1
|
Francisco R, Pascoal C, Marques-da-Silva D, Morava E, Gole GA, Coman D, Jaeken J, Dos Reis Ferreira V. Keeping an eye on congenital disorders of O-glycosylation: A systematic literature review. J Inherit Metab Dis 2019; 42:29-48. [PMID: 30740740 DOI: 10.1002/jimd.12025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital disorders of glycosylation (CDG) are a rapidly growing family comprising >100 genetic diseases. Some 25 CDG are pure O-glycosylation defects. Even among this CDG subgroup, phenotypic diversity is broad, ranging from mild to severe poly-organ/system dysfunction. Ophthalmic manifestations are present in 60% of these CDG. The ophthalmic manifestations in N-glycosylation-deficient patients have been described elsewhere. The present review documents the spectrum and incidence of eye disorders in patients with pure O-glycosylation defects with the aim of assisting diagnosis and management and promoting research.
Collapse
Affiliation(s)
- Rita Francisco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Carlota Pascoal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Dorinda Marques-da-Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| | - Eva Morava
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Glen A Gole
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Discipline of Paediatrics and Child Health, University of Queensland, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David Coman
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Department of Metabolic Medicine, The Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
- Center for Metabolic Disease, KU Leuven, Leuven, Belgium
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Lisbon, Portugal
| |
Collapse
|
2
|
Long-term survival in a patient with muscle-eye-brain disease. Neurol Sci 2015; 36:2147-9. [PMID: 26152802 DOI: 10.1007/s10072-015-2321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
|
3
|
Inamori KI, Willer T, Hara Y, Venzke D, Anderson ME, Clarke NF, Guicheney P, Bönnemann CG, Moore SA, Campbell KP. Endogenous glucuronyltransferase activity of LARGE or LARGE2 required for functional modification of α-dystroglycan in cells and tissues. J Biol Chem 2014; 289:28138-48. [PMID: 25138275 DOI: 10.1074/jbc.m114.597831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the LARGE gene have been identified in congenital muscular dystrophy (CMD) patients with brain abnormalities. Both LARGE and its paralog, LARGE2 (also referred to as GYLTL1B) are bifunctional glycosyltransferases with xylosyltransferase (Xyl-T) and glucuronyltransferase (GlcA-T) activities, and are capable of forming polymers consisting of [-3Xyl-α1,3GlcAβ1-] repeats. LARGE-dependent modification of α-dystroglycan (α-DG) with these polysaccharides is essential for the ability of α-DG to act as a receptor for ligands in the extracellular matrix. Here we report on the endogenous enzymatic activities of LARGE and LARGE2 in mice and humans, using a newly developed assay for GlcA-T activity. We show that normal mouse and human cultured cells have endogenous LARGE GlcA-T, and that this activity is absent in cells from the Large(myd) (Large-deficient) mouse model of muscular dystrophy, as well as in cells from CMD patients with mutations in the LARGE gene. We also demonstrate that GlcA-T activity is significant in the brain, heart, and skeletal muscle of wild-type and Large2(-/-) mice, but negligible in the corresponding tissues of the Large(myd) mice. Notably, GlcA-T activity is substantial, though reduced, in the kidneys of both the Large(myd) and Large2(-/-) mice, consistent with the observation of α-DG/laminin binding in these contexts. This study is the first to test LARGE activity in samples as small as cryosections and, moreover, provides the first direct evidence that not only LARGE, but also LARGE2, is vital to effective functional modification of α-DG in vivo.
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101, Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | - Tobias Willer
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - Yuji Hara
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - David Venzke
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - Mary E Anderson
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, University of Sydney, Sydney, Australia
| | - Pascale Guicheney
- Inserm, U1166, Faculté de Médecine Pierre et Marie Curie, Institute of Cardiometabolism and Nutrition, ICAN, Paris, France, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Paris, France
| | - Carsten G Bönnemann
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Steven A Moore
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Kevin P Campbell
- From the Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242-1101,
| |
Collapse
|
4
|
Jiao H, Manya H, Wang S, Zhang Y, Li X, Xiao J, Yang Y, Kobayashi K, Toda T, Endo T, Wu X, Xiong H. Novel POMGnT1 mutations cause muscle-eye-brain disease in Chinese patients. Mol Genet Genomics 2013; 288:297-308. [DOI: 10.1007/s00438-013-0749-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
5
|
Beedle AM, Turner AJ, Saito Y, Lueck JD, Foltz SJ, Fortunato MJ, Nienaber PM, Campbell KP. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. J Clin Invest 2012; 122:3330-42. [PMID: 22922256 DOI: 10.1172/jci63004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/21/2012] [Indexed: 11/17/2022] Open
Abstract
Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy.
