1
|
Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 66:40-69. [PMID: 22980033 DOI: 10.1016/j.pnmrs.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Rodolfo H Acosta
- FAMAF, Universidad Nacional de Córdoba, IFEG - CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
2
|
Liebold C, List F, Kalbitzer HR, Sterner R, Brunner E. The interaction of ammonia and xenon with the imidazole glycerol phosphate synthase from Thermotoga maritima as detected by NMR spectroscopy. Protein Sci 2011; 19:1774-82. [PMID: 20665694 DOI: 10.1002/pro.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The imidazole glycerol phosphate (ImGP) synthase from the hyperthermophilic bacterium Thermotoga maritima is a 1:1 complex of the glutaminase subunit HisH and the cyclase subunit HisF. It has been proposed that ammonia generated by HisH is transported through a channel to the active site of HisF, which generates intermediates of histidine (ImGP) and de novo biosynthesis of 5-aminoimidazole-4-carboxamideribotide. Solution NMR spectroscopy of ammonium chloride-titrated samples was used to study the interaction of NH(3) with amino acids inside this channel. Although numerous residues showed (15)N chemical shift changes, most of these changes were caused by nonspecific ionic strength effects. However, several interactions appeared to be specific. Remarkably, the amino acid residue Thr 78-which is located in the central channel-shows a large chemical shift change upon titration with ammonium chloride. This result and the reduced catalytic activity of the Thr78Met mutant indicate a special role of this residue in ammonia channeling. To detect and further characterize internal cavities in HisF, which might for example contribute to ammonia channeling, the interaction of HisF with the noble gas xenon was analyzed by solution NMR spectroscopy using (1)H-(15)N HSQC experiments. The results indicate that HisF contains three distinct internal cavities, which could be identified by xenon-induced chemical shift changes of the neighboring amino acid residues. Two of these cavities are located at the active site at opposite ends of the substrate N'-[(5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) binding groove. The third cavity is located in the interior of the central β-barrel of HisF and overlaps with the putative ammonia transport channel.
Collapse
Affiliation(s)
- Christoph Liebold
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
3
|
Baumer D, Fink A, Brunner E. Measurement of the 129Xe NMR Chemical Shift of Supercritical Xenon. ACTA ACUST UNITED AC 2008. [DOI: 10.1524/zpch.217.3.289.20465] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The measurement of the 129Xe Nuclear Magnetic Resonance (NMR) chemical shift as a function of density is reported. The apparatus used in this study enabled us to measure the 129Xe NMR chemical shift in the supercritical state up to a pressure of about 70 MPa, i.e., a density of 440 amagat1 at 298 K.
Collapse
|
4
|
McNabb JW, Balakishiyeva DN, Honig A. Nuclear spin resonance of (129)Xe doped with O(2). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 188:206-15. [PMID: 17689279 DOI: 10.1016/j.jmr.2007.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/28/2007] [Accepted: 07/08/2007] [Indexed: 05/16/2023]
Abstract
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.
Collapse
Affiliation(s)
- J W McNabb
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
| | | | | |
Collapse
|
5
|
Meier M, Fink A, Brunner E. Reverse micelles dissolved in supercritical xenon: an NMR spectroscopic study. J Phys Chem B 2007; 109:3494-8. [PMID: 16851384 DOI: 10.1021/jp044863g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reverse micelles currently gain increasing interest in chemical technology. They also become important in biomolecular NMR due to their ability to host biomolecules such as proteins. In the present paper, a procedure for the preparation of high-pressure NMR samples containing reverse micelles dissolved in supercritical xenon is presented. These reverse micelles are formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT). For the first time, NMR spectroscopy could be applied to reverse micelles in supercritical xenon. The AOT/H(2)O/Xe system was studied as a function of experimental parameters such as xenon pressure, water content, and salt concentration. Optimum conditions for reverse micelle formation in supercritical xenon could be determined. It is, furthermore, demonstrated that biomolecules such as amino acids and proteins can be incorporated into the reverse micelles dissolved in supercritical xenon.
Collapse
Affiliation(s)
- Matthias Meier
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | | | | |
Collapse
|
6
|
Yashchuk VV, Granwehr J, Kimball DF, Rochester SM, Trabesinger AH, Urban JT, Budker D, Pines A. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry. PHYSICAL REVIEW LETTERS 2004; 93:160801. [PMID: 15524968 DOI: 10.1103/physrevlett.93.160801] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Indexed: 05/24/2023]
Abstract
We report the use of an atomic magnetometer based on nonlinear magneto-optical rotation with frequency-modulated light to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample (1.7 c m(3) at a pressure of 5 bars, natural isotopic abundance, polarization 1% ), prepared remotely to the detection apparatus, is measured with an atomic sensor. An average magnetic field of approximately 10 nG induced by the xenon sample on the 10 cm diameter atomic sensor is detected with signal-to-noise ratio approximately 10 , limited by residual noise in the magnetic environment. The possibility of using modern atomic magnetometers as detectors of nuclear magnetic resonance and in magnetic resonance imaging is discussed. Atomic magnetometers appear to be ideally suited for emerging low-field and remote-detection magnetic resonance applications.
