1
|
Oliván-Viguera A, Pérez-Zabalza M, García-Mendívil L, Mountris KA, Orós-Rodrigo S, Ramos-Marquès E, Vallejo-Gil JM, Fresneda-Roldán PC, Fañanás-Mastral J, Vázquez-Sancho M, Matamala-Adell M, Sorribas-Berjón F, Bellido-Morales JA, Mancebón-Sierra FJ, Vaca-Núñez AS, Ballester-Cuenca C, Marigil MÁ, Pastor C, Ordovás L, Köhler R, Diez E, Pueyo E. Minimally invasive system to reliably characterize ventricular electrophysiology from living donors. Sci Rep 2020; 10:19941. [PMID: 33203905 PMCID: PMC7673124 DOI: 10.1038/s41598-020-77076-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023] Open
Abstract
Cardiac tissue slices preserve the heterogeneous structure and multicellularity of the myocardium and allow its functional characterization. However, access to human ventricular samples is scarce. We aim to demonstrate that slices from small transmural core biopsies collected from living donors during routine cardiac surgery preserve structural and functional properties of larger myocardial specimens, allowing accurate electrophysiological characterization. In pigs, we compared left ventricular transmural core biopsies with transmural tissue blocks from the same ventricular region. In humans, we analyzed transmural biopsies and papillary muscles from living donors. All tissues were vibratome-sliced. By histological analysis of the transmural biopsies, we showed that tissue architecture and cellular organization were preserved. Enzymatic and vital staining methods verified viability. Optically mapped transmembrane potentials confirmed that action potential duration and morphology were similar in pig biopsies and tissue blocks. Action potential morphology and duration in human biopsies and papillary muscles agreed with published ranges. In both pigs and humans, responses to increasing pacing frequencies and β-adrenergic stimulation were similar in transmural biopsies and larger tissues. We show that it is possible to successfully collect and characterize tissue slices from human myocardial biopsies routinely extracted from living donors, whose behavior mimics that of larger myocardial preparations both structurally and electrophysiologically.
Collapse
Affiliation(s)
- Aida Oliván-Viguera
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain.
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Konstantinos A Mountris
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Sofía Orós-Rodrigo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - Estel Ramos-Marquès
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | | | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | - Marta Matamala-Adell
- Department of Cardiovascular Surgery, University Hospital Miguel Servet, Zaragoza, Spain
| | | | | | | | | | | | | | | | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Ralf Köhler
- Aragón Institute of Health Sciences (IACS), Zaragoza, Spain.,Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza, Argentina
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragón, Institute of Engineering Research (I3A) and Instituto de Investigación Sanitaria (IIS) Aragón, University of Zaragoza, Edificio I+D+i, C/Mariano Esquillor s/n, 50018, Zaragoza, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
2
|
Chesser AM, Harwood SM, Raftery MJ, Yaqoob MM. Myocardial bioenergetic abnormalities in experimental uremia. Int J Nephrol Renovasc Dis 2016; 9:129-37. [PMID: 27307758 PMCID: PMC4888764 DOI: 10.2147/ijnrd.s89926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Cardiac bioenergetics are known to be abnormal in experimental uremia as exemplified by a reduced phosphocreatine (PCr)/adenosine triphosphate (ATP) ratio. However, the progression of these bioenergetic changes during the development of uremia still requires further study and was therefore investigated at baseline, 4 weeks and 8 weeks after partial nephrectomy (PNx). Methods A two-stage PNx uremia model in male Wistar rats was used to explore in vivo cardiac and skeletal muscles’ bioenergetic changes over time. High-energy phosphate nucleotides were determined by phosphorus-31 nuclear magnetic resonance (31P-NMR) and capillary zone electrophoresis. Results 31P-NMR spectroscopy revealed lower PCr/ATP ratios in PNx hearts compared to sham (SH)-operated animals 4 weeks after PNx (median values given ± SD, 0.64±0.16 PNx, 1.13±0.31 SH, P<0.02). However, 8 weeks after PNx, the same ratio was more comparable between the two groups (0.84±0.15 PNx, 1.04±0.44 SH, P= not significant), suggestive of an adaptive mechanism. When 8-week hearts were prestressed with dobutamine, the PCr/ATP ratio was again lower in the PNx group (1.08±0.36 PNx, 1.55±0.38 SH, P<0.02), indicating a reduced energy reserve during the progression of uremic heart disease. 31P-NMR data were confirmed by capillary zone electrophoresis, and the changes in myocardial bioenergetics were replicated in the skeletal muscle. Conclusion This study provides evidence of the changes that occur in myocardial energetics in experimental uremia and highlights how skeletal muscle bioenergetics mirror those found in the cardiac tissue and so might potentially serve as a practical surrogate tissue during clinical cardiac NMR investigations.
