1
|
Gorb L, Voiteshenko I, Hurmach V, Zarudnaya M, Nyporko A, Shyryna T, Platonov M, Roszak S, Rasulev B. From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA. NAR Genom Bioinform 2024; 6:lqae062. [PMID: 38835951 PMCID: PMC11148665 DOI: 10.1093/nargab/lqae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.
Collapse
Affiliation(s)
- Leonid Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Ivan Voiteshenko
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv01033, Ukraine
| | - Vasyl Hurmach
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Margarita Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Alex Nyporko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv01033, Ukraine
| | - Tetiana Shyryna
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Maksym Platonov
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Szczepan Roszak
- Faculty of Chemistry, University of Wrocław, 50-370Wrocław, Poland
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymer Materials, North Dakota State University, NDSU Department 2760, PO Box 6050, Fargo, ND 58108, USA
| |
Collapse
|
2
|
Chakraborty G, Balinin K, Villar-Guerra RD, Emondts M, Portale G, Loznik M, Niels Klement WJ, Zheng L, Weil T, Chaires JB, Herrmann A. Supramolecular DNA-based catalysis in organic solvents. iScience 2024; 27:109689. [PMID: 38706840 PMCID: PMC11067378 DOI: 10.1016/j.isci.2024.109689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/04/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
The distinct folding accompanied by its polymorphic character renders DNA G-quadruplexes promising biomolecular building blocks to construct novel DNA-based and supramolecular assemblies. However, the highly polar nature of DNA limits the use of G-quadruplexes to water as a solvent. In addition, the archetypical G-quadruplex fold needs to be stabilized by metal-cations, which is usually a potassium ion. Here, we show that a noncovalent PEGylation process enabled by electrostatic interactions allows the first metal-free G-quadruplexes in organic solvents. Strikingly, incorporation of an iron-containing porphyrin renders the self-assembled metal-free G-quadruplex catalytically active in organic solvents. Hence, these "supraG4zymes" enable DNA-based catalysis in organic media. The results will allow the broad utilization of DNA G-quadruplexes in nonaqueous environments.
Collapse
Affiliation(s)
- Gurudas Chakraborty
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Konstantin Balinin
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rafael del Villar-Guerra
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Meike Emondts
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Mark Loznik
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Wiebe Jacob Niels Klement
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
| | - Lifei Zheng
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jonathan B. Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, the Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
3
|
Satapathy SN, Nial PS, Tulsiyan KD, Subudhi U. Light rare earth elements stabilize G-quadruplex structure in variants of human telomeric sequences. Int J Biol Macromol 2024; 254:127703. [PMID: 37918592 DOI: 10.1016/j.ijbiomac.2023.127703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Recently, light rare earth elements (LREEs) are gaining importance in modern-day technologies. Thus, the entry of LREEs into biochemical pathways cannot be ignored, which might affect the conformation of biomacromolecules. Herein, for the first time, we discover the G-quadruplex formation in the human telomeric variants in presence of micromolar concentrations of LREEs. Thermal melting show that the LREE-induced unimolecular G-quadruplex structure. Isothermal titration calorimetry, UV-vis, and CD spectroscopy results suggest the binding stoichiometry of lanthanide ions to telomeric variants is 2:1. The data confirms that the LREE ions coordinate between adjacent G-quartets. The excess LREE ions are most likely binding to quadruplex loops. The CD spectra revealed that the LREE-induced quadruplex in human telomere and its variant have antiparallel orientation. The binding equilibria of LREEs have been studied both in the presence and absence of competing metal cations. Addition of LREEs to the Na+ or K+-induced G-quadruplexes led to conformational change, which may be ascribed to the displacement of K+ or Na+ ions by LREE ions and formation of a more compact LREE-induced G-quadruplex structure in human telomeric variant. Moreover, the thymine in the central loop of the human telomeric sequence stabilizes LREE induced G-quadruplex.
Collapse
Affiliation(s)
- Sampat N Satapathy
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran D Tulsiyan
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, Environment & Sustainability Department, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Milovanović B, Petković M, Etinski M. Alkaline earth cations binding mode tailors excited-state charge transfer properties of guanine quadruplex: A TDDFT study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120584. [PMID: 34794899 DOI: 10.1016/j.saa.2021.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Quadruplexes formed by nucleic acids and their derivates tend to chelate different monovalent and bivalent cations, which simultaneously affect their excited electronic states properties. Cation binding to every and every other cavity of the central ion channel could be exploited for tuning exited-state charge transfer properties. In this work we utilize set of descriptors constructed on the basis of the one-electron transition density matrix obtained using linear-response TDDFT to study excited states properties of four crystallized tetramolecular quadruplexes that chelate alkaline earth cations (Ca2+, Sr2+ and Ba2+). Here, we show that alkaline earth cations situated at adjacent vacancies promote existence of the nucleobase-metal charge separation (CS) states, contrary to the structures with cations that occupy every second available vacancy. We argued that stabilization of these CS states is due to the strong electric field that stabilizes d orbitals of the cations which accept an excited-electron. Moreover, CS content is increased and redshifted below the first bright transition when number of the chelated cations is increased. Hydration effects stabilized CS states and increased their relative content. We also identified electron detachment states in the broad energy range for the Ca2+ containing system. These findings are valuable for understanding and development of the novel nanostructures based on the quadruplex scaffold with adjustable optical properties.