Collapse
Affiliation(s)
- V V Yashchuk
- Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Acosta RH, Blümler P, Han S, Appelt S, Häsing FW, Schmiedeskamp J, Heil W, Spiess HW. Imaging of a mixture of hyperpolarized 3He and 129Xe. Magn Reson Imaging 2004; 22:1077-83. [PMID: 15527994 DOI: 10.1016/j.mri.2004.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 08/01/2004] [Indexed: 10/26/2022]
Abstract
With the use of hyperpolarized gases, a great number of experiments have been carried out in order to improve the diagnostics of the lung, both from a structural and a functional point of view. 3He is best suited for structural studies, whereas 129Xe gives more detailed information about the functionality of the lung because it enters the bloodstream. In this work, we propose the use of a gas mixture to perform consecutive analysis of lung structure and functionality upon the delivery of a single bolus of gas. We show images of a helium-xenon gas mixture in the presence of a small amount of liquid toluene in order to demonstrate how both nuclei can be detected independently, extracting the spectroscopic information provided by the 129Xe spectra and obtaining an image with high sensitivity for 3He. A second experiment performed on a dissected mouse lung was used to demonstrate how the mixture of gases can enhance sensitivity in the larger airways of the lung.
Collapse
Affiliation(s)
- R H Acosta
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Hyperpolarized gases have found a steadily increasing range of applications in nuclear magnetic resonance (NMR) and NMR imaging (MRI). They can be regarded as a new class of MR contrast agent or as a way of greatly enhancing the temporal resolution of the measurement of processes relevant to areas as diverse as materials science and biomedicine. We concentrate on the properties and applications of hyperpolarized xenon. This review discusses the physics of producing hyperpolarization, the NMR-relevant properties of 129Xe, specific MRI methods for hyperpolarized gases, applications of xenon to biology and medicine, polarization transfer to other nuclear species and low-field imaging.
Collapse
Affiliation(s)
- Ana-Maria Oros
- Institute of Medicine, Research Centre Jiilich, 52425 Jülich, Germany.
| | | |
Collapse
|
9
|
Ueda T, Eguchi T, Nakamura N, Wasylishen RE. High-Pressure 129Xe NMR Study of Xenon Confined in the Nanochannels of Solid (±)-[Co(en)3]Cl3. J Phys Chem B 2002. [DOI: 10.1021/jp021679r] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Takahiro Ueda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Taro Eguchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Nobuo Nakamura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Roderick E. Wasylishen
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
10
|
Zook AL, Adhyaru BB, Bowers CR. High capacity production of >65% spin polarized xenon-129 for NMR spectroscopy and imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 159:175-82. [PMID: 12482697 DOI: 10.1016/s1090-7807(02)00030-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A rubidium spin exchange optical pumping system for high capacity production of >65% spin polarized 129Xe gas is described. This system is based on a fiber coupled multiple laser diode array capable of producing an unprecedented 210 W of circularly polarized light at the pumping cell with a laser line width of 1.6 nm. The 129Xe nuclear spin polarization is measured as a function of flow rate, pumping cell pressure, and laser power for varying pumping gas compositions. A maximum 129Xe nuclear polarization of 67% was achieved using a 0.6% Xe mixture at a Xe flow rate of 2.45 sccm. The ability to generate 12% polarized 129Xe at rates in excess of 1L-atm/h is also demonstrated. To achieve production of 129Xe gas at even higher polarization will rely on further optimization of the pumping cell and laser beam geometries in order to mitigate problems associated with temperature gradients that are encountered at high laser power and Rb density.
Collapse
Affiliation(s)
- Anthony L Zook
- Chemistry Department and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | |
Collapse
|
11
|
Goodson BM. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2002; 155:157-216. [PMID: 12036331 DOI: 10.1006/jmre.2001.2341] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI.
Collapse
Affiliation(s)
- Boyd M Goodson
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley 94720-1460, USA
| |
Collapse
|
12
|
Leawoods JC, Saam BT, Conradi MS. Polarization transfer using hyperpolarized, supercritical xenon. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(00)00908-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Seydoux R, Pines A, Haake M, Reimer JA. NMR with a Continuously Circulating Flow of Laser-Polarized 129Xe. J Phys Chem B 1999. [DOI: 10.1021/jp9821984] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Luhmer M, Goodson BM, Song YQ, Laws DD, Kaiser L, Cyrier MC, Pines A. Study of Xenon Binding in Cryptophane-A Using Laser-Induced NMR Polarization Enhancement. J Am Chem Soc 1999. [DOI: 10.1021/ja9841916] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michel Luhmer
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Boyd M. Goodson
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Yi-Qiao Song
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - David D. Laws
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Lana Kaiser
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Michelle C. Cyrier
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| | - Alexander Pines
- Contribution from the Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Department of Chemistry, University of California, Berkeley, California 94720, and Laboratoire de Chimie Organique E.P., Université Libre de Bruxelles, CP 165/64, Av. F.D. Roosevelt 50, 1050 Bruxelles, Belgium
| |
Collapse
|
15
|
|