1
|
Ichinose P, Miró MV, Larsen K, Lifschitz A, Virkel G. Unravelling drug-drug interactions in pigs: Induction of hepatic cytochrome P450 1A (CYP1A) metabolism after the in-feed medication with the anthelmintic fenbendazole. Res Vet Sci 2024; 167:105113. [PMID: 38141570 DOI: 10.1016/j.rvsc.2023.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The anthelmintic fenbendazole (FBZ) undergoes hepatic S‑oxygenation by monooxygenases belonging to the cytochrome P450 (CYP) and flavin-monooxygenase (FMO) families. The in-feed medication with FBZ induced CYP1A-dependent metabolism in pig liver. This fact may alter the metabolism of the anthelmintic itself, and of CYP1A substrates like aflatoxin B1 (AFB1). This work evaluated the effect of the in-feed administration of FBZ on CYP1A-dependent metabolism, on its own pattern of hepatic S‑oxygenation, and on the metabolism of AFB1. Landrace piglets remained untreated (n = 5) or received a pre-mix of FBZ (n = 6) in feed for 9 days. Pigs were slaughtered for preparation of liver microsomes used for: CYP content determination; monitoring the CYP1A-dependent enzyme activities, 7-ethoxyresorufin O-deethylase (EROD) and 7-methoxyresorufin O-demethylase (MROD); measurement of FBZ (50 μM) S‑oxygenation, and AFB1 (16 nM) disappearance from the incubation medium. In microsomes of FBZ-treated animals, EROD and MROD increased 19-fold (p = 0.002) and 14-fold (p = 0.003), respectively. An enhanced (3-fold, p = 0.004) participation of the CYP pathway in FBZ S‑oxygenation was observed in the liver of piglets treated with the anthelmintic (210 ± 69 pmol/min.nmol CYP) compared to untreated animals (68 ± 34 pmol/min.nmol CYP). AFB1 metabolism was 93% higher (p = 0.009) in the liver of FBZ-treated compared to untreated pigs. Positive and significant (p < 0.05) correlations were observed between CYP1A-dependent enzyme activities and FBZ or AFB1 metabolism. The sustained administration of FBZ caused an auto-induction of the CYP1A-dependent S‑oxygenation of this anthelmintic. The CYP1A induction triggered by the anthelmintic could amplify the production of AFB1 metabolites in pig liver, including the hepatotoxic AFB1-derived epoxide.+.
Collapse
Affiliation(s)
- Paula Ichinose
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - María Victoria Miró
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Karen Larsen
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Adrián Lifschitz
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina
| | - Guillermo Virkel
- Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ellipticine-loaded apoferritin nanocarrier retains DNA adduct-based cytochrome P450-facilitated toxicity in neuroblastoma cells. Toxicology 2019; 419:40-54. [DOI: 10.1016/j.tox.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
|
3
|
Janeczko T, Popłoński J, Kozłowska E, Dymarska M, Huszcza E, Kostrzewa-Susłow E. Application of α- and β-naphthoflavones as monooxygenase inhibitors of Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651 in transformation of 17α-methyltestosterone. Bioorg Chem 2018; 78:178-184. [PMID: 29574302 DOI: 10.1016/j.bioorg.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
In this work, 17α-methyltestosterone was effectively hydroxylated by Absidia coerulea KCh 93, Syncephalastrum racemosum KCh 105 and Chaetomium sp. KCh 6651. A. coerulea KCh 93 afforded 6β-, 12β-, 7α-, 11α-, 15α-hydroxy derivatives with 44%, 29%, 6%, 5% and 9% yields, respectively. S. racemosum KCh 105 afforded 7α-, 15α- and 11α-hydroxy derivatives with yields of 45%, 19% and 17%, respectively. Chaetomium sp. KCh 6651 afforded 15α-, 11α-, 7α-, 6β-, 9α-, 14α-hydroxy and 6β,14α-dihydroxy derivatives with yields of 31%, 20%, 16%, 7%, 5%, 7% and 4%, respectively. 14α-Hydroxy and 6β,14α-dihydroxy derivatives were determined as new compounds. Effect of various sources of nitrogen and carbon in the media on biotransformations were tested, however did not affect the degree of substrate conversion or the composition of the products formed. The addition of α- or β-naphthoflavones inhibited 17α-methyltestosterone hydroxylation but did not change the percentage composition of the resulting products.
