1
|
Wang C, Cheng B, Wei W, Gui L, Zeng W, Wang Y, Wang Y, Chen Q, Xu L, Miao J, Lan K. Comparison of 1Beta- and 5Beta-hydroxylation of Deoxycholate and Glycodeoxycholate as In Vitro Index Reactions for Cytochrome P450 3A Activities. Drug Metab Dispos 2024; 52:126-134. [PMID: 38050044 DOI: 10.1124/dmd.123.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1β and C-5β This work aimed to compare the 1β- and 5β-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1β-hydroxyglycodeoxycholic acid and 5β-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1β-hydroxylation, DCA 5β-hydroxylation, and GDCA 5β-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1β-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1β- and 5β-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5β-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1β-hydroxylation exhibited higher reactivity than DCA 5β-hydroxylation. It is therefore suggested that DCA 1β- and 5β-hydroxylations may serve as alternatives to T 6β-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1β- and 5β-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1β-hydroxylation exhibited higher metabolic activity than DCA 5β-hydroxylation, DCA 5β-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1β-hydroxylation in individual liver microsomes.
Collapse
Affiliation(s)
- Cuitong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Bin Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wei Wei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Lanlan Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Wushuang Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yutong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Yixuan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Qi Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Liang Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Jia Miao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| | - Ke Lan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West ChinaSchool of Pharmacy, Sichuan University, Chengdu, China (C.W., B.C., W.W., L.G., W.Z., Y.W., Y.W., Q.C., L.X., K.L.); Chengdu Cynogen Bio-pharmaceutical Tech. Co., Ltd., Chengdu, China (L.G., W.Z., L.X., K.L.); and Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China (J.M.)
| |
Collapse
|
2
|
Lebedev SS, Tavobilov MM, Karpov AA, Abramov KA, Bochkov PO, Shevchenko RV, Denisenko NP, Shabunin AV, Sychev DA. Cytochrome P450 3A4 activity and genetic variants as predictors of liver failure in patients with obstructive jaundice. Free Radic Biol Med 2023; 208:229-235. [PMID: 37573895 DOI: 10.1016/j.freeradbiomed.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Liver failure in patients with obstructive jaundice is a significant contributor to mortality within this patient cohort. The exact mechanism and triggers of this occurrence are yet to be fully understood. With this in mind, our study aimed to assess the correlation between the urinary 6 β-OHC/C ratio and various biochemical parameters of liver function. Furthermore, we conducted genotyping of CYP3A4*22 (rs35599367), CYP3A5*3 (rs776746) polymorphic markers to investigate the potential effects of their variants on the probability of liver failure in obstructive jaundice. Our study included 75 patients diagnosed with severe obstructive jaundice. All test subjects underwent functional liver tests, and control blood tests were administered on the seventh day following biliary decompression. Patients were categorized into two groups: group 1 - patients without liver failure (n = 60) and group 2 - patients with liver failure (n = 15). Laboratory indexes such as 6 β -OHC concentration and 6 β- OHC/cortisol ratio can serve as significant predictors of liver failure in patients with moderate and severe degree obstructive jaundice after biliary decompression. Based on the study of "wild" and polymorphic variants of CYP3A4*22 (CC and CT) and polymorphism of CYP3A5*3A6986G (GG, GA, AA), it was discovered that liver failure in the CYP3A4*22 variant may be associated with the CC genotype, and in the CYP3A5*3 variant - with the GA genotype. Hence, the determination of 6β- OHC concentration and 6β- OHC/C ratio, as well as the analysis of polymorphic and "wild" variants of CYP3A4*22 (CC and CT) and CYP3A5*3 polymorphism A6986G (GG, GA, AA), may play a crucial role in predicting liver failure in patients with obstructive jaundice.