Collapse
Affiliation(s)
- Aaron M Beedle
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Akasaka-Manya K, Manya H, Mizuno M, Inazu T, Endo T. Effects of length and amino acid sequence of O-mannosyl peptides on substrate specificity of protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1). Biochem Biophys Res Commun 2011; 410:632-6. [DOI: 10.1016/j.bbrc.2011.06.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
7
|
|
8
|
Endo T, Manya H, Seta N, Guicheney P. POMGnT1, POMT1, and POMT2 mutations in congenital muscular dystrophies. Methods Enzymol 2010; 479:343-52. [PMID: 20816175 DOI: 10.1016/s0076-6879(10)79019-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alpha-dystroglycanopathies are a group of rare inherited neuromuscular disorders characterized by reduced glycosylation of alpha-dystroglycan (alpha-DG). Mutations in six genes (POMT1, POMT2, POMGNT1, FKTN, FKRP, and LARGE) have been identified in patients with alpha-dystroglycanopathies. Due to an extremely broad clinical spectrum and relatively poor phenotype-genotype correlation, diagnosis of alpha-dystroglycanopathies is difficult and requires searching for mutations gene by gene. At present, of the six proteins involved on alpha-dystroglycanopathies, the function of the gene products is only known for POMT1, POMT2, and POMGnT1, all responsible for the O-mannosylglycan biosynthesis. This chapter describes the assay protocols to diagnose patients with alpha-dystroglycanopathy by measuring glycosyltransferase activity.
Collapse
Affiliation(s)
- Tamao Endo
- Molecular Glycobiology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
9
|
Reed UC. Congenital muscular dystrophy. Part I: a review of phenotypical and diagnostic aspects. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 67:144-68. [DOI: 10.1590/s0004-282x2009000100038] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/17/2008] [Indexed: 12/30/2022]
Abstract
The congenital muscular dystrophies (CMDs) are a group of genetically and clinically heterogeneous hereditary myopathies with preferentially autosomal recessive inheritance, that are characterized by congenital hypotonia, delayed motor development and early onset of progressive muscle weakness associated with dystrophic pattern on muscle biopsy. The clinical course is broadly variable and can comprise the involvement of the brain and eyes. From 1994, a great development in the knowledge of the molecular basis has occurred and the classification of CMDs has to be continuously up dated. We initially present the main clinical and diagnostic data concerning the CMDs related to changes in the complex dystrophin-associated glycoproteins-extracellular matrix: CMD with merosin deficiency (CMD1A), collagen VI related CMDs (Ullrich CMD and Bethlem myopathy), CMDs with abnormal glycosylation of alpha-dystroglycan (Fukuyama CMD, Muscle-eye-brain disease, Walker-Warburg syndrome, CMD1C, CMD1D), and the much rarer CMD with integrin deficiency. Finally, we present other forms of CMDs not related with the dystrophin/glycoproteins/extracellular matrix complex (rigid spine syndrome, CMD1B, CMD with lamin A/C deficiency), and some apparently specific clinical forms not yet associated with a known molecular mechanism. The second part of this review concerning the pathogenesis and therapeutic perspectives of the different subtypes of CMD will be described in a next number.
Collapse
|
10
|
Manya H, Bouchet C, Yanagisawa A, Vuillaumier-Barrot S, Quijano-Roy S, Suzuki Y, Maugenre S, Richard P, Inazu T, Merlini L, Romero NB, Leturcq F, Bezier I, Topaloglu H, Estournet B, Seta N, Endo T, Guicheney P. Protein O-mannosyltransferase activities in lymphoblasts from patients with α-dystroglycanopathies. Neuromuscul Disord 2008; 18:45-51. [PMID: 17869517 DOI: 10.1016/j.nmd.2007.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/23/2007] [Accepted: 08/08/2007] [Indexed: 11/19/2022]
Abstract
Defects in O-mannosylation of alpha-dystroglycan cause some forms of congenital muscular dystrophy (CMD), the so-called alpha-dystroglycanopathies. Six genes are responsible for these diseases with overlapping phenotypes. We investigated the usefulness of a biochemical approach for the diagnosis and investigation of the alpha-dystroglycanopathies using immortalized lymphoblasts prepared from genetically diagnosed and undiagnosed CMD patients and from control subjects. We measured the activities of protein O-mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) and protein O-mannosyltransferase (POMT). Lymphoblasts from patients harbouring known mutations in either POMGNT1 or POMT1 showed a marked decrease in POMGnT1 or POMT activity, respectively, compared to controls. Furthermore, we identified pathogenic mutations in POMGNT1, POMT1 or POMT2 in six previously genetically uncharacterised patients who had very low enzyme activity. In conclusion, the lymphoblast-based enzymatic assay is a sensitive and useful method (i) to select patients harbouring POMGNT1, POMT1 or POMT2 mutations; (ii) to assess the pathogenicity of new or already described mutations.