Collapse
Affiliation(s)
- Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Jarosław Popłoński
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Monika Dymarska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
4
|
Stiborová M, Indra R, Frei E, Kopečková K, Schmeiser HH, Eckschlager T, Adam V, Heger Z, Arlt VM, Martínek V. Cytochrome b5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine. MONATSHEFTE FUR CHEMIE 2017; 148:1983-1991. [PMID: 29104319 PMCID: PMC5653753 DOI: 10.1007/s00706-017-1986-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
Abstract Ellipticine is an anticancer agent that forms covalent DNA adducts after enzymatic activation by cytochrome P450 (CYP) enzymes, mainly by CYP3A4. This process is one of the most important ellipticine DNA-damaging mechanisms for its antitumor action. Here, we investigated the efficiencies of human hepatic microsomes and human recombinant CYP3A4 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome b5 reductase and/or cytochrome b5 in Supersomes™ to oxidize this drug. We also evaluated the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome b5 reductase, to mediate ellipticine oxidation in these enzyme systems. Using HPLC analysis we detected up to five ellipticine metabolites, which were formed by human hepatic microsomes and human CYP3A4 in the presence of NADPH or NADH. Among ellipticine metabolites, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine were formed by hepatic microsomes as the major metabolites, while 7-hydroxyellipticine and the ellipticine N2-oxide were the minor ones. Human CYP3A4 in Supersomes™ generated only three metabolic products, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine. Using the 32P-postlabeling method two ellipticine-derived DNA adducts were generated by microsomes and the CYP3A4-Supersome system, both in the presence of NADPH and NADH. These adducts were derived from the reaction of 13-hydroxy- and 12-hydroxyellipticine with deoxyguanosine in DNA. In the presence of NADPH or NADH, cytochrome b5 stimulated the CYP3A4-mediated oxidation of ellipticine, but the stimulation effect differed for individual ellipticine metabolites. This heme protein also stimulated the formation of both ellipticine-DNA adducts. The results demonstrate that cytochrome b5 plays a dual role in the CYP3A4-catalyzed oxidation of ellipticine: (1) cytochrome b5 mediates CYP3A4 catalytic activities by donating the first and second electron to this enzyme in its catalytic cycle, indicating that NADH:cytochrome b5 reductase can substitute NADPH-dependent POR in this enzymatic reaction and (2) cytochrome b5 can act as an allosteric modifier of the CYP3A4 oxygenase. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Vojtěch Adam
- Laboratory of Metallomics and Nanotechnology, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Zbyněk Heger
- Laboratory of Metallomics and Nanotechnology, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH UK
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
5
|
Palócz O, Farkas O, Clayton P, Csikó G. Changes in cytochrome P450 gene expression and enzyme activity induced by xenobiotics in rabbits in vivo and in vitro. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.4574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
As considerable inter-species differences exist in xenobiotic metabolism, developing new pharmaceutical therapies for use in different species is fraught with difficulties. For this reason, very few medicines have been registered for use in rabbits, despite their importance in inter alia meat and fur production. We have developed a rapid and sensitive screening system for drug safety in rabbits based on cytochrome P450 enzyme assays, specifically CYP1A1, CYP1A2 and CYP3A6, employing an adaptation of the luciferin-based clinical assay currently used in human drug screening. Short-term (4-h) cultured rabbit primary hepatocytes were treated with a cytochrome inducer (phenobarbital) and 2 inhibitors (alpha-naphthoflavone and ketoconazole). In parallel, and to provide verification, New Zealand white rabbits were dosed with 80 mg/kg phenobarbital or 40 mg/kg ketoconazole for 3 d. Ketoconazole significantly increased CYP3A6 gene expression and decreased CYP3A6 activity both in vitro and in vivo. CYP1A1 activity was decreased by ketoconazole in vitro and increased in vivo. This is the first report of the inducer effect of ketoconazole on rabbit cytochrome isoenzymes in vivo. Our data support the use of a luciferin-based assay in short-term primary hepatocytes as an appropriate tool for xenobiotic metabolism assays and short-term toxicity testing in rabbits.<p> </p>
Collapse
|
6
|
Skupińska M, Stępniak P, Łętowska I, Rychlewski L, Barciszewska M, Barciszewski J, Giel-Pietraszuk M. Natural Compounds as Inhibitors of Tyrosyl-tRNA Synthetase. Microb Drug Resist 2016; 23:308-320. [PMID: 27487455 DOI: 10.1089/mdr.2015.0272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-tRNA synthetases (TyrRSs) as essential enzymes for all living organisms are good candidates for therapeutic target in the prevention and therapy of microbial infection. We examined the effect of various polyphenols, alkaloids, and terpenes-secondary metabolites produced by higher plants showing many beneficial properties for the human organism, on bacterial aminoacylation reaction. The most potent inhibitors of Escherichia coli TyrRS are epigallocatechin gallate, acacetin, kaempferide, and chrysin, whereas the enzymes from Staphylococcus aureus and Pseudomonas aeruginosa are inhibited mainly by acacetin and chrysin. Most of them act as competitive inhibitors. Structure-activity relationship showed that the most potent flavonoid inhibitors contain hydroxyl group at position 5 and 7 of A ring and OCH3 group at position 4' of B ring.