Collapse
Affiliation(s)
- Sergey S Lebedev
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia; Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Mikhail M Tavobilov
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia; Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Alexey A Karpov
- Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Kirill A Abramov
- Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia.
| | - Pavel O Bochkov
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| | - Roman V Shevchenko
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| | - Natalia P Denisenko
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| | - Alexey V Shabunin
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia; Botkin Hospital, Russian Academy of Sciences, Moscow, st. 2nd Botkinsky proezd, 5, Russia
| | - Dmitri A Sychev
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of the Russian Federation, Moscow, st. Barrikadnaya, 2/1, Russia
| |
Collapse
|
3
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
4
|
Sex and Age Influence on Association of CYP450 Polymorphism with Midazolam Levels in Critically Ill Children. Diagnostics (Basel) 2022; 12:diagnostics12112797. [PMID: 36428856 PMCID: PMC9689687 DOI: 10.3390/diagnostics12112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Midazolam is a drug that is metabolized by cytochrome P450 (CYP450) enzymes, particularly CYP3A4 and CYP3A5. The present study aimed to determine the sex and age influence on association of CYP450 polymorphism with midazolam levels in critically ill children. Seventy-two DNA samples were genotyped by real-time PCR. Children ≤ five years of age who carry the rs776746 (T) allele in CYP3A5 gene were associated with lower plasma midazolam levels. The concentration median in patients was 0.0 ng/mL, while in patients with the normal (C) allele, it was 438.17 ng/mL (Q25 135.75-Q75 580.24), p = 0.005. The midazolam plasmatic concentration in female patients with the minor (T) allele was 0.0 ng/mL (Q250.00-Q75204.3), while in patients with the normal (C) allele median it was 459.0 ng/mL (Q25296.9-Q75789.7), p = 0.002. Analysis of the dominant model for the rs2740574 variant in CYP3A4 revealed a median of 0.38 L/kg (Q250.02-Q751.5) for the volume of distribution parameter in female patients with the normal T allele, while female patients with the minor C allele showed a median of 18.1 L/kg (Q257.5-Q7528.7) p = 0.02. Our results suggest an altered midazolam metabolism due to the presence the allelic rs2740574 variants of CYP3A4 and rs776746 of CYP3A5, and also the strong influence of age and sex.
Collapse
|
5
|
Flores-Pérez C, Alfonso Moreno-Rocha L, Luis Chávez-Pacheco J, Angélica Noguez-Méndez N, Flores-Pérez J, Fernanda Alcántara-Morales M, Cortés-Vásquez L, Sarmiento-Argüello L. Sedation level with midazolam: a pediatric surgery approach. Saudi Pharm J 2022; 30:906-917. [PMID: 35903521 PMCID: PMC9315275 DOI: 10.1016/j.jsps.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
Midazolam (MDZ) is a short-acting benzodiazepine that is widely used to induce and maintain general anesthesia during diagnostic and therapeutic procedures in pediatric patients due to its sedative properties. The aim of this study was to perform a systematic review without a meta-analysis to identify scientific articles and clinical assays concerning MDZ-induced sedation for a pediatric surgery approach. One hundred and twenty-eight results were obtained. After critical reading, 37 articles were eliminated, yielding 91 publications. Additional items were identified, and the final review was performed with a total of 106 publications. In conclusion, to use MDZ accurately, individual patient characteristics, the base disease state, comorbidities, the treatment burden and other drugs with possible pharmacological interactions or adverse reactions must be considered to avoid direct alterations in the pharmacokinetics and pharmacodynamics of MDZ to obtain the desired effects and avoid overdosing in the pediatric population.
