1
|
da Silva Junior FC, Felipe MBMC, Castro DEFD, Araújo SCDS, Sisenando HCN, Batistuzzo de Medeiros SR. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116838. [PMID: 33714059 DOI: 10.1016/j.envpol.2021.116838] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Knowledge of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) has increased over time. Much of this knowledge is about the 16 United States - Environmental Protection Agency (US - EPA) priority PAHs; however, there are other US - EPA non-priority PAHs in the environment, whose toxic potential is underestimated. We conducted a systematic review of in vitro, in vivo, and in silico studies to assess the genotoxicity, mutagenicity, and carcinogenicity of 13 US - EPA non-priority parental PAHs present in the environment. Electronic databases, such as Science Direct, PubMed, Scopus, Google Scholar, and Web of Science, were used to search for research with selected terms without time restrictions. After analysis, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, 249 articles, published between 1946 and 2020, were selected and the quality assessment of these studies was performed. The results showed that 5-methylchrysene (5-MC), 7,12-dimethylbenz[a]anthracene (7,12-DMBA), cyclopenta[cd]pyrene (CPP), and dibenzo[al]pyrene (Db[al]P) were the most studied PAHs. Moreover, 5-MC, 7,12-DMBA, benz[j]aceanthrylene (B[j]A), CPP, anthanthrene (ANT), dibenzo[ae]pyrene (Db[ae]P), and Db[al]P have been reported to cause mutagenic effects and have been being associated with a risk of carcinogenicity. Retene (RET) and benzo[c]fluorene (B[c]F), the least studied compounds, showed evidence of a strong influence on the mutagenicity and carcinogenicity endpoints. Overall, this systematic review provided evidence of the genotoxic, mutagenic, and carcinogenic endpoints of US - EPA non-priority PAHs. However, further studies are needed to improve the future protocols of environmental analysis and risk assessment in severely exposed populations.
Collapse
Affiliation(s)
- Francisco Carlos da Silva Junior
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | | | - Denis Elvis Farias de Castro
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Sinara Carla da Silva Araújo
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Herbert Costa Nóbrega Sisenando
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Silvia Regina Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; Graduate Program in Molecular Biology and Biochemistry, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
2
|
Burgos-Morón E, Pastor N, Orta ML, Jiménez-Alonso JJ, Vega-Holm M, Vega-Pérez JM, Iglesias-Guerra F, Mateos S, López-Lázaro M, Calderón-Montaño JM. Selective cytotoxic activity and DNA damage by an epoxyalkyl galactopyranoside. Drug Dev Res 2018; 79:426-436. [DOI: 10.1002/ddr.21483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Nuria Pastor
- Department of Cell Biology, Faculty of Biology; University of Seville; Seville Spain
| | - Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology; University of Seville; Seville Spain
| | | | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy; University of Seville; Seville Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy; University of Seville; Seville Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy; University of Seville; Seville Spain
| | - Santiago Mateos
- Department of Cell Biology, Faculty of Biology; University of Seville; Seville Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy; University of Seville; Seville Spain
| | | |
Collapse
|
4
|
Ding J, Li J, Chen J, Chen H, Ouyang W, Zhang R, Xue C, Zhang D, Amin S, Desai D, Huang C. Effects of polycyclic aromatic hydrocarbons (PAHs) on vascular endothelial growth factor induction through phosphatidylinositol 3-kinase/AP-1-dependent, HIF-1alpha-independent pathway. J Biol Chem 2006; 281:9093-100. [PMID: 16461351 DOI: 10.1074/jbc.m510537200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that exposure to polycyclic aromatic hydrocarbons (PAHs) and its derivatives is associated with an increased risk of skin cancers, and the carcinogenic effect of PAHs is thought to involve both tumor initiation and promotion. Whereas PAH tumor initiation is well characterized, the mechanisms involved in the tumor promotion of PAHs remain elusive. In the present study, we investigated the effects of PAHs on vascular endothelial growth factor (VEGF) expression by comparison of its induction between the active metabolite and its parent compound (B[a]PDE versus B[a]P) or between active compound and its relatively inactive analog (5-MCDE versus CDE). We found that exposure of cells to (+/-)-anti-benzo-[a]pyrene-7,8-diol-9,10-epoxide (B[a]PDE) or (+/-)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) led to marked induction of VEGF in Cl41 cells, whereas benzo[a]pyrene (B[a]P) or chrysene-1,2-diol-3,4-epoxide (CDE) did not exhibit significant inductive effects. Exposure of cells to B[a]PDE and 5-MCDE did not induce HIF-1alpha activation, whereas AP-1 was significantly activated. Moreover, overexpression of TAM67 (a dominant-negative mutant c-Jun) dramatically blocked that VEGF induction. Electrophoretic mobility shift assay showed that AP-1 was only able to specifically recognize and bind to its AP-1 potential binding site within -1136 and -1115 of the VEGF promoter region. Site-directed mutation of this AP-1 binding site eliminated the VEGF transcriptional activity induced by B[a]PDE, suggesting that the AP-1 binding site between -1136 and -1115 in the VEGF promoter region is critical for VEGF induction by B[a]PDE. In addition, overexpression of Deltap85 (a dominant-negative mutant PI-3K) impaired B[a]PDE- and 5-MCDE-induced VEGF induction. Considering our previous findings that PI-3K is an upstream mediator for c-Jun/AP-1 activation, we conclude that the VEGF induction by B[a]PDE and 5-MCDE is through PI-3K/AP-1-dependent and HIF-1alpha-independent pathways. These findings may help us to understand the mechanisms involved in PAH carcinogenic effects.
Collapse
Affiliation(s)
- Jin Ding
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 2005; 44:1-51. [PMID: 15748653 DOI: 10.1016/j.plipres.2004.10.001] [Citation(s) in RCA: 327] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.
Collapse
Affiliation(s)
- John W Newman
- Department of Entomology, UCDavis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|