Collapse
Affiliation(s)
- Mirosława Skupińska
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | | | - Iwona Łętowska
- 3 Center of Microbiology and Infectious Diseases, National Institute of Public Health , Chelmska, Warsaw, Poland
| | | | - Mirosława Barciszewska
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | - Jan Barciszewski
- 1 Institute of Bioorganic Chemistry , Polish Academy of Sciences, Noskowskiego, Poznan, Poland
| | | |
Collapse
|
7
|
Bořek-Dohalská L, Valášková P, Černá V, Stiborová M. Role of rat cytochromes P450 in the oxidation of 17α-ethinylestradiol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:852-860. [PMID: 25461545 DOI: 10.1016/j.etap.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
17α-Ethinylestradiol (EE2) is an endocrine disruptor (ED) used as an ingredient of oral contraceptives. Rat hepatic microsomes metabolize EE2 to three products; two of them are hydroxylated EE2 derivatives. Of the hydroxylation reactions, 2-hydroxylation, is the major reaction. Cytochrome P450 (CYP) plays a major role in EE2 hydroxylation. To resolve which rat CYPs are responsible for EE2 oxidation, three approaches were used: induction of specific CYPs, selective inhibition of CYPs, and recombinant rat CYPs. The results demonstrate that EE2 is hydroxylated by several rat CYPs, among them CYP2C6 and 2C11 are most efficient in 2-hydroxy-EE2 formation, while CYP2A and 3A catalyze EE2 hydroxylation to the second product. EE2 is also an inhibitor of CYP2C- and CYP3A-catalyzed hydroxylation of endogenous EDs progesterone and testosterone. EE2 acts as a reversible inhibitor of CYP3A-mediated progesterone 6β-hydroxylation and inactivates CYP3A- and CYP2C-catalyzed testosterone 6β-hydroxylation and progesterone 21- or 16α-hydroxylation, respectively, in a mechanism-based manner.
Collapse
Affiliation(s)
- Lucie Bořek-Dohalská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Petra Valášková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| |
Collapse
|
8
|
Levová K, Moserová M, Kotrbová V, Šulc M, Henderson CJ, Wolf CR, Phillips DH, Frei E, Schmeiser HH, Mareš J, Arlt VM, Stiborová M. Role of Cytochromes P450 1A1/2 in Detoxication and Activation of Carcinogenic Aristolochic Acid I: Studies with the Hepatic NADPH:Cytochrome P450 Reductase Null (HRN) Mouse Model. Toxicol Sci 2011; 121:43-56. [DOI: 10.1093/toxsci/kfr050] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
9
|
Martínek V, Sklenář J, Dračínský M, Šulc M, Hofbauerová K, Bezouška K, Frei E, Stiborová M. Glycosylation Protects Proteins against Free Radicals Generated from Toxic Xenobiotics. Toxicol Sci 2010; 117:359-74. [DOI: 10.1093/toxsci/kfq206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
10
|
Bořek-Dohalská L, Stiborová M. Cytochrome P450 3A activities and their modulation by α-naphthoflavone in vitro are dictated by the efficiencies of model experimental systems. ACTA ACUST UNITED AC 2010. [DOI: 10.1135/cccc2009525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The knowledge on efficiencies of different in vitro systems containing cytochromes P450 (CYP) of a 3A subfamily is crucial to screen potential substrates of these CYPs. We evaluated and compared efficiencies of several in vitro CYP3A enzymatic systems to oxidize the model substrates, α-NF and testosterone, under the standardized experimental conditions. Five CYP3A systems were tested: (i) human hepatic microsomes rich in CYP3A4, (ii) hepatic microsomes of rabbits treated with a CYP3A6 inducer, rifampicine, (iii) microsomes of Baculovirus transfected insect cells containing recombinant human CYP3A4 and NADPH:CYP reductase with or without cytochrome b5 (SupersomesTM), (iv) membranes isolated from Escherichia coli, containing recombinant human CYP3A4, NADPH:CYP reductase and cytochrome b5, and (v) human CYP3A4 or rabbit CYP3A6 reconstituted with NADPH:CYP reductase with or without cytochrome b5 in liposomes. All systems oxidize testosterone to its 6β-hydroxylated metabolite and α-NF to trans-7,8-dihydrodiol and 5,6-epoxide. The most efficient systems oxidizing both compounds were CYP3A4-SupersomesTM containing cytochrome b5, followed by human hepatic microsomes. This finding suggests these systems to be suitable for general evaluating a variety of compounds as potential substrates of CYP3A4. The lowest efficiencies to oxidize α-NF and testosterone were found for CYP3A4 expressed in membranes of E. coli, and for reconstituted CYP3A4 or CYP3A6. Utilizing the tested enzymatic systems, we also explain here the discrepancies, which showed previously the controversial effects of α-NF on CYP3A-mediated reactions. We demonstrate that inhibition or stimulation of the CYP3A-mediated testosterone hydroxylation by α-NF is dictated by efficiencies of individual enzymatic systems to oxidize the CYP3A substrates.
Collapse
|
11
|
Frank DJ, Denisov IG, Sligar SG. Mixing apples and oranges: Analysis of heterotropic cooperativity in cytochrome P450 3A4. Arch Biochem Biophys 2009; 488:146-52. [PMID: 19560436 DOI: 10.1016/j.abb.2009.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 05/28/2009] [Accepted: 06/19/2009] [Indexed: 11/29/2022]
Abstract
Heterotropic cooperative phenomena have been documented in studies with cytochrome P450 3A4, with few attempts to quantify this behavior other than to show the apparent stimulatory effect of certain CYP3A4 substrates on the enzyme's catalytic activity for others. Here CYP3A4 solubilized in Nanodiscs is studied for its ability to interact with two substrates, alpha-naphthoflavone and testosterone, which produce transitions in the heme spin state with apparent spectral affinities (corrected for membrane partitioning) of 7 and 38 microM, respectively. Simultaneous addition of both substrates at fixed molar ratios allows for the separation of specific heterotropic cooperative interactions from the simple additive affinities for the given substrate ratios. The absence of any changes in the normalized spectral dissociation constant due to changes in substrate ratio reveals that the observed stimulatory effect is largely due to differences in the relative substrate affinities and the presence of additional substrate in the system, rather than any specific positive heterotropic interactions between the two substrates.