Collapse
|
6
|
Xie Y, Zhang Y, Liu H, Xing J. Metabolic Retroversion of Piperaquine (PQ) via Hepatic Cytochrome P450-Mediated N-Oxidation and Reduction: Not an Important Contributor to the Prolonged Elimination of PQ. Drug Metab Dispos 2021; 49:379-388. [PMID: 33674271 DOI: 10.1124/dmd.120.000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
As a partner antimalarial with an extremely long elimination half-life (∼30 days), piperaquine (PQ) is mainly metabolized into a pharmacologically active N-oxide metabolite [piperaquine N-oxide (PN1)] in humans. In the present work, the metabolic retroversion of PQ and PN1, potentially associated with decreased clearance of PQ, was studied. The results showed that interconversion existed for PQ and its metabolite PN1. The N-oxidation of PQ to PN1 was mainly mediated by CYP3A4, and PN1 can rapidly reduce back to PQ via cytochrome P450 (P450)/flavin-containing monooxygenase enzymes. In accordance with these findings, the P450 nonselective inhibitor (1-ABT) or CYP3A4 inhibitor (ketoconazole) inhibited the N-oxidation pathway in liver microsomes (>90%), and the reduction metabolism was inhibited by 1-ABT (>90%) or methimazole (∼50%). Based on in vitro physiologic and enzyme kinetic studies, quantitative prediction of hepatic clearance (CLH) of PQ was performed, which indicated its negligible decreased elimination in humans in the presence of futile cycling, with the unbound CLH decreasing by 2.5% (0.069 l/h per kilogram); however, a minor decrease in unbound CLH (by 12.8%) was found in mice (0.024 l/h per kilogram). After an oral dose of PQ (or PN1) to mice, the parent form predominated in the blood circulation, and PN1 (or PQ) was detected as a major metabolite. Other factors probably associated with delayed elimination of PQ (intestinal metabolism and enterohepatic circulation) did not play a key role in PQ elimination. These data suggested that the metabolic interconversion of PQ and its N-oxide metabolite contributes to but may not significantly prolong its duration in humans. SIGNIFICANCE STATEMENT: This paper investigated the interconversion metabolism of piperaquine (PQ) and its N-oxide metabolite in vitro as well as in mice. The metabolic profiles of PQ were reestablished by this futile cycling, which contributes to but may not significantly prolong its elimination in humans. Enzyme phenotyping indicated a low possibility of interaction of PQ during artemisinin drug-based combination therapy treatment.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yunrui Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
7
|
Zeng W, Gui L, Tan X, Zhu P, Hu Y, Wu Q, Li X, Yang L, Jia W, Liu C, Lan K. Tertiary Oxidation of Deoxycholate Is Predictive of CYP3A Activity in Dogs. Drug Metab Dispos 2021; 49:369-378. [PMID: 33674269 DOI: 10.1124/dmd.121.000385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Deoxycholic acid (DCA, 3α, 12α-dihydroxy-5β-cholan-24-oic acid) is the major circulating secondary bile acid, which is synthesized by gut flora in the lower gut and selectively oxidized by CYP3A into tertiary metabolites, including 1β,3α,12α-trihydroxy-5β-cholan-24-oic acid (DCA-1β-ol) and 3α,5β,12α-trihydroxy-5β-cholan-24-oic acid (DCA-5β-ol) in humans. Since DCA has the similar exogenous nature and disposition mechanisms as xenobiotics, this work aimed to investigate whether the tertiary oxidations of DCA are predictive of in vivo CYP3A activities in beagle dogs. In vitro metabolism of midazolam (MDZ) and DCA in recombinant canine CYP1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 enzymes clarified that CYP3A12 was primarily responsible for either the oxidation elimination of MDZ or the regioselective oxidation metabolism of DCA into DCA-1β-ol and DCA-5β-ol in dog liver microsomes. Six male dogs completed the CYP3A intervention studies including phases of baseline, inhibition (ketoconazole treatments), recovery, and induction (rifampicin treatments). The oral MDZ clearance after a single dose was determined on the last day of the baseline, inhibition, and induction phases, and subjected to correlation analysis with the tertiary oxidation ratios of DCA detected in serum and urine samples. The results confirmed that the predosing serum ratios of DCA oxidation, DCA-5β-ol/DCA, and DCA-1β-ol/DCA were significantly and positively correlated both intraindividually and interindividually with oral MDZ clearance. It was therefore concluded that the tertiary oxidation of DCA is predictive of CYP3A activity in beagle dogs. Clinical transitional studies following the preclinical evidence are promising to provide novel biomarkers of the enterohepatic CYP3A activities. SIGNIFICANCE STATEMENT: Drug development, clinical pharmacology, and therapeutics are under insistent demands of endogenous CYP3A biomarkers that avoid unnecessary drug exposure and invasive sampling. This work has provided the first proof-of-concept preclinical evidence that the CYP3A catalyzed tertiary oxidation of deoxycholate, the major circulating secondary bile acid synthesized in the lower gut by bacteria, may be developed as novel in vivo biomarkers of the enterohepatic CYP3A activities.