Collapse
Affiliation(s)
- Branislav Milovanović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Milena Petković
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia
| | - Mihajlo Etinski
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, Serbia.
| |
Collapse
|
5
|
Salsbury AM, Lemkul JA. Cation competition and recruitment around the c-kit1 G-quadruplex using polarizable simulations. Biophys J 2021; 120:2249-2261. [PMID: 33794153 PMCID: PMC8390831 DOI: 10.1016/j.bpj.2021.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Nucleic acid-ion interactions are fundamentally important to the physical, energetic, and conformational properties of DNA and RNA. These interactions help fold and stabilize highly ordered secondary and tertiary structures, such as G-quadruplexes (GQs), which are functionally relevant in telomeres, replication initiation sites, and promoter sequences. The c-kit proto-oncogene encodes for a receptor tyrosine kinase and is linked to gastrointestinal stromal tumors, mast cell disease, and leukemia. This gene contains three unique GQ-forming sequences that have proposed antagonistic effects on gene expression. The dominant GQ, denoted c-kit1, has been shown to decrease expression of c-kit transcripts, making the c-kit1 GQ a promising drug target. Toward disease intervention, more information is needed regarding its conformational dynamics and ion binding properties. Therefore, we performed molecular dynamics simulations of the c-kit1 GQ with K+, Na+, Li+, and mixed salt solutions using the Drude-2017 polarizable force field. We evaluated GQ structure, ion sampling, core energetics, ion dehydration and binding, and ion competition and found that each analysis supported the known GQ-ion specificity trend (K+ > Na+ > Li+). We also found that K+ ions coordinate in the tetrad core antiprismatically, whereas Na+ and Li+ align coplanar to guanine tetrads, partially because of their attraction to surrounding water. Further, we showed that K+ occupancy is higher around the c-kit1 GQ and its nucleobases than Na+ and Li+, which tend to interact with backbone and sugar moieties. Finally, we showed that K+ binding to the c-kit1 GQ is faster and more frequent than Na+ and Li+. Such descriptions of GQ-ion dynamics suggest the rate of dehydration as the dominant factor for preference of K+ by DNA GQs and provide insight into noncanonical nucleic acids for which little experimental data exist.
Collapse
Affiliation(s)
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
6
|
Nieuwland C, Zaccaria F, Fonseca Guerra C. Understanding alkali metal cation affinities of multi-layer guanine quadruplex DNA. Phys Chem Chem Phys 2021; 22:21108-21118. [PMID: 32954397 PMCID: PMC8612728 DOI: 10.1039/d0cp03433a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To gain better understanding of the stabilizing interactions between metal ions and DNA quadruplexes, dispersion-corrected density functional theory (DFT-D) based calculations were performed on double-, triple- and four-layer guanine tetrads interacting with alkali metal cations. All computations were performed in aqueous solution that mimics artificial supramolecular conditions where guanine bases assemble into stacked quartets as well as biological environments in which telomeric quadruplexes are formed. To facilitate the computations on these significant larger systems, optimization of the DFT description was performed first by evaluating the performance of partial reduced basis sets. Analysis of the stabilizing interactions between alkali cations and the DNA bases in double and triple-layer guanine quadruplex DNA reproduced the experimental affinity trend of the order Li+< Rb+ < Na+ < K+. The desolvation and the size of alkali metal cations are thought to be responsible for the order of affinity. Nevertheless, for the alkali metal cation species individually, the magnitude of the bond energy stays equal for binding as first, second or third cation in double, triple and four-layer guanine quadruplexes, respectively. This is the result of an interplay between a decreasingly stabilizing interaction energy and increasingly stabilizing solvation effects, along the consecutive binding events. This diminished interaction energy is the result of destabilizing electrostatic repulsion between the hosted alkali metal cations. This work emphasizes the stabilizing effect of aqueous solvent on large highly charged biomolecules. Stabilizing solvent effects and electrostatic repulsion are responsible for the constant alkali metal cation affinity in multi-layer guanine quadruplexes.![]()
Collapse
Affiliation(s)
- C Nieuwland
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modelling, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085 NL-1081HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
7
|
Mal M, Mandal D. Molecular Rotors as Guest Fluorophores Probing the Local Environment inside Host G4 Supramolecular Hydrogels. J Phys Chem B 2021; 125:219-230. [PMID: 33370116 DOI: 10.1021/acs.jpcb.0c07954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fluorescent molecular rotors with a high binding affinity toward the guanosine quartet (G4) were incorporated as guest fluorophores into host supramolecular hydrogels based on the self-assembly of G4 units, to probe the local environment. Torsional dynamics of the rotors were severely inhibited inside the hydrogels in comparison with aqueous solutions, although the hydrogels were composed of >95% water. Moreover, even though all the gels were rigid bodies with no spontaneous deformation or flow property at room temperature, torsional dynamics in G4 borate gels was found to be consistently several orders of magnitude slower than those in the other G4 gels, irrespective of the identity of the molecular rotor probe. This clear difference in the molecular mobilities of the guest fluorophore could be attributed to systematic differences in the internal structure between the two categories of host G4 hydrogels. In specific terms, the borate groups in G4 borate hydrogels serve as bridging units between separate G4 quadruplex strands, generating additional cross-links that reinforce the network structure of the gel. The results demonstrate that molecular rotors act as efficient fluorescent probes for the quantitative assessment of the molecular-level environment and dynamics inside the hydrogels, an aspect that is missed out by most other analytical methods that are routinely employed for studying them.