Collapse
Affiliation(s)
- Daniel J Frank
- School of Molecular and Cellular Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
12
|
Wang X, Morris ME. Pharmacokinetics and bioavailability of the flavonoid 7,8-benzoflavone in rats. J Pharm Sci 2009; 97:4546-56. [PMID: 18257033 DOI: 10.1002/jps.21296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The flavonoid 7,8-benzoflavone was recently identified as one of the most potent inhibitors of breast cancer resistance protein (BCRP); however, little is known of the in vivo disposition of 7,8-benzoflavone. The objective of this study was to investigate the pharmacokinetics and bioavailability of 7,8-benzoflavone in rats. Three intravenous (5, 10, and 25 mg/kg) and three oral (12.5, 25, and 50 mg/kg) doses were administered to female Sprague-Dawley rats. Plasma samples were analyzed by high-performance liquid chromatography. Pharmacokinetic analysis was conducted by WinNonlin and ADAPT II. The dose-normalized plasma concentration versus time curves did not superimpose with each other, indicating the nonlinear pharmacokinetics of 7,8-benzoflavone. 7,8-benzoflavone exhibited a large volume of distribution (V(ss) approximately 1.5 L/kg) and rapid oral absorption (t(max) < 30 min). The bioavailability of 7,8-benzoflavone was low (0.61-13.2%) and dose-dependent. A pharmacokinetic model with dose-dependent bioavailability, linear absorption and nonlinear elimination best described the pharmacokinetic profiles of 7,8-benzoflavone. Using a 50 mg/kg oral dose of 7,8-benzoflavone, we could significantly increase the AUC for the BCRP substrate nitrofurantoin, demonstrating the potential for BCRP-mediated drug interactions.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 517 Hochstetter Hall, Amherst, New York 14260, USA
| | | |
Collapse
|
13
|
Hodek P, Krízková J, Burdová K, Sulc M, Kizek R, Hudecek J, Stiborová M. Chemopreventive compounds--view from the other side. Chem Biol Interact 2009; 180:1-9. [PMID: 19428340 DOI: 10.1016/j.cbi.2009.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/16/2008] [Accepted: 01/12/2009] [Indexed: 12/15/2022]
Abstract
Increasing attention is being paid to the possibility of applying chemopreventive agents for the protection of individuals from cancer risk. The beneficial potential of chemoprotective compounds is usually well documented by extensive experimental data. To assure the desired effect, these compounds are frequently concentrated to produce dietary supplements for human use. The additive and synergistic effects of other food constituents are, however, frequently ignored. Even natural chemopreventive compounds have to be considered as xenobiotics. Thus, as much attention has to be paid to their testing prior to their wide application as is usual in drug development for human treatment. Unfortunately, much of the research in this area is solely based on simplified in vitro systems that cannot take into account the complexity of biotransformation processes, e.g. chemopreventive compound-drug interaction, effect on metabolism of endogenic compounds. Hence, the predicted chemopreventive potential is not attained in respect of cancer prevention; moreover, the administration of high doses of chemopreventive compounds might be even detrimental for the human health.
Collapse
Affiliation(s)
- P Hodek
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
14
|
Hodek P, Bortek-Dohalská L, Sopko B, Sulc M, Smrcek S, Hudecek J, Janků J, Stiborová M. Structural requirements for inhibitors of cytochromes P450 2B: Assessment of the enzyme interaction with diamondoids. J Enzyme Inhib Med Chem 2008; 20:25-33. [PMID: 15895681 DOI: 10.1080/14756360400024324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The series of diamondoids: adamantane, diamantane, triamantane, 2-isopropenyl-2-methyladamantane and 3-isopropenyl-3-methyldiamantane (3-IPMDIA), were employed to elucidate the molecular basis of their interaction with the active site of cytochromes P450 (CYP) of a 2B subfamily. These potent inhibitors of CYP2B enzymes were docked into the homology model of CYP2B4. Apparent dissociation constants calculated for the complexes of CYP2B4 with docked diamandoids agreed closely with the experimental data showing inhibition potency of the compounds and their binding affinity to CYP2B4. Superimposed structures of docked diamondoids mapped binding site residues. As they are mainly non-polar residues, the hydrophobicity plays the major role in the binding of diamondoids. Overlapping structure of diamondoids defined an elliptical binding cavity (5.9A inner diameter, 7.9A length) forming an angle of approximately 43 degrees with the heme plane. CYP2B specific diamondoids, namely 3-IPMDIA, showing the highest binding affinity, should be considered for a potential clinical use.
