1
|
Gładkowski W, Włoch A, Pruchnik H, Chojnacka A, Grudniewska A, Wysota A, Dunal A, Rubiano Castro D, Rudzińska M. Acylglycerols of Myristic Acid as New Candidates for Effective Stigmasterol Delivery-Design, Synthesis, and the Influence on Physicochemical Properties of Liposomes. Molecules 2022; 27:molecules27113406. [PMID: 35684341 PMCID: PMC9182174 DOI: 10.3390/molecules27113406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
New carriers of phytosterols; acylglycerols containing natural myristic acid at sn-1 and sn-3 positions and stigmasterol residue linked to sn-2 position by carbonate and succinate linker have been designed and synthesized in three-step synthesis from dihydroxyacetone (DHA). The synthetic pathway involved Steglich esterification of DHA with myristic acid; reduction of carbonyl group of 1,3-dimyristoylpropanone and esterification of 1,3-dimyristoylglicerol with stigmasterol chloroformate or stigmasterol hemisuccinate. The structure of the obtained hybrids was established by the spectroscopic methods (NMR; IR; HRMS). Obtained hybrid molecules were used to form new liposomes in the mixture with model phospholipid and their effect on their physicochemical properties was determined, including the polarity, fluidity, and main phase transition of liposomes using differential scanning calorimetry and fluorimetric methods. The results confirm the significant effect of both stigmasterol-containing acylglycerols on the hydrophilic and hydrophobic region of liposome membranes. They significantly increase the order in the polar heads of the lipid bilayer and increase the rigidity in the hydrophobic region. Moreover, the presence of both acylglycerols in the membranes shifts the temperature of the main phase transition towards higher temperatures. Our results indicate stabilization of the bilayer over a wide temperature range (above and below the phase transition temperature), which in addition to the beneficial effects of phytosterols on human health makes them more attractive components of novel lipid nanocarriers compared to cholesterol.
Collapse
Affiliation(s)
- Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
- Correspondence: (W.G.); (A.W.); (A.D.); Tel.: +48-71-3205-154 (W.G.); +48-71-3205-461 (A.W.); +48-724-540-245 (A.D.)
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
- Correspondence: (W.G.); (A.W.); (A.D.); Tel.: +48-71-3205-154 (W.G.); +48-71-3205-461 (A.W.); +48-724-540-245 (A.D.)
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
| | - Aleksandra Grudniewska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
| | - Agnieszka Wysota
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
| | - Anna Dunal
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
- Correspondence: (W.G.); (A.W.); (A.D.); Tel.: +48-71-3205-154 (W.G.); +48-71-3205-461 (A.W.); +48-724-540-245 (A.D.)
| | - Daniel Rubiano Castro
- Facultat de Biologia, Universitat de Barcelona, Avinguda de Diagonal 643, 08007 Barcelona, Spain;
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| |
Collapse
|
2
|
Heavy Atom Detergent/Lipid Combined X-ray Crystallography for Elucidating the Structure-Function Relationships of Membrane Proteins. MEMBRANES 2021; 11:membranes11110823. [PMID: 34832053 PMCID: PMC8625833 DOI: 10.3390/membranes11110823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
Membrane proteins reside in the lipid bilayer of biomembranes and the structure and function of these proteins are closely related to their interactions with lipid molecules. Structural analyses of interactions between membrane proteins and lipids or detergents that constitute biological or artificial model membranes are important for understanding the functions and physicochemical properties of membrane proteins and biomembranes. Determination of membrane protein structures is much more difficult when compared with that of soluble proteins, but the development of various new technologies has accelerated the elucidation of the structure-function relationship of membrane proteins. This review summarizes the development of heavy atom derivative detergents and lipids that can be used for structural analysis of membrane proteins and their interactions with detergents/lipids, including their application with X-ray free-electron laser crystallography.