Collapse
Affiliation(s)
- Hiroshi Manya
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hehr U, Uyanik G, Gross C, Walter MC, Bohring A, Cohen M, Oehl-Jaschkowitz B, Bird LM, Shamdeen GM, Bogdahn U, Schuierer G, Topaloglu H, Aigner L, Lochmüller H, Winkler J. Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 2007; 8:279-88. [PMID: 17906881 DOI: 10.1007/s10048-007-0096-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 07/02/2007] [Indexed: 11/26/2022]
Abstract
Muscle-eye-brain disease (MEB, OMIM 253280) is an autosomal recessive disorder characterized by a distinct triad of congenital muscular dystrophy, structural eye abnormalities, and cobblestone lissencephaly. Clinically, MEB patients present with early onset muscular hypotonia, severely compromised motor development, and mental retardation. Magnetic resonance imaging reveals a lissencephaly type II with hypoplasia of the brainstem and cerebellum. MEB is associated with mutations in the gene for protein O-mannose beta-1,2-N-acetylglucosaminyltransferase (POMGnT1, OMIM 606822). In this paper, we report the clinical findings of nine MEB patients from eight families. Eight of the nine patients presented typical features of MEB. However, a broad phenotypic variability was observed, ranging from two patients with severe autistic features to another patient with an unusually mild phenotype, initially diagnosed as congenital muscular dystrophy. Furthermore, severe hydrocephalus was reported in two families during a previous pregnancy, emphasizing the phenotypic overlap with Walker-Warburg syndrome. In addition to three previously reported mutations, we identified six novel POMGnT1 mutations (one missense, five truncating) in the present patient cohort. Our data suggest mutational hotspots within the minimal catalytic domain at arginine residue 442 (exon 16) and in intron 17. It is interesting to note that all mutations analyzed so far result in a complete loss of enzyme activity. Therefore, we conclude that the type and position of the POMGnT1 mutations are not of predictive value for the clinical severity. This supports the notion that additional environmental and/or genetic factors may contribute to the observed broad spectrum of POMGnT1-associated phenotypes.
Collapse
Affiliation(s)
- Ute Hehr
- Center for Human Genetics and Department of Human Genetics, University of Regensburg, Universitätklinikum D3, Franz-Josef-Strauss-Allee 11, Regensburg 93053, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martin PT. Mechanisms of disease: congenital muscular dystrophies-glycosylation takes center stage. ACTA ACUST UNITED AC 2007; 2:222-30. [PMID: 16932553 PMCID: PMC2855642 DOI: 10.1038/ncpneuro0155] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 02/10/2006] [Indexed: 11/09/2022]
Abstract
Recent studies have defined a group of muscular dystrophies, now termed the dystroglycanopathies, as novel disorders of glycosylation. These conditions include Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama-type congenital muscular dystrophy, congenital muscular dystrophy types 1C and 1D, and limb-girdle muscular dystrophy type 2I. Although clinical findings can be highly variable, dystroglycanopathies are all characterized by cortical malformations and ocular defects at the more severe end of the clinical spectrum, in addition to muscular dystrophy. All of these disorders are defined by the underglycosylation of alpha-dystroglycan. Defective glycosylation of dystroglycan severs the link between this important cell adhesion molecule and the extracellular matrix, thereby contributing to cellular pathology. Recent experiments indicate that glycosylation might not only define forms of muscular dystrophy but also provide an avenue to the development of therapies for these disorders.
Collapse
Affiliation(s)
- Paul T Martin
- Columbus Children's Research Institute, Departments of Pediatrics and Neurology, Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
13
|
Bouchet C, Gonzales M, Vuillaumier-Barrot S, Devisme L, Lebizec C, Alanio E, Bazin A, Bessières-Grattagliano B, Bigi N, Blanchet P, Bonneau D, Bonnières M, Carles D, Delahaye S, Fallet-Bianco C, Figarella-Branger D, Gaillard D, Gasser B, Guimiot F, Joubert M, Laurent N, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S, Pelluard-Nehmé F, Perez MJ, Rouleau-Dubois C, Triau S, Laquerrière A, Encha-Razavi F, Seta N. Molecular heterogeneity in fetal forms of type II lissencephaly. Hum Mutat 2007; 28:1020-7. [PMID: 17559086 DOI: 10.1002/humu.20561] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type II lissencephaly (type II LIS) is a group of autosomal recessive congenital muscular dystrophies (CMD) associated with defects in alpha-DG O-glycosylation, which comprises Walker-Warburg syndrome, Fukuyama cerebral and muscular dystrophy, or muscle-eye-brain disease. The most severe forms of these diseases often have a fetal presentation and lead to a pregnancy termination. We report here the first molecular study on fetal type II LIS in a series of 47 fetuses from 41 unrelated families. Sequencing of the different genes known to be involved in alpha-DG O-glycosylation allowed the molecular diagnosis in 22 families: involvement of POMT1 was demonstrated in 32% of cases, whereas POMGNT1 and POMT2 were incriminated in 15% and in 7% of cases, respectively. We found 30 different mutations in these three genes, 25 were described herein for the first time, 15 in POMT1, and five in POMT2 and POMGNT1. Despite sequencing of FKRP, FCMD, and LARGE, no definitive molecular diagnosis could be made for the other half of our cases. Preliminary results concerning genotype-phenotype correlations show that the choice of the first gene sequenced should depend on the clinical severity of the type II LIS; POMT1 and POMT2 for severest clinical picture and POMGNT1 for milder disease. The other genes, FKRP, FCMD, and LARGE, seem not to be implicated in the fetal form of CMD.