Collapse
Affiliation(s)
- Madhushree Mal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Debabrata Mandal
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| |
Collapse
|
8
|
Photosensitizers Based on G-Quadruplex Ligand for Cancer Photodynamic Therapy. Genes (Basel) 2020; 11:genes11111340. [PMID: 33198362 PMCID: PMC7697063 DOI: 10.3390/genes11111340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
G-quadruplex (G4) is the non-canonical secondary structure of DNA and RNA formed by guanine-rich sequences. G4-forming sequences are abundantly located in telomeric regions and in the promoter and untranslated regions (UTR) of cancer-related genes, such as RAS and MYC. Extensive research has suggested that G4 is a potential molecular target for cancer therapy. Here, we reviewed G4 ligands as photosensitizers for cancer photodynamic therapy (PDT), which is a minimally invasive therapeutic approach. The photosensitizers, such as porphyrins, were found to be highly toxic against cancer cells via the generation of reactive oxidative species (ROS) upon photo-irradiation. Several porphyrin derivatives and analogs, such as phthalocyanines, which can generate ROS upon photo-irradiation, have been reported to act as G4 ligands. Therefore, they have been implicated as promising photosensitizers that can selectively break down cancer-related DNA and RNA forming G4. In this review, we majorly focused on the potential application of G4 ligands as photosensitizers, which would provide a novel strategy for PDT, especially molecularly targeted PDT (mtPDT).
Collapse
|
9
|
|
10
|
Salsbury AM, Dean TJ, Lemkul JA. Polarizable Molecular Dynamics Simulations of Two c-kit Oncogene Promoter G-Quadruplexes: Effect of Primary and Secondary Structure on Loop and Ion Sampling. J Chem Theory Comput 2020; 16:3430-3444. [PMID: 32307997 DOI: 10.1021/acs.jctc.0c00191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
G-quadruplexes (GQs) are highly ordered nucleic acid structures that play fundamental roles in regulating gene expression and maintaining genomic stability. GQs are topologically diverse and enriched in promoter sequences of growth regulatory genes and proto-oncogenes, suggesting that they may serve as attractive targets for drug design at the level of transcription rather than inhibiting the activity of the protein products of these genes. The c-kit promoter contains three adjacent GQ-forming sequences that have proposed antagonistic effects on gene expression and thus are promising drug targets for diseases such as gastrointestinal stromal tumors, mast cell disease, and leukemia. Because GQ stability is influenced by primary structure, secondary structure, and ion interactions, a greater understanding of GQ structure, dynamics, and ion binding properties is needed to develop novel, GQ-targeting therapeutics. Here, we performed molecular dynamics simulations to systematically study the c-kit2 and c-kit* GQs, evaluating nonpolarizable and polarizable force fields (FFs) and examining the effects of base substitutions and cation type (K+, Na+, and Li+) on the dynamics of their isolated and linked structures. We found that the Drude polarizable FF outperformed the additive CHARMM36 FF in two- and three-tetrad GQs and solutions of KCl, NaCl, and LiCl. Drude simulations with different cations agreed with the known GQ stabilization preference (K+ > Na+ > Li+) and illustrated that tetrad core-ion coordination differs as a function of cation type. Finally, we showed that differences in primary and secondary structure influence loop sampling, ion binding, and core-ion energetics of GQs.
Collapse
Affiliation(s)
- Alexa M Salsbury
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tanner J Dean
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Milovanović B, Stanojević A, Etinski M, Petković M. Intriguing Intermolecular Interplay in Guanine Quartet Complexes with Alkali and Alkaline Earth Cations. J Phys Chem B 2020; 124:3002-3014. [DOI: 10.1021/acs.jpcb.0c01165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Branislav Milovanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Stanojević
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
12
|
Raguseo F, Chowdhury S, Minard A, Di Antonio M. Chemical-biology approaches to probe DNA and RNA G-quadruplex structures in the genome. Chem Commun (Camb) 2020; 56:1317-1324. [PMID: 31904034 DOI: 10.1039/c9cc09107f] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G-quadruplexes are nucleic acids secondary structures that can be formed in guanine-rich sequences. More than 30 years ago, their formation was first observed in telomeric DNA. Since then, a number of other sequences capable of forming G-quadruplex structures have been described and increasing evidence supporting their formation in the context of living cells has been accumulated. To fully underpin the biological significance of G-quadruplexes and their potential as therapeutic targets, several chemical-biology tools and methods have been developed to map and visualise these nucleic acids secondary structures in human cells. In this review, we critically present the most relevant methods developed to investigate G-quadruplex prevalence in human cells and to study their biological functions, presenting the next key chemical-biology challenges that need to be addressed to fully unravel G-quadruplex mediated biology and their therapeutic potential.
Collapse
Affiliation(s)
- Federica Raguseo
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 80 Wood Lane, W12 0BZ, London, UK.
| | - Souroprobho Chowdhury
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 80 Wood Lane, W12 0BZ, London, UK. and Institute of Chemical Biology, Molecular Science Research Hub, 80 Wood Lane, W12 0BZ, London, UK
| | - Aisling Minard
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 80 Wood Lane, W12 0BZ, London, UK.