Collapse
Affiliation(s)
- Wushuang Zeng
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Lanlan Gui
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Xianwen Tan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Pingping Zhu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Yiting Hu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Qingliang Wu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Xuejing Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Lian Yang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Wei Jia
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Changxiao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| | - Ke Lan
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, China (W.Z., L.G., X.T., P.Z., Y.H., Q.W., K.L.); Chengdu Health-Balance Medical Technology Co., Ltd., Chengdu, China (X.L., L.Y., K.L.); WestChina-Frontier PharmaTech Co., Ltd., Chengdu, China (L.Y.); School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China (W.J.); and State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China (C.L.)
| |
Collapse
|
8
|
Nitta SI, Hashimoto M, Kazuki Y, Takehara S, Suzuki H, Oshimura M, Akita H, Chiba K, Kobayashi K. Evaluation of 4β-Hydroxycholesterol and 25-Hydroxycholesterol as Endogenous Biomarkers of CYP3A4: Study with CYP3A-Humanized Mice. AAPS JOURNAL 2018; 20:61. [DOI: 10.1208/s12248-018-0186-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 01/29/2023]
|
9
|
Vanhove T, de Jonge H, de Loor H, Annaert P, Diczfalusy U, Kuypers DRJ. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance. Br J Clin Pharmacol 2016; 82:1539-1549. [PMID: 27501475 DOI: 10.1111/bcp.13083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/20/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
AIMS We compared the CYP3A4 metrics weight-corrected midazolam apparent oral clearance (MDZ Cl/F/W) and plasma 4β-hydroxycholesterol/cholesterol (4β-OHC/C) as they relate to tacrolimus (TAC) Cl/F/W in renal transplant recipients. METHODS For a cohort of 147 patients, 8 h area under the curve (AUC) values for TAC and oral MDZ were calculated besides measurement of 4β-OHC/C. A subgroup of 70 patients additionally underwent intravenous erythromycin breath test (EBT) and were administered the intravenous MDZ probe. All patients were genotyped for common polymorphisms in CYP3A4, CYP3A5 and P450 oxidoreductase, among others. RESULTS MDZ Cl/F/W, 4β-OHC/C/W, EBT and TAC Cl/F/W were all moderately correlated (r = 0.262-0.505). Neither MDZ Cl/F/W nor 4β-OHC/C/W explained variability in TAC Cl/F/W in CYP3A5 expressors (n = 29). For CYP3A5 non-expressors (n = 118), factors explaining variability in TAC Cl/F/W in a MDZ-based model were MDZ Cl/F/W (R2 = 0.201), haematocrit (R2 = 0.139), TAC formulation (R2 = 0.107) and age (R2 = 0.032; total R2 = 0.479). In the 4β-OHC/C/W-based model, predictors were 4β-OHC/C/W (R2 = 0.196), haematocrit (R2 = 0.059) and age (R2 = 0.057; total R2 = 0.312). When genotype information was ignored, predictors of TAC Cl/F/W in the whole cohort were 4β-OHC/C/W (R2 = 0.167), MDZ Cl/F/W (R2 = 0.045); Tac QD formulation (R2 = 0.036), and haematocrit (R2 = 0.032; total R2 = 0.315). 4β-OHC/C/W, but not MDZ Cl/F/W, was higher in CYP3A5 expressors because it was higher in CYP3A4*1b carriers, which were almost all CYP3A5 expressors. CONCLUSIONS A MDZ-based model explained more variability in TAC clearance in CYP3A5 non-expressors. However, 4β-OHC/C/W was superior in a model in which no genotype information was available, likely because 4β-OHC/C/W was influenced by the CYP3A4*1b polymorphism.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Hylke de Jonge
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Henriëtte de Loor