Collapse
Affiliation(s)
- C Bouchet
- Assistance Publique-Hôpitaux de Paris (APHP), Bichat-Claude Bernard Hospital, Biochimie Métabolique, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vajsar J. MRI findings in congenital muscular dystrophies associated with brain abnormalities. FUTURE NEUROLOGY 2006. [DOI: 10.2217/14796708.1.6.765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic resonance imaging (MRI) has become an important tool in diagnosing complex congenital muscular dystrophies (CMD) with brain abnormalities. Currently, there are two recognized types of CMDs with MRI brain abnormalities, firstly, laminin α2-chain-deficient CMD (MDC1A) with mutations in the LAMA2 gene, and secondly CMDs with hypoglycosylated α-dystroglycan which include Walker–Warburg syndrome (WWS), muscle–eye–brain disease (MEB), Fukuyama CMD (FCMD) and CMD types 1C and 1D (MDC1C and 1D). Brain MRI in MDC1A demonstrates abnormal white matter but rarely other brain abnormalities. In the latter group of CMDs, there is a whole spectrum of abnormalities involving both white and gray matter. The most severe MRI findings are in WWS. Patients with MEB, FCMD and MDC1C and lD also have gray and white matter abnormalities, which, in general, are less severe than those observed in WWS. There may be an overlap in these complex CMDs, both genotypically and in MRI findings.
Collapse
Affiliation(s)
- Jiri Vajsar
- The Hospital for Sick Children & University of Toronto, Division of Neurology, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
15
|
Lisi MT, Cohn RD. Congenital muscular dystrophies: new aspects of an expanding group of disorders. Biochim Biophys Acta Mol Basis Dis 2006; 1772:159-72. [PMID: 17097859 DOI: 10.1016/j.bbadis.2006.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 12/24/2022]
Abstract
The congenital muscular dystrophies comprise a genetically and clinically heterogeneous group of disorders characterized by early onset of progressive muscle weakness and often involvement of other organ systems such as the brain and eyes. During the last decade, significant progress has been made to further characterize various forms of congenital muscular dystrophies based on their specific genetic and clinical appearance. This review represents an overview of the recent accomplishments as they relate to clinical, diagnostic, pathogenetic and therapeutic aspects of congenital muscular dystrophies.
Collapse
Affiliation(s)
- Matthew T Lisi
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics and Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Blalock 1008 Baltimore, MD 21287, USA
| | | |
Collapse
|
16
|
Kanagawa M, Toda T. The genetic and molecular basis of muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J Hum Genet 2006; 51:915-926. [PMID: 16969582 DOI: 10.1007/s10038-006-0056-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
Muscular dystrophies are a heterogeneous group of genetic disorders. In addition to genetic information, a combination of various approaches such as the use of genetic animal models, muscle cell biology, and biochemistry has contributed to improving the understanding of the molecular basis of muscular dystrophy's etiology. Several lines of evidence confirm that the structural linkage between the muscle extracellular matrix and the cytoskeleton is crucial to prevent the progression of muscular dystrophy. The dystrophin-glycoprotein complex links the extracellular matrix to the cytoskeleton, and mutations in the component of this complex cause Duchenne-type or limb-girdle-type muscular dystrophy. Mutations in laminin or collagen VI, muscle matrix proteins, are known to cause a congenital type of muscular dystrophy. Moreover, it is not only the primary genetic defects in the structural or matrix proteins, but also the primary mutations of enzymes involved in the protein glycosylation pathway that are now recognized to disrupt the matrix-cell interaction in a certain group of muscular dystrophies. This group of diseases is caused by the secondary functional defects of dystroglycan, a transmembrane matrix receptor. This review considers recent advances in understanding the molecular pathogenesis of muscular dystrophies that can be caused by the disruption of the cell-matrix linkage.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, 2-2-B9, Yamadaoka, Suita, 565-0871, Japan
| | - Tatsushi Toda
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, 2-2-B9, Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
17
|
Sarkar M, Leventis PA, Silvescu CI, Reinhold VN, Schachter H, Boulianne GL. Null Mutations in Drosophila N-Acetylglucosaminyltransferase I Produce Defects in Locomotion and a Reduced Life Span. J Biol Chem 2006; 281:12776-85. [PMID: 16522637 DOI: 10.1074/jbc.m512769200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc:alpha3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (encoded by Mgat1) controls the synthesis of hybrid, complex, and paucimannose N-glycans. Mice make hybrid and complex N-glycans but little or no paucimannose N-glycans. In contrast, Drosophila melanogaster and Caenorhabditis elegans make paucimannose N-glycans but little or no hybrid or complex N-glycans. To determine the functional requirement for beta1,2-N-acetylglucosaminyltransferase I in Drosophila, we generated null mutations by imprecise excision of a nearby transposable element. Extracts from Mgat1(1)/Mgat1(1) null mutants showed no beta1,2-N-acetylglucosaminyltransferase I enzyme