particular interest for astrochemistry as HeH+ is believed to be the first compound to form in the Universe.
Collapse
|
3
|
|
4
|
Chołuj M, Luis JM, Bartkowiak W, Zaleśny R. Infrared Spectra of Hydrogen-Bonded Molecular Complexes Under Spatial Confinement. Front Chem 2022; 9:801426. [PMID: 35071188 PMCID: PMC8777004 DOI: 10.3389/fchem.2021.801426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Infrared (IR) spectroscopy is commonly used in chemical laboratories to study the geometrical structure of molecules and molecular complexes. The analysis of experimental IR spectra can nowadays be reliably supported by the results of quantum-chemical computations as vibrational frequencies and corresponding vibrational transition intensities are routinely calculated using harmonic approximation by virtually all quantum chemistry packages. In the present study we combine the methodology of computing vibrational spectra using high-level electron correlation treatments with an analytical potential-based approach to take into account spatial confinement effects. Using this approach, we perform a pioneering analysis of the impact of the spatial confinement caused by a cylindrical harmonic oscillator potential on the harmonic vibrational transition intensities and frequencies of two hydrogen-bonded complexes: HCN…HCN and HCN…HNC. The emphasis is put on the largest-intensity bands, which correspond to the stretching vibrations. The obtained results demonstrate that embedding the molecular complexes in an external confining potential causes significant changes of transition intensities and vibrational frequencies.
Collapse
Affiliation(s)
- Marta Chołuj
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- *Correspondence: Marta Chołuj, ; Robert Zaleśny,
| | - Josep M. Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Catalonia, Spain
| | - Wojciech Bartkowiak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Robert Zaleśny
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
- *Correspondence: Marta Chołuj, ; Robert Zaleśny,
| |
Collapse
|
5
|
|
6
|
Mohammed MH, Hanoon FH. Application of zinc oxide nanosheet in various anticancer drugs delivery: Quantum chemical study. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Chakraborty D, Chattaraj PK. Conceptual density functional theory based electronic structure principles. Chem Sci 2021; 12:6264-6279. [PMID: 34084424 PMCID: PMC8115084 DOI: 10.1039/d0sc07017c] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
In this review article, we intend to highlight the basic electronic structure principles and various reactivity descriptors as defined within the premise of conceptual density functional theory (CDFT). Over the past several decades, CDFT has proven its worth in providing valuable insights into various static as well as time-dependent physicochemical problems. Herein, having briefly outlined the basics of CDFT, we describe various situations where CDFT based reactivity theory could be employed in order to gain insights into the underlying mechanism of several chemical processes.
Collapse
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry, KU Leuven Celestijnenlaan 200F-2404 3001 Leuven Belgium
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302 West Bengal India +91 3222 255303 +91 3222 283304
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
A model of atomic compressibility and its application in QSAR domain for toxicological property prediction. J Mol Model 2019; 25:303. [PMID: 31493097 DOI: 10.1007/s00894-019-4199-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
A model for computing the atomic compressibility (β) based on two periodic descriptors, namely, absolute radius (r) and atomic electrophilicity index (ω), is proposed as[Formula: see text]The ansatz is invoked to compute compressibilities of atoms of 57 elements of the periodic table. The computed atomic data exhibits all sine qua non of periodic properties. Further, the concept group compressibility (Gβ) is also established invoking additivity property using some molecules with different functional groups and consequently utilized in correlating with molecular polarizability. Since toxicity prediction is an imperative need of the hour, chemical reactivity descriptors are of paramount importance in the study of toxicological behaviour along with a lot of other molecular reactivity studies within a Quantitative Structure-Activity Relationship (QSAR) context. Hence, this quantity is applied in the modelling of toxicological property through QSAR and a comprehensive study is performed in an effort to investigate and validate the application of compressibility in determining its toxicological power. Consequently, varied 209 organic molecules are selected for studying the toxic effect on Tetrahymena pyriformis. A QSAR model is constructed in terms of compressibility which offers a superior prediction of toxicity independently without adopting additional descriptors or properties as in some other QSAR studies. Graphical abstract.