Collapse
Affiliation(s)
- Petr Hodek
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2 CZ-12840, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ji HY, Lee HW, Kim HH, Kim DS, Yoo M, Kim WB, Lee HS. Role of human cytochrome P450 3A4 in the metabolism of DA–8159, a new erectogenic. Xenobiotica 2008; 34:973-82. [PMID: 15801542 DOI: 10.1080/00498250400010898] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of this paper was to characterize cytochrome P450 (CYP) enzymes involved in N-dealkylation of a new oral erectogenic, DA-8159 to DA-8164, a major circulating active metabolite, in human liver microsomes and to investigate the inhibitory potential of DA-8159 on CYP enzymes. CYP3A4 was identified as the major enzyme responsible for DA-8159 N-dealkylation to DA-8164 based on correlation analysis and specific CYP inhibitor and antibody-mediated inhibition study in human liver microsomes, and DA-8159 metabolism in cDNA expressed CYP enzymes. There is the possibility of drug-drug interactions when prescribing DA-8159 concomitantly with known inhibitors or inducers of CYP3A4. DA-8159 was found to be only a very weak inhibitor of eight major CYPs (1A2, 2A6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4), the largest inhibition occurring against CYP2D6 (IC5o 67.7 microM) in human liver microsomes. Drug-drug interactions would not be predicted on the basis of DA-8159 inhibiting the metabolism of coadministered drugs.
Collapse
Affiliation(s)
- H Y Ji
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy and Phytofermentation Research Center, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Avsaroglu H, Bull S, Maas-Bakker RF, Scherpenisse P, Van Lith HA, Bergwerff AA, Hellebrekers LJ, Van Zutphen LFM, Fink-Gremmels J. Differences in hepatic cytochrome P450 activity correlate with the strain-specific biotransformation of medetomidine in AX/JU and IIIVO/JU inbred rabbits. J Vet Pharmacol Ther 2008; 31:368-77. [PMID: 18638298 DOI: 10.1111/j.1365-2885.2008.00969.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Medetomidine is an alpha(2)-adrenoceptor agonist with sedative and analgesic properties. Previously we demonstrated significant differences in the response to medetomidine between two inbred rabbit strains, denoted IIIVO/JU and AX/JU. The aim of the present study was twofold: first, to compare the hepatic CYP450 enzyme activities between these rabbit strains [n = 13(male male,7 female female)/strain]. To this end, liver microsomes were incubated with known fluorescent substrates for the major drug-metabolizing CYP450 isoforms. A comparison of the obtained results indicated significant gender differences as well as differences between the two rabbit inbred strains. Secondly, the biotransformation rate of medetomidine in liver microsomes of both rabbit strains was determined using liquid chromatography coupled to tandem mass spectrometry. The rate of hydroxymedetomidine and medetomidine carboxylic acid formation was found to be significantly higher in the AX/JU strain. Specific CYP2D and CYP2E inhibitors could decrease the formation of both metabolites. Significant correlations were found between the rate of biotransformation of medetomidine and the activities of CYP2D and CYP2E, as well as between CYP450 enzyme activities and the anaesthetic response to medetomidine.
Collapse
Affiliation(s)
- H Avsaroglu
- Central Laboratory Animal Institute, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Naiman K, Dracínská H, Martínková M, Sulc M, Dracínský M, Kejíková L, Hodek P, Hudecek J, Liberda J, Schmeiser HH, Frei E, Stiborová M. Redox cycling in the metabolism of the environmental pollutant and suspected human carcinogen o-anisidine by rat and rabbit hepatic microsomes. Chem Res Toxicol 2008; 21:1610-21. [PMID: 18624415 DOI: 10.1021/tx8001127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the ability of hepatic microsomes from rat and rabbit to metabolize 2-methoxyaniline (o-anisidine), an industrial and environmental pollutant and a bladder carcinogen for rodents. Using HPLC combined with electrospray tandem mass spectrometry, we determined that o-anisidine is oxidized by microsomes of both species to N-(2-methoxyphenyl)hydroxylamine, o-aminophenol, and one additional metabolite, the exact structure of which has not been identified as yet. N-(2-Methoxyphenyl)hydroxylamine is either further oxidized to 2-methoxynitrosobenzene (o-nitrosoanisole) or reduced to parental o-anisidine, which can be oxidized again to produce o-aminophenol. To define the role of microsomal cytochromes P450 (P450) in o-anisidine metabolism, we investigated the modulation of this metabolism by specific inducers and selective inhibitors of these enzymes. The results of the studies suggest that o-anisidine is a promiscuous substrate of P450s of rat and rabbit liver; because P450s of 1A, 2B, 2E, and 3A subfamilies metabolize o-anisidine in hepatic microsomes of both studied species. Using purified enzymes of rat and rabbit (P450s 1A1, 1A2, 2B2, 2B4, 2E1, 2C3, 3A1, and 3A6), reconstituted with NADPH:P450 reductase, the ability of P450s 1A1, 1A2, 2B2, 2B4, 2E1, and 3A6 to metabolize o-anisidine was confirmed. In the reconstituted P450 system, rabbit P450 2E1 was the most efficient enzyme metabolizing o-anisidine. The data demonstrate the participation of different rat and rabbit P450s in o-anisidine metabolism and indicate that both experimental animal species might serve as suitable models to mimic the fate of o-anisidine in human.