activity. Moreover, mass spectrometric analysis of these extracts showed dramatic changes in N-glycans compatible with lack of beta1,2-N-acetylglucosaminyltransferase I activity. Interestingly, Mgat1(1)/Mgat1(1) null mutants are viable but exhibit pronounced defects in adult locomotory activity when compared with Mgat1(1)/CyO-GFP heterozygotes or wild type flies. In addition, in null mutants males are sterile and have a severely reduced mean and maximum life span. Microscopic examination of mutant adult fly brains showed the presence of fused beta lobes. The removal of both maternal and zygotic Mgat1 also gave rise to embryos that no longer express the horseradish peroxidase antigen within the central nervous system. Taken together, the data indicate that beta1,2-N-acetylglucosaminyltransferase I-dependent N-glycans are required for locomotory activity, life span, and brain development in Drosophila.
Collapse
Affiliation(s)
- Mohan Sarkar
- Program in Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Wopereis S, Lefeber DJ, Morava E, Wevers RA. Mechanisms in protein O-glycan biosynthesis and clinical and molecular aspects of protein O-glycan biosynthesis defects: a review. Clin Chem 2006; 52:574-600. [PMID: 16497938 DOI: 10.1373/clinchem.2005.063040] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Genetic diseases that affect the biosynthesis of protein O-glycans are a rapidly growing group of disorders. Because this group of disorders does not have a collective name, it is difficult to get an overview of O-glycosylation in relation to human health and disease. Many patients with an unsolved defect in N-glycosylation are found to have an abnormal O-glycosylation as well. It is becoming increasingly evident that the primary defect of these disorders is not necessarily localized in one of the glycan-specific transferases, but can likewise be found in the biosynthesis of nucleotide sugars, their transport to the endoplasmic reticulum (ER)/Golgi, and in Golgi trafficking. Already, disorders in O-glycan biosynthesis form a substantial group of genetic diseases. In view of the number of genes involved in O-glycosylation processes and the increasing scientific interest in congenital disorders of glycosylation, it is expected that the number of identified diseases in this group will grow rapidly over the coming years. CONTENT We first discuss the biosynthesis of protein O-glycans from their building blocks to their secretion from the Golgi. Subsequently, we review 24 different genetic disorders in O-glycosylation and 10 different genetic disorders that affect both N- and O-glycosylation. The key clinical, metabolic, chemical, diagnostic, and genetic features are described. Additionally, we describe methods that can be used in clinical laboratory screening for protein O-glycosylation biosynthesis defects and their pitfalls. Finally, we introduce existing methods that might be useful for unraveling O-glycosylation defects in the future.
Collapse
Affiliation(s)
- Suzan Wopereis
- Laboratory of Pediatrics and Neurology and Department of Pediatrics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Vajsar J, Zhang W, Dobyns WB, Biggar D, Holden KR, Hawkins C, Ray P, Olney AH, Burson CM, Srivastava AK, Schachter H. Carriers and patients with muscle–eye–brain disease can be rapidly diagnosed by enzymatic analysis of fibroblasts and lymphoblasts. Neuromuscul Disord 2006; 16:132-6. [PMID: 16427280 DOI: 10.1016/j.nmd.2005.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/22/2005] [Accepted: 11/28/2005] [Indexed: 11/21/2022]
Abstract
We report a new fibroblast and lymphoblast based protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 enzymatic assay, which allows rapid and accurate diagnosis of carriers and patients with muscle-eye-brain type of congenital muscular dystrophy. Seven patients with genetically confirmed muscle-eye-brain disease were assayed for protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 enzyme activity. In three patients and their heterozygous parents, the assays were done on EBV-transformed lymphoblasts, in another three patients they were done on cultured fibroblasts and in the last patient on both fibroblasts and lymphoblasts. Cultured fibroblasts and lymphoblasts from the muscle-eye-brain patients showed a highly significant decrease in protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 activity relative to controls. The residual protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 level in fibroblasts (average 0.11 nmoles/h per mg) was about 13% of normal controls. The ratio of protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 activity to the activity of a glycosyltransferase control (N-acetylglucosaminyltransferase 1; GnT1) in fibroblasts was on average 0.006 in muscle-eye-brain patients and 0.045 in controls. The average residual protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 level in lymphoblasts was 15% of normal controls. The average ratio of protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1/GnT1 activity was 0.007 in muscle-eye-brain patients, 0.026 in heterozygous carriers and 0.046 in normal controls. Assay of protein O-mannosyl beta-1,2-N-acetylglucosaminyltransferase 1 activity in fibroblasts and lymphoblasts from muscle-eye-brain carriers and patients provides a rapid and relatively simple diagnostic test for this disease and could be used as a screening test in carriers and patients with complex congenital muscular dystrophy.