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ulf Diczfalusy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Collins D, Reed B, Zhang Y, Kreek MJ. Sex differences in responsiveness to the prescription opioid oxycodone in mice. Pharmacol Biochem Behav 2016; 148:99-105. [PMID: 27316549 DOI: 10.1016/j.pbb.2016.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/29/2022]
Abstract
Over-prescription and increased nonmedical use of oxycodone has become a major concern. Despite its increased use, preclinical data concerning oxycodone's effects are still limited, especially in rodent models. To address this, we examined oxycodone's effects on place preference, locomotor activation, corticosterone levels, and thermal analgesia across a range of doses (between 0.3 and 10mg/kg) in gonadally intact, adult male and female C57BL/6J mice. Males and females showed oxycodone-induced conditioned place preference and did not show significant between-sex differences in their place preference behavior. During both CPP conditioning sessions and open field assay, locomotor activity was increased by 1, 3, and 10mg/kg oxycodone in females and by 3 and 10mg/kg oxycodone in males. Plasma corticosterone levels were higher in females (compared to males) at baseline as well as following acute oxycodone injection and open field testing. The time course of oxycodone-induced analgesia was similar in males and females, however the total antinociceptive effect (AUC0-120min) was larger in males compared to females at the highest dose tested (10mg/kg). Taken together, these data suggest that male and female mice are modestly different in their responses to oxycodone.
Collapse
Affiliation(s)
- Devon Collins
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| | - Brian Reed
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Yong Zhang
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
11
|
de Moraes NV, Lauretti GR, Coelho EB, Godoy ALPC, Neves DV, Lanchote VL. Impact of fraction unbound, CYP3A, and CYP2D6 in vivo activities, and other potential covariates to the clearance of tramadol enantiomers in patients with neuropathic pain. Fundam Clin Pharmacol 2015; 30:153-61. [PMID: 26947771 DOI: 10.1111/fcp.12168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/15/2015] [Accepted: 11/05/2015] [Indexed: 01/04/2023]
Abstract
The pharmacokinetics of tramadol is characterized by a large interindividual variability, which is partially attributed to polymorphic CYP2D6 metabolism. The contribution of CYP3A, CYP2B6, fraction unbound, and other potential covariates remains unknown. This study aimed to investigate the contribution of in vivo activities of cytochrome P450 (CYP) 2D6 and 3A as well as other potential covariates (CYP2B6 genotype to the SNP g.15631G>T, fraction unbound, age, body weight, creatinine clearance) to the enantioselective pharmacokinetics of tramadol. Thirty patients with neuropathic pain and phenotyped as CYP2D6 extensive metabolizers were treated with a single oral dose of 100 mg tramadol. Multiple linear regressions were performed to determine the contribution of CYP activities and other potential covariates to the clearance of tramadol enantiomers. The apparent total clearances were 44.9 (19.1-102-2) L/h and 55.2 (14.8-126.0) L/h for (+)- and (-)-tramadol, respectively [data presented as median (minimum-maximum)]. Between 79 and 83% of the overall variation in apparent clearance of tramadol enantiomers was explained by fraction unbound, CYP2D6, and CYP3A in vivo activities and body weight. Fraction unbound explained 47 and 41% of the variation in clearance of (+)-tramadol and (-)-tramadol, respectively. Individually, CYP2D6 and CYP3A activities were shown to have moderate contribution on clearance of tramadol enantiomers (11-16% and 11-18%, respectively). In conclusion, factors affecting fraction unbound of drugs (such as hyperglycemia or co-administration of drugs highly bound to plasma proteins) should be monitored, because this parameter dominates the elimination of tramadol enantiomers.