Collapse
Affiliation(s)
- Karel Naiman
- Department of Biochemistry, Faculty of Science, Charles University, AlbertoV 2030, 128 40 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Aimová D, Stiborová M. ANTITUMOR DRUG ELLIPTICINE INHIBITS THE ACTIVITIES OF RAT HEPATIC CYTOCHROMES P450. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005. [DOI: 10.5507/bp.2005.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Rýdlová H, Miksanová M, Ryslavá H, Stiborová M. Carcinogenic pollutants o-nitroanisole and o-anisidine are substrates and inducers of cytochromes P450. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149:441-7. [PMID: 16601807 DOI: 10.5507/bp.2005.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
2-Methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole) are important pollutants and potent carcinogens for rodents. o-Anisidine is oxidized by microsomes of rats and rabbits to N-(2-methoxyphenyl)hydroxylamine that is also formed as the reduction metabolite of o-nitroanisole. o-Anisidine is a promiscuity substrate of rat and rabbit cytochrome P450 (CYP) enzymes, because CYPs of 1A, 2B, 2E and 3A subfamilies oxidize o-anisidine. Using purified CYP enzymes, reconstituted with NADPH: CYP reductase, rabbit CYP2E1 was the most efficient enzyme oxidizing o-anisidine, but the ability of CYP1A1, 1A2, 2B2, 2B4 and 3A6 to participate in o-anisidine oxidation was also proved. Utilizing Western blotting and consecutive immunoquantification employing chicken polyclonal anti bodies raised against various CYPs, the effect of o-anisidine and o-nitroanisole on the expression of the CYP enzymes was investigated. The expression of CYP1A1/2 was found to be strongly induced in rats treated with either compounds. In addition, 7-ethoxyresorufin O-deethylation, a marker activity for both CYP1A1 and 1A2, was significantly increased in rats treated with either carcinogen. The data demonstrate the participation of different rat and rabbit CYP enzymes in o-anisidine oxidation and indicate that both experimental animal species might serve as suitable models to mimic the o-anisidine oxidation in human. Furthermore, by induction of rat hepatic and renal CYP1A1/2, both o-nitroanisole and o-anisidine influence their carcinogenic effects, modifying their detoxification and/or activation pathways.
Collapse
Affiliation(s)
- Helena Rýdlová
- Department of Biochemistry, Charles University, Albertov 2030, Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
20
|
Stiborová M, Miksanová M, Sulc M, Rýdlová H, Schmeiser HH, Frei E. Identification of a genotoxic mechanism for the carcinogenicity of the environmental pollutant and suspected human carcinogen o-anisidine. Int J Cancer 2005; 116:667-78. [PMID: 15828049 DOI: 10.1002/ijc.21122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-methoxyaniline (o-anisidine) is an industrial and environmental pollutant and a bladder carcinogen for rodents. The mechanism of its carcinogenicity was investigated with 2 independent methods, 32P-postlabeling and 14C-labeled o-anisidine, to show that o-anisidine binds covalently to DNA in vitro after its activation by human hepatic microsomes. We also investigated the capacity of o-anisidine to form DNA adducts in vivo. Rats were treated i.p. with o-anisidine (0.15 mg/kg daily for 5 days) and DNA from several organs was analyzed by 32P-postlabeling. Two o-anisidine-DNA adducts, identical to those found in DNA incubated with o-anisidine and human microsomes in vitro, were detected in urinary bladder (4.1 adducts per 10(7) nucleotides), the target organ, and, to a lesser extent, in liver, kidney and spleen. These DNA adducts were identified as deoxyguanosine adducts derived from a metabolite of o-anisidine, N-(2-methoxyphenyl)hydroxylamine. This metabolite was identified in incubations with human microsomes. With 9 human hepatic microsomal preparations, we identified the specific CYP catalyzing the formation of the o-anisidine metabolites by correlation studies and by examining the effects of CYP inhibitors. On the basis of these analyses, oxidation of o-anisidine was attributed mainly to CYP2E1. Using recombinant human CYP (in Supersomes) and purified CYPs, the participation of CYP2E1 in o-anisidine oxidation was confirmed. In Supersomes, CYP1A2 was even more efficient in oxidizing o-anisidine than CYP2E1, followed by CYP2B6, 1A1, 2A6, 2D6 and 3A4. The results, the first report on the potential of the human microsomal CYP enzymes to activate o-anisidine, strongly suggest a carcinogenic potential of this rodent carcinogen for humans.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
21
|
Davydov DR, Botchkareva AE, Davydova NE, Halpert JR. Resolution of two substrate-binding sites in an engineered cytochrome P450eryF bearing a fluorescent probe. Biophys J 2005; 89:418-32. [PMID: 15834000 PMCID: PMC1366542 DOI: 10.1529/biophysj.104.058479] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/29/2005] [Indexed: 11/18/2022] Open
Abstract
To elucidate the mechanisms of cooperativity of cytochrome P450eryF an SH-reactive fluorescent probe was introduced close to the substrate-binding site. Cys-154, the only accessible cysteine, was eliminated by site-directed mutagenesis, and a novel cysteine was substituted for Ser-93 in the B'/C loop. S93C, C154A, C154S, S93C/C154A, and S93C/S154C were characterized in terms of affinity for 1-pyrenebutanol (1-PB), cooperativity, and ionic-strength dependence of the 1-PB-induced spin shift. S93C/C154S retains the key functional properties of the wild-type, and modification by three different SH-reactive probes had little effect on the characteristics of the enzyme. The labeled proteins exhibited fluorescence resonance energy transfer from 1-PB to the label, which allowed us to resolve two substrate-binding events, and to determine the corresponding KD values (KD1 = 1.2 +/- 0.2 microM, KD2 = 9.4 +/- 0.8 microM). Using these values for analysis of the substrate-induced spin transition, we demonstrate that the interactions of P450eryF with 1-PB are consistent with a sequential binding mechanism, where substrate interactions at a higher-affinity site cause a conformational transition crucial for the binding of the second substrate molecule and subsequent spin shift. This transition is apparently associated with an important rearrangement of the system of salt links in the proximity of Cys-154.