Collapse
Affiliation(s)
- Jiri Vajsar
- The Hospital for Sick Children, Toronto, Ont. Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Barresi R, Campbell KP. Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 2006; 119:199-207. [PMID: 16410545 DOI: 10.1242/jcs.02814] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
α- and β-dystroglycan constitute a membrane-spanning complex that connects the extracellular matrix to the cytoskeleton. Although a structural role for dystroglycan had been identified, biochemical and genetic discoveries have recently highlighted the significance of posttranslational processing for dystroglycan function. Glycosylation is the crucial modification that modulates the function of dystroglycan as a receptor for extracellular binding partners. It has become clear that perturbation of dystroglycan glycosylation is the central event in the pathogenesis of several complex disorders, and recent advances suggest that glycosylation could be modulated to ameliorate the pathological features. Our increased understanding of the mechanisms of interaction of dystroglycan with its ligands has become an essential tool in deciphering the biological processes related to the human diseases in which the proteins are implicated.
Collapse
Affiliation(s)
- Rita Barresi
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
21
|
Abstract
Muscular dystrophies are a diverse group of inherited disorders characterized by progressive muscle weakness and wasting. The dystrophin-glycoprotein complex is composed of alpha-, beta-dystroglycan (DG), dystrophin and some other molecules. alpha- and beta-DG stabilize the sarcolemma by acting as an axis through which the extracellular matrix is tightly linked to the cytoskeleton. The relative molecular weights of alpha-DG differ in different tissues as a result of differential glycosylation. New findings indicate that disrupted glycosylation of alpha-DG results in a loss of ligand binding, giving rise to both progressive muscle degeneration and abnormal neuronal migration in the brain. This article discusses methods, including purification of alpha-DG and glycosyltransferase assays involved in alpha-DG glycosylation.
Collapse
Affiliation(s)
- Tamao Endo
- Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology Foundation for Research on Aging and Promotion of Human Welfare, Tokyo, Japan
| | | |
Collapse
|
22
|
Abstract
It has become clear in the past half decade that a number of forms of congenital muscular dystrophy are in fact congenital disorders of glycosylation. Genes for Walker Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, congenital muscular dystrophy 1C and 1D, and limb girdle muscular dystrophy 21 have been identified, and gene mutations resulting in these diseases all cause the underglycosylation of alpha dystroglycan with O-linked carbohydrates. Unlike congenital disorders of glycosylation involving the N-linked pathway, these O-linked disorders possess distinctive muscle, eye, and brain phenotypes. Studies using mice and patient tissues strongly suggest that underglycosylation of dystroglycan inhibits the binding extracellular matrix proteins, effectively divorcing this important cell adhesion molecule from its extracellular environment. Moreover, defects in dystroglycan alone can account for most, if not all, cellular pathology. Thus, these disorders are now collectively referred to as dystroglycanopathies.
Collapse
Affiliation(s)
- Paul T Martin
- Center for Gene Therapy, Columbus Children's Research Institute, Departments of Pediatrics and Neurology, Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA
| |
Collapse
|
23
|
Abstract
Walker-Warburg syndrome (WWS) is the most severe of a group of multiple congenital anomaly disorders known as the cobblestone lissencephalies. These are characterized by congenital muscular dystrophy in conjunction with severe brain malformation and ocular abnormalities. In the last 3 years, important progress has been made towards the elucidation of the genetic causes of these disorders. Mutations in three genes, POMT1, fukutin and FKRP, have been described for WWS, which together account for approximately 20% of patients with Walker-Warburg. It has become evident that some of the underlying genes may cause a broad spectrum of phenotypes, ranging from limb girdle muscular dystrophy type 2I to WWS. In some cases, a genotype-phenotype correlation can be recognized. In line with the known or proposed functions of the resolved genes, all patients with cobblestone lissencephaly show defects in the O-linked glycosylation of the glycoprotein alpha-dystroglycan. Perhaps, the missing genes underlying the remainder of the unexplained WWS patients have also to be sought in the pathways involved in O-linked protein glycosylation.