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 80 Wood Lane, W12 0BZ, London, UK. and Institute of Chemical Biology, Molecular Science Research Hub, 80 Wood Lane, W12 0BZ, London, UK
| |
Collapse
|
13
|
McQuaid KT, Cardin CJ. The eyes have it: Using X-ray crystallography to determine the binding modes of medically relevant ruthenium/DNA complexes. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Del Mundo IMA, Vasquez KM, Wang G. Modulation of DNA structure formation using small molecules. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:118539. [PMID: 31491448 PMCID: PMC6851491 DOI: 10.1016/j.bbamcr.2019.118539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
Genome integrity is essential for proper cell function such that genetic instability can result in cellular dysfunction and disease. Mutations in the human genome are not random, and occur more frequently at "hotspot" regions that often co-localize with sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures. Non-B DNA-forming sequences are mutagenic, can stimulate the formation of DNA double-strand breaks, and are highly enriched at mutation hotspots in human cancer genomes. Thus, small molecules that can modulate the conformations of these structure-forming sequences may prove beneficial in the prevention and/or treatment of genetic diseases. Further, the development of molecular probes to interrogate the roles of non-B DNA structures in modulating DNA function, such as genetic instability in cancer etiology are warranted. Here, we discuss reported non-B DNA stabilizers, destabilizers, and probes, recent assays to identify ligands, and the potential biological applications of these DNA structure-modulating molecules.
Collapse
Affiliation(s)
- Imee M A Del Mundo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| |
Collapse
|
15
|
Interaction of (G4)2 and (X4)2 DNA quadruplexes with Cu+, Ag+ and Au+ metal cations: a quantum chemical calculation on structural, energetic and electronic properties. Struct Chem 2019. [DOI: 10.1007/s11224-019-01421-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Vinnarasi S, Radhika R, Vijayakumar S, Shankar R. Structural insights into the anti-cancer activity of quercetin on G-tetrad, mixed G-tetrad, and G-quadruplex DNA using quantum chemical and molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:317-339. [PMID: 30794082 DOI: 10.1080/07391102.2019.1574239] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human telomerase referred as 'terminal transferase' is a nucleoprotein enzyme which inhibits the disintegration of telomere length and act as a drug target for the anticancer therapy. The tandem repeating structure of telomere sequence forms the guanine-rich quadruplex structures that stabilize stacked tetrads. In our present work, we have investigated the interaction of quercetin with DNA tetrads using DFT. Geometrical analysis revealed that the influence of quercetin drug induces the structural changes into the DNA tetrads. Among DNA tetrads, the quercetin stacked with GCGC tetrad has the highest interaction energy of -88.08 kcal/mol. The binding mode and the structural stability are verified by the absorption spectroscopy method. The longer wavelength was found at 380 nm and it exhibits bathochromic shift. The findings help us to understand the binding nature of quercetin drug with DNA tetrads and it also inhibits the telomerase activity. Further, the quercetin drug interacted with G-quadruplex DNA by using molecular dynamics (MD) simulation studies for 100 ns simulation at different temperatures and different pH levels (T = 298 K, 320 K and pH = 7.4, 5.4). The structural stability of the quercetin with G-quadruplex structure is confirmed by RMSD. For the acidic condition (pH = 5.4), the binding affinity is higher toward G-quadruplex DNA, this result resembles that the quercetin drug is well interacted with G-quadruplex DNA at acidic condition (pH = 7.4) than the neutral condition. The obtained results show that quercetin drug stabilizes the G-quadruplex DNA, which regulates telomerase enzyme and it potentially acts as a novel anti-cancer agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Vinnarasi
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - R Radhika
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - S Vijayakumar
- Department of Medical Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - R Shankar
- Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
17
|
Villani G. Quantum Mechanical Investigation of the G-Quadruplex Systems of Human Telomere. ACS OMEGA 2018; 3:9934-9944. [PMID: 31459122 PMCID: PMC6644616 DOI: 10.1021/acsomega.8b01678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 05/17/2023]
Abstract
The three G-quadruplexes involved in the human telomere have been studied with an accurate quantum mechanical approach, and the possibility of reducing them to a simpler model has been tested. The similarities and the differences of these three systems are shown and discussed. Each system has been analyzed through different properties and compared to the others. In particular, we have considered: (1) the shape of the cavity and the atomic charges around it; (2) the electric field in and out of the cavity; (3) the stabilization energy due to the stacking of G-tetrads, to the H-bonds and to the ion interactions; and, finally, (4) to study the mechanism of the process of the ion inclusion in the cavity, the curves of potential energy due to the movement of the Na+ and K+ ions toward the cavity. The results suggest that a detailed study is essential in order to obtain the quantitative properties of these complex systems, but also that some qualitative behaviors can be schematized. Our study makes it clear that the entry of an ion in the cavity of these systems is a complex process, where it is possible to find stable structures with the ion out and in the cavity. Moreover, it is possible that more than one diabatic state is involved in this process.
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici, ICCOM—CNR
(UOS Pisa), Area della Ricerca di Pisa, Via G. Moruzzi, 1, I-56124 Pisa, Italy
| |
Collapse
|
18
|
The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Saikia N, Karna SP, Pandey R. Theoretical study of gas and solvent phase stability and molecular adsorption of noncanonical guanine bases on graphene. Phys Chem Chem Phys 2018. [PMID: 28627546 DOI: 10.1039/c7cp02944f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gas and solvent phase stability of noncanonical (Gua)n nucleobases is investigated in the framework of dispersion-corrected density functional theory (DFT). The calculated results strongly support the high tendency for the dimerization of (Gua)n bases in both gas and solvent phases. An interplay between intermolecular and bifurcated H-bonds is suggested to govern the stability of (Gua)n bases which bears a correlation with the description of dispersion correction terms employed in the DFT calculations. For example, a higher polarity is predicted for (Gua)n bases by the dispersion-corrected DFT in contrast to the non-polar nature of (Gua)3 and (Gua)4 predicted by the hybrid meta-GGA calculations. This distinct variation becomes significant under physiological conditions as polar (Gua)n is likely to exhibit greater stabilization in the gas phase compared to solvated (Gua)n. Graphene acting as a substrate induces modification in base configurations via maximization of π-orbital overlap between the base and substrate. In solvent, the substrate-induced effects are further heightened with lowering of the dipole moments of (Gua)n as also displayed by the corresponding isosurface of the electrostatic potential. The graphene-induced stability in both gas and solvent phases appears to fulfill one of the prerequisite criteria for molecular self-assembly. The DFT results therefore provide atomistic insights into the stability and molecular assembly of free-standing noncanonical (Gua)n nucleobases which can be extended to understanding the self-assembly process of functional biomolecules on 2D materials for potential biosensing applications.