Collapse
|
3
|
Øpstad CL, Sliwka HR, Partali V, Elgsaeter A, Leopold P, Jubeli E, Khalique NA, Raju L, Pungente MD. Synthesis, self-assembling and gene delivery potential of a novel highly unsaturated, conjugated cationic phospholipid. Chem Phys Lipids 2013; 170-171:65-73. [PMID: 23570750 DOI: 10.1016/j.chemphyslip.2013.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 01/30/2023]
Abstract
The synthesis and self-assembling properties of a model compound in a new class of cationic phospholipids with a highly unsaturated conjugated fatty acid are described. In addition, the potential of this new lipid as a nucleic acid carrier was evaluated through lipoplex formulations employing 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as helper lipid with and without the polycationic peptide protamine, together with a plasmid DNA (pDNA). Lipoplexes composed of this novel unsaturated lipid exhibited pDNA binding and protection from DNase I degradation when formulated with protamine. The new cationic lipid revealed transfection efficiency comparable to the commercial reference 1,2-dimyristoyl-sn-glycero-3-ethylphophocholine (EPC) in Chinese hamster ovary-K1 (CHO-K1) cells and performed equally to the standard reference Lipofectamine 2000 when the formulation included protamine.
Collapse
Affiliation(s)
- Christer L Øpstad
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Laszlo JA, Yu Y, Lutz S, Compton DL. Glycerol acyl-transfer kinetics of a circular permutated Candida antarctica lipase B. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Stamatov SD, Stawinski J. O-Silylated C3-halohydrins as a novel class of protected building blocks for total, regio- and stereocontrolled synthesis of glycerolipid frameworks. Org Biomol Chem 2010; 8:463-77. [DOI: 10.1039/b915533c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Stamatov SD, Stawinski J. Regioselective and stereospecific acylation across oxirane- and silyloxy systems as a novel strategy to the synthesis of enantiomerically pure mono-, di- and triglycerides. Org Biomol Chem 2007; 5:3787-800. [DOI: 10.1039/b713246h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Foss BJ, Sliwka HR, Partali V, Naess SN, Elgsaeter A, Melø TB, Naqvi KR. Hydrophilic carotenoids: surface properties and aggregation behavior of a highly unsaturated carotenoid lysophospholipid. Chem Phys Lipids 2005; 134:85-96. [PMID: 15784227 DOI: 10.1016/j.chemphyslip.2004.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 11/24/2022]
Abstract
The water dispersibility of a hydrophobic carotenoid has been greatly enhanced by using it as the acyl part in the synthesis of a highly unsaturated lysophospholipid. Dynamic light scattering has revealed the formation of stable aggregates with an average hydrodynamic radius of a few nanometers, and absorption spectra show that the aggregates can withstand the addition of ethanol or acetonitrile until the volume fraction of water falls below 70 and 62%, respectively. The properties of the carotenoid phospholipids have been characterized by determining surface tension, critical micelle concentration, surface concentration, molecular area, free energy of adsorption and micellation, adsorption-micellar energy relationship, and equilibrium constants.
Collapse
Affiliation(s)
- Bente Jeanette Foss
- Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
8
|
Stamatov SD, Stawinski J. Stereospecific and regioselective opening of an oxirane system. A new efficient entry to 1- or 3-monoacyl- and 1- or 3-monoalkyl-sn-glycerols. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.01.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Osborn HT, Akoh CC. Structured Lipids-Novel Fats with Medical, Nutraceutical, and Food Applications. Compr Rev Food Sci Food Saf 2002; 1:110-120. [PMID: 33451231 DOI: 10.1111/j.1541-4337.2002.tb00010.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, structured lipids (SLs) are triacylglycerols (TAGs) that have been modified to change the fatty acid composition and/or their positional distribution in glycerol backbone by chemically and/or enzymatically catalyzed reactions and/or genetic engineering. More specifically, SLs are modified TAGs with improved nutritional or functional properties. SLs provide an effective means for producing tailor-made lipids with desired physical characteristics, chemical properties, and/or nutritional benefits. The production, commercialization outlook, medical, and food applications of SLs are reviewed here. Physical property measurements for SL in food systems and future research needs for increased industrial acceptance are also included in this review.