Collapse
Affiliation(s)
- Dmitri R Davydov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.
| | | | | | | |
Collapse
|
22
|
Kunta JR, Lee SH, Perry BA, Lee YH, Sinko PJ. DIFFERENTIATION OF GUT AND HEPATIC FIRST-PASS LOSS OF VERAPAMIL IN INTESTINAL AND VASCULAR ACCESS-PORTED (IVAP) RABBITS. Drug Metab Dispos 2004; 32:1293-8. [PMID: 15304428 DOI: 10.1124/dmd.104.000752] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low and varied oral bioavailability (BA) of some drugs has been attributed to extraction by the intestine and liver. However, the role of the intestine is difficult to directly assess. We recently developed an in vivo intestinal and vascular access-ported (IVAP) rabbit model that allows for a direct assessment of the contributions of the gut and the liver to the first-pass loss of drugs. The current studies validate the utility of the IVAP rabbit model using verapamil (VL). VL pharmacokinetics (PK) were determined after intravenous (i.v.), portal venous (PV), and upper small intestinal (USI) administration. In the i.v. dose range studied, VL exhibited linear PK. The PV concentration of VL was significantly lower than systemic concentrations after i.v. administration, suggesting significant intestinal second-pass extraction. The intestinal and hepatic extraction of VL, calculated directly from area under the curve measurements, were 79% and 92%, respectively, and are in contrast to our previous dog results that showed VL intestinal extraction to be negligible. Assessing the role of intestinal extraction using an "indirect" method was not predictive, further showing the utility of this direct measurement model. The BA of VL after USI administration was 1.65%, much lower than that reported for rats, dogs, or humans. However, humans and rabbits behave similarly in that the contribution of intestinal extraction for VL is high. In conclusion, the current results demonstrate the utility of the rabbit IVAP model in studying the first- and second-pass intestinal and hepatic loss of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Jeevan R Kunta
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway 08854, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
A resurgence in the use of medical herbs in the Western world, and the co-use of modern and traditional therapies is becoming more common. Thus there is the potential for both pharmacokinetic and pharmacodynamic herb-drug interactions. For example, systems such as the cytochrome P450 (CYP) may be particularly vulnerable to modulation by the multiple active constituents of herbs, as it is well known that the CYPs are subject to induction and inhibition by exposure to a wide variety of xenobiotics. Using in vitro, in silico, and in vivo approaches, many herbs and natural compounds isolated from herbs have been identified as substrates, inhibitors, and/or inducers of various CYP enzymes. For example, St. John's wort is a potent inducer of CYP3A4, which is mediated by activating the orphan pregnane X receptor. It also contains ingredients that inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Many other common medicinal herbs also exhibited inducing or inhibiting effects on the CYP system, with the latter being competitive, noncompetitive, or mechanism-based. It appears that the regulation of CYPs by herbal products complex, depending on the herb type, their administration dose and route, the target organ and species. Due to the difficulties in identifying the active constituents responsible for the modulation of CYP enzymes, prediction of herb-drug metabolic interactions is difficult. However, herb-CYP interactions may have important clinical and toxicological consequences. For example, induction of CYP3A4 by St. John's wort may partly provide an explanation for the enhanced plasma clearance of a number of drugs, such as cyclosporine and innadivir, which are known substrates of CYP3A4, although other mechanisms including modulation of gastric absorption and drug transporters cannot be ruled out. In contrast, many organosulfur compounds, such as diallyl sulfide from garlic, are potent inhibitors of CYP2E1; this may provide an explanation for garlic's chemoproventive effects, as many mutagens require activation by CYP2E1. Therefore, known or potential herb-CYP interactions exist, and further studies on their clinical and toxicological roles are warranted. Given that increasing numbers of people are exposed to a number of herbal preparations that contain many constituents with potential of CYP modulation, high-throughput screening assays should be developed to explore herb-CYP interactions.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
24
|
Stiborová M, Borek-Dohalská L, Hodek P, Mráz J, Frei E. New selective inhibitors of cytochromes P450 2B and their application to antimutagenesis of tamoxifen. Arch Biochem Biophys 2002; 403:41-9. [PMID: 12061800 DOI: 10.1016/s0003-9861(02)00259-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