Collapse
Affiliation(s)
- Nabanita Saikia
- Department of Physics, Michigan Technological University, Houghton, Michigan, USA.
| | | | | |
Collapse
|
20
|
Gao M, Harish B, Berghaus M, Seymen R, Arns L, McCallum SA, Royer CA, Winter R. Temperature and pressure limits of guanosine monophosphate self-assemblies. Sci Rep 2017; 7:9864. [PMID: 28852183 PMCID: PMC5574928 DOI: 10.1038/s41598-017-10689-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/14/2017] [Indexed: 12/31/2022] Open
Abstract
Guanosine monophosphate, among the nucleotides, has the unique property to self-associate and form nanoscale cylinders consisting of hydrogen-bonded G-quartet disks, which are stacked on top of one another. Such self-assemblies describe not only the basic structural motif of G-quadruplexes formed by, e.g., telomeric DNA sequences, but are also interesting targets for supramolecular chemistry and nanotechnology. The G-quartet stacks serve as an excellent model to understand the fundamentals of their molecular self-association and to unveil their application spectrum. However, the thermodynamic stability of such self-assemblies over an extended temperature and pressure range is largely unexplored. Here, we report a combined FTIR and NMR study on the temperature and pressure stability of G-quartet stacks formed by disodium guanosine 5′-monophosphate (Na25′-GMP). We found that under abyssal conditions, where temperatures as low as 5 °C and pressures up to 1 kbar are reached, the self-association of Na25′-GMP is most favoured. Beyond those conditions, the G-quartet stacks dissociate laterally into monomer stacks without significantly changing the longitudinal dimension. Among the tested alkali cations, K+ is the most efficient one to elevate the temperature as well as the pressure limits of GMP self-assembly.
Collapse
Affiliation(s)
- Mimi Gao
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Balasubramanian Harish
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, United States
| | - Melanie Berghaus
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Rana Seymen
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Loana Arns
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany
| | - Scott A McCallum
- NMR Facility Center for Biotechnology and Interdisciplinary Science, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Catherine A Royer
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, United States
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 4a, 44227, Dortmund, Germany.
| |
Collapse
|
21
|
Abstract
Minima of the electric field and positions of K+ and Na+ (zero of the x-coordinate is the center of the cavity).
Collapse
Affiliation(s)
- Giovanni Villani
- Istituto di Chimica dei Composti OrganoMetallici
- ICCOM – UOS Pisa
- Area della Ricerca del CNR
- I-56124 Pisa
- Italy
| |
Collapse
|
22
|
Bhattacharyya D, Mirihana Arachchilage G, Basu S. Metal Cations in G-Quadruplex Folding and Stability. Front Chem 2016; 4:38. [PMID: 27668212 PMCID: PMC5016522 DOI: 10.3389/fchem.2016.00038] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State UniversityKent, OH, USA
| |
Collapse
|
23
|
Zaccaria F, Paragi G, Fonseca Guerra C. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K+ is the best. Phys Chem Chem Phys 2016; 18:20895-904. [DOI: 10.1039/c6cp01030j] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The desolvation and size of monovalent alkali metal ions are of equal importance for the cation affinity of guanine quadruplexes.
Collapse
Affiliation(s)
- F. Zaccaria
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - G. Paragi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
- MTA-SZTE Supramolecular and Nanostructured Materials Research Group
| | - C. Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling
- Vrije Universiteit Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
24
|
Chaubey AK, Dubey KD, Ojha RP. MD simulation of LNA-modified human telomeric G-quadruplexes: a free energy calculation. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1182-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Yurenko YP, Novotný J, Mitoraj MP, Sklenář V, Michalak A, Marek R. Nucleic Acid Quadruplexes Based on 8-Halo-9-deazaxanthines: Energetics and Noncovalent Interactions in Quadruplex Stems. J Chem Theory Comput 2014; 10:5353-65. [DOI: 10.1021/ct5007554] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yevgen P. Yurenko
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ − 62500 Brno, Czech Republic
| | - Jan Novotný
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ − 62500 Brno, Czech Republic
- National
Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Mariusz P. Mitoraj
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, Krakow PL-30060, Poland
| | - Vladimir Sklenář
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ − 62500 Brno, Czech Republic
- National
Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk University, Kamenice
5, 625 00 Brno, Czech Republic
| | - Artur Michalak
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, Krakow PL-30060, Poland
| | - Radek Marek
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ − 62500 Brno, Czech Republic
- National
Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Chemistry, Faculty of Science, Masaryk University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Schulze-Adams M, Bernet B, Touboul D, Egli D, Herdeis L, Vasella A. Oligonucleotide Analogues with Integrated Bases and Backbone. Part 32. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201400175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Abstract
While the Watson-Crick base pairs are known to stabilize the DNA double helix and play a vital role in storage/replication of genetic information, their replacement with non-Watson-Crick base pairs has recently been shown to have interesting practical applications. Nowadays, theoretical calculations are routinely performed on very complex systems to gain a better understanding of how molecules interact with each other. We not only bring together some of the basic concepts of how mispaired or unnatural nucleobases interact with each other but also look at how such an understanding influences the prediction of novel properties and development of new materials. We highlight the recent developments in this field of research. In this Perspective, we discuss the success of DFT methods, particularly, dispersion-corrected DFT, for applications such as pH-controlled molecular switching, electric-field-induced stacking of disk-like molecules with guanine quartets, and optical birefringence of alkali-metal-coordinated guanine quartets. The synergy between theoretical models and real applications is highlighted.