Collapse
|
9
|
Chakraborty D, Chattaraj PK. Bonding, Reactivity, and Dynamics in Confined Systems. J Phys Chem A 2019; 123:4513-4531. [DOI: 10.1021/acs.jpca.9b00830] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Debdutta Chakraborty
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
|
11
|
Zaleśny R, Chołuj M, Kozłowska J, Bartkowiak W, Luis JM. Vibrational nonlinear optical properties of spatially confined weakly bound complexes. Phys Chem Chem Phys 2017; 19:24276-24283. [PMID: 28848981 DOI: 10.1039/c7cp04259k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study focuses on the theoretical description of the influence of spatial confinement on the electronic and vibrational contributions to (hyper)polarizabilities of two dimeric hydrogen bonded systems, namely HCNHCN and HCNHNC. A two-dimensional analytical potential is employed to render the confining environment (e.g. carbon nanotube). Based on the results of the state-of-the-art calculations, performed at the CCSD(T)/aug-cc-pVTZ level of theory, we established that: (i) the influence of spatial confinement increases with increasing order of the electrical properties, (ii) the effect of spatial confinement is much larger in the case of the electronic than vibrational contribution (this holds for each order of the electrical properties) and (iii) the decrease in the static nuclear relaxation first hyperpolarizability upon the increase of confinement strength is mainly due to changes in the harmonic term, however, in the case of nuclear relaxation second hyperpolarizability the anharmonic terms contribute more to the drop of this property.
Collapse
Affiliation(s)
- Robert Zaleśny
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Marta Chołuj
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Justyna Kozłowska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Wojciech Bartkowiak
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Josep M Luis
- Institute of Computational Chemistry and Catalysis and Department of Chemistry, University of Girona, Campus de Montilivi, 17071 Girona, Catalonia, Spain.
| |
Collapse
|
12
|
Chołuj M, Kozłowska J, Roztoczyńska A, Bartkowiak W. On the directional character of orbital compression: A model study of the electric properties of LiH–(He) complexes. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Kozłowska J, Roztoczyńska A, Bartkowiak W. About diverse behavior of the molecular electric properties upon spatial confinement. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Kozłowska J, Zaleśny R, Bartkowiak W. On the nonlinear electrical properties of molecules in confined spaces – From cylindrical harmonic potential to carbon nanotube cages. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2013.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Zaleśny R, Góra RW, Kozłowska J, Luis JM, Ågren H, Bartkowiak W. Resonant and Nonresonant Hyperpolarizabilities of Spatially Confined Molecules: A Case Study of Cyanoacetylene. J Chem Theory Comput 2013; 9:3463-72. [DOI: 10.1021/ct400410m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert Zaleśny
- Theoretical Chemistry Group, Institute of Physical and Theoretical
Chemistry, Wroclaw University of Technology, Wyb. Wyspiańskiego 27, PL−50370 Wrocław, Poland
| | - Robert W. Góra
- Theoretical Chemistry Group, Institute of Physical and Theoretical
Chemistry, Wroclaw University of Technology, Wyb. Wyspiańskiego 27, PL−50370 Wrocław, Poland
| | - Justyna Kozłowska
- Theoretical Chemistry Group, Institute of Physical and Theoretical
Chemistry, Wroclaw University of Technology, Wyb. Wyspiańskiego 27, PL−50370 Wrocław, Poland
| | - Josep M. Luis
- Institut de Química Computacional
i Catàlisi and Departament de Química, Universitat de Girona, E−17071 Girona, Catalonia,
Spain
| | - Hans Ågren
- Department of Theoretical
Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE−10691 Stockholm,
Sweden
| | - Wojciech Bartkowiak
- Theoretical Chemistry Group, Institute of Physical and Theoretical
Chemistry, Wroclaw University of Technology, Wyb. Wyspiańskiego 27, PL−50370 Wrocław, Poland
| |
Collapse
|
17
|
Khatua M, Chattaraj PK. Molecular reactivity dynamics in a confined environment. Phys Chem Chem Phys 2013; 15:5588-614. [DOI: 10.1039/c3cp43511c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Sarkar U, Khatua M, Chattaraj PK. A tug-of-war between electronic excitation and confinement in a dynamical context. Phys Chem Chem Phys 2012; 14:1716-27. [DOI: 10.1039/c1cp22862e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Abstract
The nucleophilicity N index (J. Org. Chem. 2008, 73, 4615), the inverse of the electrophilicity, 1/ω, and the recently proposed inverse of the electrodonating power, 1/ω⁻, (J. Org. Chem. 2010, 75, 4957) have been checked toward (i) a series of single 5-substituted indoles for which rate constants are available, (ii) a series of para-substituted phenols, and for (iii) a series of 2,5-disubstituted bicyclic[2.2.1]hepta-2,5-dienes which display concurrently electrophilic and nucleophilic behaviors. While all considered indices account well for the nucleophilic behavior of organic molecules having a single substitution, the nucleophilicity N index works better for more complex molecules. Unlike, the inverse of the electrophilicity, 1/ω, (R(2) = 0.71), and the inverse of the electrodonating power, 1/ω⁻ (R(2) = 0.83), a very good correlation of the nucleophilicity N index of twelve 2-substituted-6-methoxy-bicyclic[2.2.1]hepta-2,5-dienes versus the activation energy associated with the nucleophilic attack on 1,1-dicyanoethylene is found (R(2) = 0.99). This comparative study allows to assert that the nucleophilicity N index is a measure of the nucleophilicity of complex organic molecules displaying concurrently electrophilic and nucleophilic behaviors.