2-Isopropenyl-2-methyladamantane (2-PMADA) and 3-isopropenyl-3-methyldiamantane (3-PMDIA) showed potent and selective inhibition of cytochrome P450 (CYP) 2B6-mediated reactions with K(i) values of 5.27 and 2.17 microM, respectively. No effect on activities of other human CYP was found even at concentrations 100-fold higher than those inhibiting CYP2B6. These results indicate that 2-PMADA and 3-PMDIA belong among the most potent CYP2B6-selective inhibitors discovered to date. Both compounds also inhibited reactions catalyzed by CYP2B2 and CYP2B4 with K(i) values ranging between 0.23 and 2 microM. They are competitive inhibitors of all CYP2B. The activation of the anticancer drug tamoxifen by human and rabbit microsomes generating tamoxifen-DNA adducts, which are responsible for carcinogenic side effects of this drug, was strongly inhibited by both compounds. 2-PMADA and 3-PMDIA are very potent for inhibition of formation of these DNA adducts and warrant consideration as candidates for preventing endometrial cancer development by tamoxifen in humans treated with this anticancer drug.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | | | | | | | | |
Collapse
|
25
|
Hodek P, Trefil P, Stiborová M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450. Chem Biol Interact 2002; 139:1-21. [PMID: 11803026 DOI: 10.1016/s0009-2797(01)00285-x] [Citation(s) in RCA: 328] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flavonoids represent a group of phytochemicals exhibiting a wide range of biological activities arising mainly from their antioxidant properties and ability to modulate several enzymes or cell receptors. Flavonoids have been recognized to exert anti-bacterial and anti-viral activity, anti-inflammatory, anti-angionic, analgesic, anti-allergic effects, hepatoprotective, cytostatic, apoptotic, estrogenic and anti-estrogenic properties. However, not all flavonoids and their actions are necessarily beneficial. Some flavonoids have mutagenic and/or prooxidant effects and can also interfere with essential biochemical pathways. Among the proteins that interact with flavonoids, cytochromes P450 (CYPs), monooxygenases metabolizing xenobiotics (e.g. drugs, carcinogens) and endogenous substrates (e.g. steroids), play a prominent role. Flavonoid compounds influence these enzymes in several ways: flavonoids induce the expression of several CYPs and modulate (inhibit or stimulate) their metabolic activity. In addition, some CYPs participate in metabolism of flavonoids. Flavonoids enhance activation of carcinogens and/or influence the metabolism of drugs via induction of specific CYPs. On the other hand, inhibition of CYPs involved in carcinogen activation and scavenging reactive species formed from carcinogens by CYP-mediated reactions can be beneficial properties of various flavonoids. Flavonoids show an estrogenic or anti-estrogenic activity owing to the structural similarity with the estrogen skeleton. Mimicking natural estrogens, they bind to estrogen receptor and modulate its activity. They also block CYP19, a crucial enzyme involved in estrogen biosynthesis. Flavonoids in human diet may reduce the risk of various cancers, especially hormone-dependent breast and prostate cancers, as well preventing menopausal symptoms. For these reasons the structure-function relationship of flavonoids is extensively studied to provide an inspiration for a rational drug and/or chemopreventive agent design of future pharmaceuticals.
Collapse
Affiliation(s)
- Petr Hodek
- Department of Biochemistry, Charles University in Prague, Hlavova 2030, CZ-128 40 Prague, Czech Republic.
| | | | | |
Collapse
|
26
|
Martínek V, Stiborová M. Metabolism of Carcinogenic Azo Dye Sudan I by Rat, Rabbit, Minipig and Human Hepatic Microsomes. ACTA ACUST UNITED AC 2002. [DOI: 10.1135/cccc20021883] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We investigated the ability of hepatic microsomal samples from different species including human to metabolize rodent carcinogen Sudan I (C.I. Solvent Yellow 14, 1-(phenylazo)-2-naphthol). A comparison between experimental animals and the human microsomal enzymatic system is essential for the extrapolation of animal carcinogenicity data to assess human health risk. Major metabolites produced from Sudan I by microsomes of all species were C-hydroxylated derivatives identified as 1-[(4-hydroxyphenyl)azo]-2-naphthol and 1-(phenylazo)naphthalene-2,6-diol. Additional minor C-hydroxylated products of Sudan I oxidation were 1-[(4-hydroxyphenyl)azo]naphthalene-2,6-diol and 1-[(3,4-dihydroxyphenyl)- azo]-2-naphthol. Human microsomes generated the pattern of Sudan I metabolites reproducing that formed by hepatic microsomes of rats. While microsomes of rabbit and minipig favored the production of the metabolite hydroxylated in position 6 of the naphthol ring of the Sudan I molecule, those of human and rat predominantly produced 1-[(4-hydroxyphenyl)azo]-2-naphthol. Therefore, rat microsomes are a suitablein vitrosystem mimicking the metabolism of Sudan I in humans. To define the role of specific cytochromes P450 in the Sudan I metabolism by rat microsomes, we investigated the modulation of Sudan I oxidation by specific inducers and selective inhibitors of these enzymes. The results suggest that cytochromes P450 1A1 and 3A are responsible for Sudan I metabolism by rat microsomes. Using purified enzymes, their ability to oxidize Sudan I was confirmed. The data clearly demonstrate the predominant role of cytochrome P450 1A1 in the Sudan I metabolism and suggest a carcinogenic potency of this rodent carcinogen for humans.
Collapse
|