Collapse
Affiliation(s)
- A K Jissy
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur 700032 West Bengal, India
| | - Ayan Datta
- Department of Spectroscopy, Indian Association for the Cultivation of Science, Jadavpur 700032 West Bengal, India
| |
Collapse
|
28
|
Yurenko YP, Novotný J, Sklenář V, Marek R. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. Phys Chem Chem Phys 2014; 16:2072-84. [DOI: 10.1039/c3cp53875c] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Faustino I, Curutchet C, Luque FJ, Orozco M. The DNA-forming properties of 6-selenoguanine. Phys Chem Chem Phys 2013; 16:1101-10. [PMID: 24287926 DOI: 10.1039/c3cp53885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present here an exhaustive characterization of the structure and properties of 6-selenoguanine, an isoster of guanine, and the impact of its introduction in DNA. This study reports the results of state-of-the-art quantum mechanical calculations and atomistic molecular dynamics simulations carried out to shed light on the impact of the replacement of guanine (G) by 6-selenoguanine (SeG) in different forms of DNA. The results point out that the G → SeG substitution leads to stable DNA duplex, antiparallel triplex and G-quadruplex structures, though local distortions are also found. These structural changes affect the thermodynamic stability of the mutation leading to a clear destabilization for all studied systems. Interestingly, the lowest effect has been found when the mutation was placed in the triplex-forming oligonucleotide strand in a reverse Hoogsteen orientation, which favours the antiparallel triplex formation regarding the G-tetraplex formation. Detailed QM studies strongly suggest that SeG impacts the HOMO-LUMO gap and accordingly the transfer properties of DNA, opening the way to modulate the conductivity properties of non-natural DNAs.
Collapse
Affiliation(s)
- Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
30
|
Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study. J Comput Aided Mol Des 2012; 26:289-99. [PMID: 22456858 DOI: 10.1007/s10822-012-9548-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)₄. Here we report the relative stabilities of these structures under K⁺ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.
Collapse
|
31
|
Deepa P, Kolandaivel P, Senthilkumar K. Structural properties and the effect of interaction of alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) metal cations with G and SG-tetrads. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Hou JQ, Chen SB, Tan JH, Ou TM, Luo HB, Li D, Xu J, Gu LQ, Huang ZS. New Insights into the Structures of Ligand−Quadruplex Complexes from Molecular Dynamics Simulations. J Phys Chem B 2010; 114:15301-10. [DOI: 10.1021/jp106683n] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jin-Qiang Hou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lian-Quan Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
33
|
Nikan M, Sherman JC. Cation-Complexation Behavior of Template-Assembled Synthetic G-Quartets. J Org Chem 2009; 74:5211-8. [DOI: 10.1021/jo9001245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehran Nikan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, Canada V6T 1Z1
| | - John C. Sherman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, Canada V6T 1Z1
| |
Collapse
|
34
|
G-quadruplex self-assembly regulated by Coulombic interactions. Nat Chem 2009; 1:151-5. [DOI: 10.1038/nchem.177] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/10/2009] [Indexed: 11/08/2022]
|
35
|
Doronina EP, Aksamentova TN, Chipanina NN, Mukha SA, Medvedeva SA. Hydrogen bonds in dimers of 3-hydroxy-2-methyl-4-pyrone. AIM analysis. RUSS J GEN CHEM+ 2009. [DOI: 10.1134/s1070363209020224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Liu H, Gauld JW. Protonation of guanine quartets and quartet stacks: insights from DFT studies. Phys Chem Chem Phys 2009; 11:278-87. [DOI: 10.1039/b811717a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Setnicka V, Nový J, Böhm S, Sreenivasachary N, Urbanová M, Volka K. Molecular structure of guanine-quartet supramolecular assemblies in a gel-state based on a DFT calculation of infrared and vibrational circular dichroism spectra. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:7520-7527. [PMID: 18553994 DOI: 10.1021/la800611h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The infrared (IR) and vibrational circular dichroism (VCD) spectra of guanosine-5'-hydrazide ( G-1), a powerful hydrogelator, have been measured and analyzed on the basis of ab initio modeling. B3LYP/6-31G** DFT calculations predict that G-1, forming a clear solution in deuterated DMSO, is present in monomeric form in this solvent, whereas strong gelation in a phosphate buffer is due to the formation of a guanine-quartet structure, ( G-1)4, in which the four G-1 are linked by hydrogen-bonded guanine moieties and stabilized by an alkali metal cation. The B3LYP/6-31G** IR and VCD spectra of the nearly planar G-quartet, whose structure is slightly distorted from the C4h symmetry, in which the G-bases interact via four Hoogsteen-type hydrogen bonds and a sodium cation is positioned in the middle of the G-quartet, are in very good agreement with the experimental spectra, indicating that this structure is the predominant structure in the gel state. The geometric parameters are discussed. This study is the first to use IR and VCD spectroscopies coupled with DFT calculations to elucidate the structure of a supramolecular species in a gel state and shows the VCD spectroscopy as a powerful method for investigating the structure of complex supramolecular self-assemblies where the use of other structural methods is limited.