Collapse
Affiliation(s)
- J van Reeuwijk
- Department of Human Genetics, Radboud University Nijmegen Medical center, The Netherlands
| | | | | |
Collapse
|
24
|
Schachter H, Vajsar J, Zhang W. The role of defective glycosylation in congenital muscular dystrophy. Glycoconj J 2005; 20:291-300. [PMID: 15229394 DOI: 10.1023/b:glyc.0000033626.65127.e4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dystrophin glycoprotein complex (DGC) is an assembly of proteins spanning the sarcolemma of skeletal muscle cells. Defects in the DGC appear to play critical roles in several muscular dystrophies due to disruption of basement membrane organization. O -mannosyl oligosaccharides on alpha-dystroglycan, a major extracellular component of the DGC, are essential for normal binding of alpha-dystroglycan to ligands (such as laminin) in the extracellular matrix and subsequent signal transmission to actin in the cytoskeleton of the muscle cell. Muscle-Eye-Brain disease (MEB) and Walker-Warburg Syndrome (WWS) have mutations in genes encoding glycosyltransferases needed for O -mannosyl oligosaccharide synthesis. Myodystrophic myd mice and humans with Fukuyama Congenital Muscular Dystrophy (FCMD), congenital muscular dystrophy due to defective fukutin-related protein (FKRP) and MDC1D have mutations in putative glycosyltransferases. These human congenital muscular dystrophies and the myd mouse are associated with defective glycosylation of alpha-dystroglycan. It is expected other congenital muscular dystrophies will prove to have mutations in genes involved in glycosylation.
Collapse
Affiliation(s)
- Harry Schachter
- Department of Structural Biology and Biochemistry, The Hospital for Sick Children, 555 University Avenue, Toronto, Ont. M5G 1X8, Canada.
| | | | | |
Collapse
|
25
|
Cohn RD. Dystroglycan: important player in skeletal muscle and beyond. Neuromuscul Disord 2005; 15:207-17. [PMID: 15725582 DOI: 10.1016/j.nmd.2004.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/02/2004] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
Dystroglycan is a transmembrane protein that connects the extracellular matrix to the cytoskeleton. Given the ubiquitous tissue expression of dystroglycan, different functional roles in various organ systems have been characterized during the past decade. More recently, aberrant glycosylation of dystroglycan has been identified as a novel pathogenetic mechanism in several forms of congenital and late onset muscular dystrophy syndromes. The current review summarizes the recent scientific achievements as they relate to the function of dystroglycan under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Ronald D Cohn
- Johns Hopkins Hospital, Children's Center, McKusick-Nathans Institute of Genetic Medicine, 600 N Wolfe Street, Blalock 1008, Baltimore, MD 21287, USA.
| |
Collapse
|
26
|
Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord 2004; 14:635-49. [PMID: 15351421 DOI: 10.1016/j.nmd.2004.06.009] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2004] [Revised: 06/07/2004] [Accepted: 06/08/2004] [Indexed: 11/24/2022]
Abstract
The congenital muscular dystrophies are a heterogeneous group of inherited disorders. The clinical features range from severe and often early fatal disorders to relatively mild conditions compatible with survival into adult life. The recent advances in the genetic basis of congenital muscular dystrophies have allowed to significantly improve our understanding of their pathogenesis and clinical diversity. These advances have also allowed to classify these forms according to a combination of clinical features and primary biochemical defects. In this review we present how the congenital muscular dystrophies field has evolved over the last decade from a clinical and genetic point of view.
Collapse
Affiliation(s)
- Francesco Muntoni
- Department of Paediatrics and Neonatal, Dubowitz Neuromuscular Unit, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK.
| | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Congenital disorders of glycosylation are caused by defects in the synthesis of the glycan moiety of glycoproteins or other glycoconjugates. There has been a great explosion in the number of neuromuscular diseases caused by mutations in genes that affect carbohydrate metabolism or protein glycosylation. A common defect in these disorders is the defective processing of alpha-dystroglycan. RECENT FINDINGS Recent advances demonstrating mutations in glycosyltransferases and dysfunction of the alpha-beta dystroglycan axis causing different forms of muscular dystrophy, especially with brain involvement, shows clearly that muscle integrity is dependent on glycosylation. We first review the newly identified muscular dystrophies, with a focus on the hypoglycosylation of alpha-dystroglycan, from a clinical, biochemical and genetic standpoint, and second hereditary inclusion body myopathies caused by mutations in the gene that encodes an enzyme responsible for the protein's posttranslational modification that cause sialidation defects. It is shown very recently that molecular recognition of dystroglycan by LARGE is a key determinant in the biosynthetic pathway to produce mature and functional dystroglycan. Gene transfer of LARGE into the cells of individuals with congenital muscular dystrophies restores alpha-dystroglycan function. SUMMARY The clinical spectrum of congenital disorders of glycosylation is becoming increasingly broad. A demonstration of mutations in glycosyltransferases will further help to design diagnostic tools and therapeutic approaches. Recent findings which show that molecular recognition by LARGE is essential for expression of functional dystroglycan and LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies, indicate a new therapeutic strategy.