Collapse
Affiliation(s)
- Luis R Domingo
- Universidad de Valencia, Departamento de Química Orgánica, Dr Moliner 50, E-46100, Burjassot, Valencia, Spain.
| | | |
Collapse
|
20
|
Affiliation(s)
- Pratim Kumar Chattaraj
- Department of Chemistry, Center for Theoretical Studies, Indian Institute of Technology, Kharagpur, India
| | | | | |
Collapse
|
21
|
Sarkar U, Giri S, Chattaraj PK. Dirichlet boundary conditions and effect of confinement on chemical reactivity. J Phys Chem A 2010; 113:10759-66. [PMID: 19746922 DOI: 10.1021/jp902374d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the source of discrepancy in the qualitative trends in the reactivity of the spherically confined atoms/ions when the high pressure is generated through the use of a proper Dirichlet boundary condition [J. Chem. Sci. 2005, 117, 379; Phys. Chem. Chem. Phys. 2008, 10, 1406] and of a cutoff function [Chem. Phys. Lett. 2003, 372, 805; J. Phys. Chem. A 2003, 107, 4877], a modified Herman-Skilman program is run. Results obtained from different formulas of reactivity parameters are analyzed. Change in reactivity for different electronic configurations is also reported. It is observed that the use of different formulas is the major source of discrepancy and not the Dirichlet condition, although the latter is highly recommended. As the cutoff radius of the confining spherical box decreases, the energy of the atom/ion increases, the electronegativity decreases, and the hardness increases and ultimately slightly decreases in an ultraconfined situation. For small R(C) values, softness decreases and electrophilicity increases and attains relatively small values. The reactivity of confined atoms/ions is put in a proper perspective.
Collapse
Affiliation(s)
- U Sarkar
- Department of Chemistry and Center for Theoretical Studies, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India
| | | | | |
Collapse
|
22
|
|
23
|
Chattaraj PK, Giri S. Electrophilicity index within a conceptual DFT framework. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b802832j] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Borgoo A, Tozer DJ, Geerlings P, De Proft F. Confinement effects on excitation energies and regioselectivity as probed by the Fukui function and the molecular electrostatic potential. Phys Chem Chem Phys 2009; 11:2862-8. [DOI: 10.1039/b820114e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Borgoo A, Tozer DJ, Geerlings P, De Proft F. Influence of confinement on atomic and molecular reactivity indicators in DFT. Phys Chem Chem Phys 2008; 10:1406-10. [DOI: 10.1039/b716727j] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Affiliation(s)
- Pratim Kumar Chattaraj
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, IndiaThis is a Chemical Reviews Perennial Review. The root paper of this title was published in 2006 (Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065). Updates to the text appear in red type
| | - Debesh Ranjan Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, IndiaThis is a Chemical Reviews Perennial Review. The root paper of this title was published in 2006 (Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065). Updates to the text appear in red type
| |
Collapse
|
27
|
|
28
|
Rogachev AY, Mironov AV, Nemukhin AV. Experimental and theoretical studies of the products of reaction between Ln(hfa)3 and Cu(acac)2 (Ln=La, Y; acac=acetylacetonate, hfa=hexafluoroacetylacetonate). J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Chapter 13 Chemical reactivity dynamics in ground and excited electronic states. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1380-7323(07)80014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
30
|
Holka F, Neogrády P, Kellö V, Urban M, Diercksen G. Polarizabilities of confined two-electron systems: the 2-electron quantum dot, the hydrogen anion, the helium atom and the lithium cation. Mol Phys 2005. [DOI: 10.1080/00268970500181160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
|
32
|
Cruz SA, Soullard J. Pressure effects on the electronic and structural properties of molecules. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.04.099] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Chattaraj PK, Maiti B, Sarkar U. Chemical reactivity of the compressed noble gas atoms and their reactivity dynamics during collisions with protons. J CHEM SCI 2003. [DOI: 10.1007/bf02704259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Affiliation(s)
- P. K. Chattaraj
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - U. Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|