Collapse
Affiliation(s)
- Vladimír Setnicka
- Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | | | | | | | | | | |
Collapse
|
38
|
Sidorkin VF, Doronina EP, Chipanina NN, Aksamentova TN, Shainyan BA. Bifurcate hydrogen bonds. Interaction of intramolecularly H-bonded systems with Lewis bases. J Phys Chem A 2008; 112:6227-34. [PMID: 18553953 DOI: 10.1021/jp802925h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure and the hydrogen bonding in the systems formed by the intramolecularly H-bonded systems, namely, maltol (3-hydroxy-2-methyl-4-pyrone), 5, 2,4,6-trinitrophenol, 6, acetylacetone enol, 7, with Lewis bases, phosgene, 8, dioxane, 9, and DMSO, 10, have been studied by density functional theory (B3LYP) and MP2 using the 6-311G* basis set. The continuum solvent effect was simulated by IEF-PCM model. The hydrogen bond analysis using the atoms in molecules (AIM) method was applied by using the MP2(full)/6-311++G** electron density to establish the nature of the bifurcate hydrogen bond (BHB) in these systems as well as contributory factors for its stabilization. The nature of interaction in the intermolecular H-complexes formed by compounds 5- 7 with the Lewis bases 8- 10 was shown to depend on the strength of the intramolecular hydrogen bond O...H and the strength of the base. The critical values of the CO...H and NO...H angles for which the formation of BHB is possible, have been determined.
Collapse
Affiliation(s)
- Valery F Sidorkin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky, 1, Irkutsk 664033, Russia.
| | | | | | | | | |
Collapse
|
39
|
Cavallari M, Calzolari A, Garbesi A, Di Felice R. Stability and migration of metal ions in G4-wires by molecular dynamics simulations. J Phys Chem B 2007; 110:26337-48. [PMID: 17181293 DOI: 10.1021/jp064522y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a molecular dynamics investigation of guanine quadruple helices based on classical force fields. We analyze the dependence of the helical conformation on various compositional factors, such as the length of the G4-wire, as well as the incorporation into the helix channel of alkali ions of different species and in different amounts. In compliance with previous indications, our results suggest that monovalent alkali cations assist the stability of the quadruplex arrangement against disruption on the few nanoseconds time scale in the order of increasing van der Waals radius. Whereas very short G4-wire fragments immediately unfold in the absence of coordinating metal ions or in the presence of tiny ions (e.g., Li+) in agreement with the experimental evidence that empty short guanine quadruplexes are not formed in any synthetic conditions, our simulations show that longer empty helices do not discompose. This finding supports the possibility of producing long G4-wires with different guanine-cation stoichiometries than those routinely known. The classical trajectories allow us to identify different stationary axial sites for the different metal species, which are confirmed by complementary quantum calculations.
Collapse
Affiliation(s)
- Manuela Cavallari
- National Center on nanoStructures and bioSystems at Surfaces (S3) of INFM-CNR, Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via Campi 213/A, 41100 Modena, Italy. cavallari.
| | | | | | | |
Collapse
|
40
|
|
41
|
Otero R, Schöck M, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F. Guanine quartet networks stabilized by cooperative hydrogen bonds. Angew Chem Int Ed Engl 2006; 44:2270-5. [PMID: 15761905 DOI: 10.1002/anie.200461586] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roberto Otero
- Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
42
|
van Mourik T, Dingley AJ. Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters. Chemistry 2006; 11:6064-79. [PMID: 16052652 DOI: 10.1002/chem.200500198] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational stability of G-quartets found in telomeric DNA quadruplex structures requires the coordination of monovalent ions. Here, an extensive Hartree-Fock and density functional theory analysis of the energetically favored position of Li+, Na+, and K+ ions is presented. The calculations show that at quartet-quartet distances observed in DNA quadruplex structures (3.3 A), the Li+ and Na+ ions favor positions of 0.55 and 0.95 A outside the plane of the G-quartet, respectively. The larger K+ ion prefers a central position between successive G-quartets. The energy barrier separating the minima in the quartet-ion-quartet model are much smaller for the Li+ and Na+ ions compared with the K+ ion; this suggests that K+ ions will not move as freely through the central channel of the DNA quadruplex. Spin-spin coupling constants and isotropic chemical shifts in G-quartets extracted from crystal structures of K+- and Na+-coordinated DNA quadruplexes were calculated with B3LYP/6-311G(d). The results show that the sizes of the trans-hydrogen-bond couplings are influenced primarily by the hydrogen bond geometry and only slightly by the presence of the ion. The calculations show that the R(N2N7) distance of the N2-H2...N7 hydrogen bond is characterized by strong correlations to both the chemical shifts of the donor group atoms and the (h2)J(N2N7) couplings. In contrast, weaker correlations between the (h3)J(N1C6') couplings and single geometric factors related to the N1-H1...O6=C6 hydrogen bond are observed. As such, deriving geometric information on the hydrogen bond through the use of trans-hydrogen-bond couplings and chemical shifts is more complex for the N1-H1...O6=C6 hydrogen bond than for the N2-H2...N7 moiety. The computed trans-hydrogen-bond couplings are shown to correlate with the experimentally determined couplings. However, the experimental values do not show such strong geometric dependencies.