Collapse
Affiliation(s)
- Alistair Ms Chesser
- Department of Nephrology, Barts Health NHS Trust, Royal London Hospital, Queen Mary University of London, London, UK
| | - Steven M Harwood
- Translational Medicine and Therapeutics, William Harvey Research Institute, John Vane Science Centre, Queen Mary University of London, London, UK
| | - Martin J Raftery
- Department of Nephrology, Barts Health NHS Trust, Royal London Hospital, Queen Mary University of London, London, UK
| | - Muhammad M Yaqoob
- Department of Nephrology, Barts Health NHS Trust, Royal London Hospital, Queen Mary University of London, London, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, John Vane Science Centre, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Positive End-expiratory Pressure Influences Echocardiographic Measures of Diastolic Function. Anesthesiology 2013; 119:1078-86. [DOI: 10.1097/aln.0b013e3182a10b40] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Background:
Ultrasonography of the cardiovascular system is pivotal for hemodynamic assessment. Diastolic function is evaluated with a combination of tissue Doppler (e’ and a’) and pulsed Doppler (E and A) measures of transmitral- and mitral valve annuli velocities. However, accurate echocardiographic evaluation in the intensive care unit or perioperative setting is contingent on relative resistance to positive pressure ventilation and changes in preload. This study aimed to evaluate the effects of positive end-expiratory pressure (PEEP) and positioning on echocardiographic measures of diastolic function.
Methods:
The study was a prospective, randomized, crossover study. Cardiac surgery patients with ejection fraction greater than 45% and averaged e’ of 9 or more were included. Postoperatively, anesthetized patients were randomized into six combinations of PEEP (0, 6, 12 cm H2O) and positions (horizontal, Trendelenburg). At each combination, e’ (primary endpoint), a’, E, and A were obtained with transesophageal echocardiography along with left ventricular area. Image analysis was performed blinded to the protocol.
Results:
Thirty patients completed the study. PEEP decreased lateral e’ from 6.6 ± 3.6 to 5.3 ± 3.0 cm/s (P < 0.001) in the horizontal position and from 7.4 ± 4.2 to 6.5 ± 3.3 cm/s (P < 0.001) in Trendelenburg. Similar results were found for septal e’, a’ bilaterally and transmitral pulsed Doppler measures, and PEEP decreased left ventricular area. E/A, E/e’, and e’/a’ remained unaffected by PEEP and positioning.
Conclusions:
When evaluating diastolic function by echocardiography, the levels of PEEP and its effect on ventricular area have to be taken into account. In addition, this study dissuades the use of E/e’ for tracking changes in left ventricular filling pressures in cardiac surgery patients.
Collapse
|
4
|
Juhl-Olsen P, Bhavsar R, Frederiksen CA, Sloth E, Jakobsen CJ. Systolic heart function remains depressed for at least 30 days after on-pump cardiac surgery. Interact Cardiovasc Thorac Surg 2012; 15:395-9. [PMID: 22685027 DOI: 10.1093/icvts/ivs253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The myocardial recovery time following on-pump cardiac surgery remains uncertain. Global peak longitudinal strain is a sensitive measure of endocardial function which is most susceptible to ischaemia. We aimed to evaluate changes in global peak longitudinal strain up to 6 months after surgery and to compare initial changes with alterations in troponin T. Secondarily, we aimed to describe perioperative changes in strain of the inter-ventricular septum when compared with reference segments. METHODS Patients scheduled for coronary bypass, aortic valve replacement or combination procedures were enrolled. Echocardiography was performed on the day before surgery, the day after surgery, 4 days after surgery, 30 days after surgery and 6 months after surgery. Troponin T was measured 3, 16 and 24 h following procedure. RESULTS Forty patients were enrolled and one was later excluded. Global peak longitudinal strain decreased from -14.5 ± 3.33% preoperatively to -9.98 ± 3.09% and -10.57 ± 3.16% on the first and fourth postoperative day, respectively. Global strain was still reduced on the 30th postoperative day, but had returned to preoperative values 6 months after surgery. Absolute values and relative changes in global strain did not correlate with postoperative peak troponin T measurements. Strain of the inter-ventricular septum was unaffected by surgery as opposed to reference segments, although septal displacement in the longitudinal direction decreased from 12.0 ± 3.75 mm preoperatively to 3.58 ± 4.22 mm 4 days after surgery. CONCLUSIONS Global peak longitudinal strain was reduced for at least 30 days after on-pump cardiac surgery and seems to represent a more sensitive marker of myocardial function than ejection fraction. The decrease in global strain was not reflected in troponin T measurements. The visual, echocardiographic impression of septal dysfunction may be a translational phenomenon, as septal strain was unaffected by surgery.
Collapse
Affiliation(s)
- Peter Juhl-Olsen
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Skejby, Aarhus N, Denmark.