Collapse
Affiliation(s)
- H T Osborn
- The authors are with the Univ. of Georgia, Dept. of Food Science and Technology, Food Science Building, Athens, GA 30602-7610
| | - C C Akoh
- The authors are with the Univ. of Georgia, Dept. of Food Science and Technology, Food Science Building, Athens, GA 30602-7610
| |
Collapse
|
10
|
Raneva V, Shimasaki H, Furukawa Y, Ueta N, Yanishlieva N, Aaseng JE, Partali V, Sliwka HR, Yoshida Y, Niki E. Action of 1-(11-selenadodecyl)-glycerol and 1-(11-selenadodecyl)-3-trolox-glycerol against lipid peroxidation. Lipids 2002; 37:633-40. [PMID: 12216833 DOI: 10.1007/s11745-002-0943-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The antioxidant action on lipid peroxidation of the synthesized selenium compounds 1-(11-selenadodecyl)-glycerol (SeG) and 1-(11-selenadodecyl)-3-Trolox-glycerol (SeTrG, where Trolox = 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was investigated. We compared the reactivity of the selenium compounds toward peroxyl radicals and their inhibitory effect on lipid peroxidation, induced by several kinds of initiating species such as azo compounds, metal ions, and superoxide/nitric oxide in solution, micelles, membranes, and rat plasma. SeTrG, but not SeG, scavenged peroxyl radicals. SeG reduced methyl linoleate hydroperoxides in organic solution and in methyl linoleate micelles oxidized by ferrous ion (Fe2+)/ascorbic acid. In rat plasma SeG and SeTrG decreased the formation of lipid hydroperoxides generated by hydrophilic azo compounds. SeG and SeTrG spared alpha-tocopherol (alpha-TOH) consumption in multilamellar vesicle membranes oxidized by hydrophilic or lipophilic initiators, and only SeTrG spared alpha-TOH in superoxide/nitric oxide oxidized membranes. In rat plasma oxidized by radical initiators (either hydrophilic or lipophilic) or superoxide/nitric oxide, SeTrG suppressed alpha-TOH consumption, but SeG had no effect. The two selenium-containing compounds showed inhibitory effects on lipid peroxidation that depended on their structure, the medium where they acted, and the oxidant used.
Collapse
Affiliation(s)
- Violeta Raneva
- First Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yanishlieva N, Raneva V, Marinova E, Houte H, Partali V, Sliwka HR. 11-selenadodecylglyceryl-1-ether in lipid autoxidation. J AM OIL CHEM SOC 2001. [DOI: 10.1007/s11746-001-0327-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- N. Yanishlieva
- ; Institute of Organic Chemistry; Bulgarian Academy of Sciences; kv. Geo Milev, Acad. G .Bonchev Str., block 9 1113 Sofia Bulgaria
| | - V. Raneva
- ; Institute of Organic Chemistry; Bulgarian Academy of Sciences; kv. Geo Milev, Acad. G .Bonchev Str., block 9 1113 Sofia Bulgaria
| | - E. Marinova
- ; Institute of Organic Chemistry; Bulgarian Academy of Sciences; kv. Geo Milev, Acad. G .Bonchev Str., block 9 1113 Sofia Bulgaria
| | - H. Houte
- ; Department of Chemistry; Norwegian University of Science and Technology; Rosenborg N-7491 Trondheim Norway
| | - V. Partali
- ; Department of Chemistry; Norwegian University of Science and Technology; Rosenborg N-7491 Trondheim Norway
| | - H. -R. Sliwka
- ; Department of Chemistry; Norwegian University of Science and Technology; Rosenborg N-7491 Trondheim Norway
| |
Collapse
|