Collapse
Affiliation(s)
- Tanja van Mourik
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | |
Collapse
|
43
|
Meyer M, Hocquet A, Sühnel J. Interaction of sodium and potassium ions with sandwiched cytosine-, guanine-, thymine-, and uracil-base tetrads. J Comput Chem 2005; 26:352-64. [PMID: 15648098 DOI: 10.1002/jcc.20176] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleic acid tetraplexes and lipophilic self-assembling G-quadruplexes contain stacked base tetrads with intercalated metal ions as basic building blocks. Thus far, quantum-chemical studies have been used to explore the geometric and energetic properties of base tetrads with and without metal ions. Recently, for the first time, work on a sandwiched G-tetrad complex has been studied. We report here results of a systematic B3LYP density functional study on sandwiched G-, C-, U-, and T-tetrads with Na+ and K+ at different symmetries that substantially extend the recent work. The results include detailed information on total energies as well as on metal ion tetrad and base-base interaction energies. The geometrical parameters of the sandwiched metal ion complexes are compared to both experimental structures and to calculated geometries of complexes of single tetrads with metal ions. A microsolvation model explains the ion selectivity preference of K+ over Na+ in a qualitative sense.
Collapse
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, D-16761 Hennigsdorf, Germany.
| | | | | |
Collapse
|
44
|
Otero R, Schöck M, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F. Guanine Quartet Networks Stabilized by Cooperative Hydrogen Bonds. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200461586] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Wang H, Meng F, Xu W, Liu C. The effects of incorporating 2,4-dithiouracil into uracil tetrad: a theoretical study. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.theochem.2004.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
van Mourik T. First-principles quantum chemistry in the life sciences. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:2653-2670. [PMID: 15539363 DOI: 10.1098/rsta.2004.1469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The area of computational quantum chemistry, which applies the principles of quantum mechanics to molecular and condensed systems, has developed drastically over the last decades, due to both increased computer power and the efficient implementation of quantum chemical methods in readily available computer programs. Because of this, accurate computational techniques can now be applied to much larger systems than before, bringing the area of biochemistry within the scope of electronic-structure quantum chemical methods. The rapid pace of progress of quantum chemistry makes it a very exciting research field; calculations that are too computationally expensive today may be feasible in a few months' time! This article reviews the current application of 'first-principles' quantum chemistry in biochemical and life sciences research, and discusses its future potential. The current capability of first-principles quantum chemistry is illustrated in a brief examination of computational studies on neurotransmitters, helical peptides, and DNA complexes.
Collapse
Affiliation(s)
- Tanja van Mourik
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
47
|
Meng F, Xu W, Liu C. Theoretical study of incorporating 6-thioguanine into a guanine tetrad and their influence on the metal ion–guanine tetrad. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.03.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Reckien W, Peyerimhoff SD. Twofold Hydrogen Bridges as Observed in Amide-Templated Rotaxanes. J Phys Chem A 2003. [DOI: 10.1021/jp030219a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Werner Reckien
- Institut für Physikalische und Theoretische Chemie der Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Sigrid D. Peyerimhoff
- Institut für Physikalische und Theoretische Chemie der Universität Bonn, Wegelerstrasse 12, 53115 Bonn, Germany
| |
Collapse
|
49
|
Meyer M, Sühnel J. Interaction of cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine-cytosine base tetrads with K+, Na+ and Li+ ions -- a density functional study. J Biomol Struct Dyn 2003; 20:507-17. [PMID: 12529150 DOI: 10.1080/07391102.2003.10506868] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have carried out B3LYP hybrid density functional studies of complexes formed by cyclic cytosine-, guanine-, thymine-, uracil- and mixed guanine cytosine-tetrads with Li+, Na+ and K+ ions to determine their structures and interaction energies. The conformations studied have been restricted to a hydrogen bond pattern closely related to the tetrads observed in experimental nucleic acid structures. A comparison of the alkali metal ion/tetrad complexes with the tetrads without cations indicates that alkali metal ions modulate the tetrad structures significantly and that even the hydrogen bond pattern may change. Guanine-tetrad cation complexes show the strongest interaction energy compared to other tetrads that occur less frequently in experimental structures. The most stable G-tetrad/metal ion structure adopts a nearly planar geometry that is especially suitable for tetraplex formation, which requires approximately parallel tetrad planes. In the cytosine-tetrad there is a very large central cavity suitable for cation recognition, but the complexes adopt a non-planar structure unsuitable for stacking, except possibly for ions with very large radii. Uracil and thymine tetrads show a significant different characteristics which may contribute to the differences between DNA and RNA
Collapse
Affiliation(s)
- Michael Meyer
- Revotar Biopharmaceuticals AG, Neuendorfstrasse 24a, D-16761, Hennigsdorf, Germany.
| | | |
Collapse
|
50
|
Sherer EC, York DM, Cramer CJ. Fast approximate methods for calculating nucleic acid base pair interaction energies. J Comput Chem 2003; 24:57-67. [PMID: 12483675 DOI: 10.1002/jcc.10150] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Interaction enthalpies for six base pairs have been computed at a variety of efficient levels of electronic structure theory and compared to experiment. In addition to previously defined levels of theory, modified Hamiltonians with adjusted parameters in hybrid Hartree-Fock/density functionals and semiempirical neglect-of-diatomic-differential-overlap models were examined. Of the pure and hybrid density functional levels, mPWPW91/MIDI! performed most satisfactorily, as judged by comparison not only to the available experimental data, but also to data from more robust electronic structure methods for 22 additional base pairs. The low computational cost of the mPWPW91/MIDI! model was further exploited in an investigation of various base trimers, tetramers, and one base pentamer. A carefully reparameterized semiempirical model, PM3(BP), was able to achieve similar levels of accuracy at a still greater savings in terms of computational effort.
Collapse
Affiliation(s)
- Edward C Sherer
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, USA
| | | | | |
Collapse
|