| | | | | | | | | |
Collapse
|
5
|
Perkowski DJ, Wagner S, Schneider JR, St Cyr JA. A targeted metabolic protocol with D-ribose for off-pump coronary artery bypass procedures: a retrospective analysis. Ther Adv Cardiovasc Dis 2011; 5:185-92. [PMID: 21693564 DOI: 10.1177/1753944711412421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Coronary revascularization using cardiopulmonary bypass is an effective surgical procedure for ischemic coronary artery disease. Complications associated with cardiopulmonary bypass have included cerebral vascular accidents, neurocognitive disorders, renal dysfunction, and acute systemic inflammatory responses. Within the last two decades off-pump coronary artery bypass has emerged as an approach to reduce the incidence of these complications, as well as shorten hospital stays and recovery times. Many patients with coronary artery disease have insulin resistance and altered energy metabolism, which can exacerbate around the time of coronary revascularization. D-ribose has been shown to enhance the recovery of high-energy phosphates following myocardial ischemia. We hypothesized that patient outcomes could improve using a perioperative metabolic protocol with D-ribose. METHODS A perioperative metabolic protocol was used in 366 patients undergoing off-pump coronary artery bypass during 2004-2008. D-ribose was added in 308 of these 366 patients. Data were collected prospectively as part of the Society of Thoracic Surgeons database and retrospectively analyzed. RESULTS D-ribose patients were generally similar to those who did not receive D-ribose. There was one death, two patients suffered strokes and renal failure requiring dialysis occurred in two patients postoperatively among the entire group of patients. D-ribose patients enjoyed a greater improvement in cardiac index postrevascularization compared with non-D-ribose patients (37% vs. 17%, respectively, p < 0.001). CONCLUSIONS This metabolic protocol was associated with very low mortality and morbidity with a significant early postoperative improvement in cardiac index using D-ribose supplementation. These preliminary results support a prospective randomized trial using this protocol and D-ribose.
Collapse
|
6
|
Carlucci F, Tabucchi A, Biagioli B, Simeone F, Scolletta S, Rosi F, Marinello E. Cardiac surgery: myocardial energy balance, antioxidant status and endothelial function after ischemia-reperfusion. Biomed Pharmacother 2002; 56:483-91. [PMID: 12504269 DOI: 10.1016/s0753-3322(02)00286-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Myocardial and endothelial damage is still a widely debated problem during the ischemia-reperfusion sequence in heart surgery. We evaluated myocardial purine metabolites, antioxidant defense mechanisms, oxidative status and endothelial dysfunction markers in 14 patients undergoing coronary artery by-pass graft (CABG). Heart biopsies were taken before aortic cross-clamping (t1), before clamp removal (t2) and 30 min after reperfusion (t3); perchloric extracts of the tissue were analyzed for glutathione, NAD, nucleotide nucleoside and base content by capillary electrophoresis (CE). In plasma samples from the coronary sinus we evaluated: nitrate and nitrite concentrations by CE, plasma glutathione peroxidase (plGPx) by ELISA, endothelin-1 (ET-1) by RIA and reactive oxygen metabolites (ROM) by colorimetric assay. During the ischemic period (t2) we observed a reduction in cellular NAD and GSH levels, as well as nitrate, nitrite and plGPx. ATP and GTP levels decreased and their catabolic products AMP, GMP, IMP, adenosine, inosine and hypoxanthine accumulated. The energy charge, ATP/ADP ratio, and nucleotide/(nucleoside + base) ratios decreased. At t3, levels of plasma ET-1 increased and monophosphate nucleotides tended to return to basal values. The energy charge did not increase but the nucleotide/(nucleoside + nucleobase) ratio recovered to some extent. Levels of nitrates plus nitrites continued to decrease. No significant variation in ROM levels was observed. Our data indicate that oxidative stress and endothelial damage are major events during CABG, overwhelming the scavenging capacity of the myocyte and preventing restoration of the normal energy balance for 30 min after reperfusion. The AMP deaminase pathway leading to IMP production is active during ischemia and adenosine is not the main compound derived from ATP break-down in the human heart. The possible role of extracorporeal circulation is also discussed.
Collapse
Affiliation(s)
- F Carlucci
- Institute of Biochemistry and Enzymology, University of Siena, Nuovi Istituti Biologici, Via Aldo Moro, 53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Carlucci F, Tabucchi A, Biagioli B, Sani G, Lisi G, Maccherini M, Rosi F, Marinello E. Capillary electrophoresis in the evaluation of ischemic injury: simultaneous determination of purine compounds and glutathione. Electrophoresis 2000; 21:1552-7. [PMID: 10832887 DOI: 10.1002/(sici)1522-2683(20000501)21:8<1552::aid-elps1552>3.0.co;2-m] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An understanding of tissue energy metabolism and antioxidant status is of major interest in the field of organ preservation for transplantation. Nucleotide and glutathione are indicators of cell damage occurring during ischemia and reperfusion. A high performance capillary electrophoresis (HPCE) method with UV detection (185 nm) for the simultaneous analysis of intracellular free ribonucleotides, nucleosides, bases and glutathione (oxidized and reduced form) in myocardial tissues is described. The method does not involve thiol derivatization. The separations were carried out in an uncoated fused-silica capillary, 60 cm long, 52.5 cm to detector, 75 microm ID, with 20 mM Na-borate buffer, pH 10.00, at 20 kV voltage and reading at 185 nm. Injection was hydrostatic for 12 s and total analysis time was 20 min. The technique enables optimum separation of all the compounds examined and has a resolution similar to that of HPLC analysis, with the advantage of fast simultaneous measurement of cell nucleotide metabolism and redox state, not possible with HPLC.
Collapse
Affiliation(s)
- F Carlucci
- Institute of Biochemistry and Enzymology, University of Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|