Collapse
Affiliation(s)
- Göknur Haliloğlu
- Department of Child Neurology, Hacettepe Children's Hospital, 06100 Ankara, Turkey
| | | |
Collapse
|
28
|
Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP, Cohn RD, Nishino I, Campbell KP. LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 2004; 10:696-703. [PMID: 15184894 DOI: 10.1038/nm1059] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 05/18/2004] [Indexed: 11/09/2022]
Abstract
Several congenital muscular dystrophies caused by defects in known or putative glycosyltransferases are commonly associated with hypoglycosylation of alpha-dystroglycan (alpha-DG) and a marked reduction of its receptor function. We have investigated changes in the processing and function of alpha-DG resulting from genetic manipulation of LARGE, the putative glycosyltransferase mutated both in Large(myd) mice and in humans with congenital muscular dystrophy 1D (MDC1D). Here we show that overexpression of LARGE ameliorates the dystrophic phenotype of Large(myd) mice and induces the synthesis of glycan-enriched alpha-DG with high affinity for extracellular ligands. Notably, LARGE circumvents the alpha-DG glycosylation defect in cells from individuals with genetically distinct types of congenital muscular dystrophy. Gene transfer of LARGE into the cells of individuals with congenital muscular dystrophies restores alpha-DG receptor function, whereby glycan-enriched alpha-DG coordinates the organization of laminin on the cell surface. Our findings indicate that modulation of LARGE expression or activity is a viable therapeutic strategy for glycosyltransferase-deficient congenital muscular dystrophies.
Collapse
Affiliation(s)
- Rita Barresi
- Howard Hughes Medical Institute, Department of Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Muntoni F, Brockington M, Torelli S, Brown SC. Defective glycosylation in congenital muscular dystrophies. Curr Opin Neurol 2004; 17:205-9. [PMID: 15021250 DOI: 10.1097/00019052-200404000-00020] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The recent identification of mutations in five genes coding for proteins with putative or demonstrated glycosyltransferase activity has shed light on a novel mechanism responsible for muscular dystrophy. Abnormal glycosylation of alpha-dystroglycan appears to be a common finding in all these conditions. Surprisingly, the disease severity due to mutations in several of these genes is extremely variable. This article provides an overview of the clinical, biochemical and genetic advances that have been made over the last year in this field. RECENT FINDINGS Mutations in the human LARGE gene, a putative glycosyltransferase mutated in the myodystrophy mouse, have now been identified in a form of human muscular dystrophy. In addition, the clinical variability of patients with mutations in the genes encoding fukutin, protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 and the fukutin-related protein has been significantly expanded. Disease severity in patients with mutations in the gene encoding the fukutin-related protein varies from a severe prenatal form of congenital muscular dystrophy with cobblestone lissencephaly and structural eye defects to a mild form of limb-girdle muscular dystrophy with onset in adult life and neither brain nor eye involvement. SUMMARY Glycosylation disorders represent a rapidly growing and common group of muscular dystrophies. Accurate genetic diagnosis can now be made for five forms, and it is anticipated that several other variants will eventually fall into these categories.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Unit, Department of Paediatrics, Imperial College of Medicine, Hammersmith Hospital, London, UK.
| | | | | | | |
Collapse
|
30
|
Vervoort VS, Holden KR, Ukadike KC, Collins JS, Saul RA, Srivastava AK. POMGnT1 gene alterations in a family with neurological abnormalities. Ann Neurol 2004; 56:143-8. [PMID: 15236414 DOI: 10.1002/ana.20172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Muscle-eye-brain disease (MEB), is caused by mutations in the POMGnT1 gene. We describe a white family with two siblings affected with congenital hypotonia early-onset glaucoma, and psychomotor delays. Brain magnetic resonance images (MRIs) showed hydrocephalus, bilateral frontal polymicrogyria, abnormal cerebellum, and characteristic flattened dystrophic pons. We identified novel POMGnT1 gene alterations in this family. Both affected siblings were found to be compound hetrozygotes and carried two missense changes inherited from their mother and one missense change (p.R442C) inherited from their father. Our findings further define the phenotypic spectrum of MEB and its occurrence in the US population.
Collapse
Affiliation(s)
- Virginie S Vervoort
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | | | | | | | | |
Collapse
|