Collapse
Affiliation(s)
- Natália V de Moraes
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, ZIP 14801-902, Araraquara, SP, Brazil
| | - Gabriela R Lauretti
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, ZIP 14049-900, Ribeirão Preto, SP, Brazil
| | - Eduardo B Coelho
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, ZIP 14049-900, Ribeirão Preto, SP, Brazil
| | - Ana Leonor P C Godoy
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, ZIP 14040-903, Ribeirão Preto, SP, Brazil
| | - Daniel V Neves
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, ZIP 14040-903, Ribeirão Preto, SP, Brazil
| | - Vera L Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, ZIP 14040-903, Ribeirão Preto, SP, Brazil
| |
Collapse
|
12
|
Woolsey SJ, Beaton MD, Choi YH, Dresser GK, Gryn SE, Kim RB, Tirona RG. Relationships between Endogenous Plasma Biomarkers of Constitutive Cytochrome P450 3A Activity and Single-Time-Point Oral Midazolam Microdose Phenotype in Healthy Subjects. Basic Clin Pharmacol Toxicol 2015; 118:284-91. [DOI: 10.1111/bcpt.12492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Sarah J. Woolsey
- Department of Physiology & Pharmacology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Melanie D. Beaton
- Division of Gastroenterology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Yun-Hee Choi
- Department of Epidemiology & Biostatistics; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - George K. Dresser
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Steven E. Gryn
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Richard B. Kim
- Department of Physiology & Pharmacology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| | - Rommel G. Tirona
- Department of Physiology & Pharmacology; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
- Division of Clinical Pharmacology; Department of Medicine; Schulich School of Medicine and Dentistry; The University of Western Ontario; London ON Canada
| |
Collapse
|
13
|
Upreti VV, Wahlstrom JL. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol 2015; 56:266-83. [DOI: 10.1002/jcph.585] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/29/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Vijay V. Upreti
- Clinical Pharmacology, Modeling and Simulation; Amgen, Inc.; South San Francisco CA USA
| | - Jan L. Wahlstrom
- Pharmacokinetics and Drug Metabolism; Amgen, Inc.; Thousand Oaks CA USA
| |
Collapse
|
14
|
De Kesel PMM, Lambert WE, Stove CP. Alternative Sampling Strategies for Cytochrome P450 Phenotyping. Clin Pharmacokinet 2015; 55:169-84. [DOI: 10.1007/s40262-015-0306-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Albarmawi A, Czock D, Gauss A, Ehehalt R, Lorenzo Bermejo J, Burhenne J, Ganten TM, Sauer P, Haefeli WE. CYP3A activity in severe liver cirrhosis correlates with Child-Pugh and model for end-stage liver disease (MELD) scores. Br J Clin Pharmacol 2015; 77:160-9. [PMID: 23772874 DOI: 10.1111/bcp.12182] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/01/2013] [Indexed: 12/18/2022] Open
Abstract
AIMS Impaired liver function often necessitates drug dose adjustment to avoid excessive drug accumulation and adverse events, but a marker for the extent of the required adjustment is lacking. The aim of this study was to investigate whether Child-Pugh (CP) and model for end-stage liver disease (MELD) scores correlate with drug clearance. METHODS Midazolam was used as a CYP3A probe and its pharmacokinetics were analyzed in 24 patients with mild to severe liver cirrhosis (n = 4, 10 and 10 with CP class A, B and C, respectively) and six patients without liver disease. RESULTS Both scores correlated well with unbound midazolam clearance (CLu ), unbound midazolam fraction and half-life (all P < 0.01), whereas the unbound steady-state volume of distribution was not significantly changed. In patients with severe liver cirrhosis unbound midazolam clearance was only 14% of controls (CP C: CLu = 843 ± 346 l h(-1), MELD ≥ 15: CLu = 805 ± 474 l h(-1), controls: CLu = 5815 ± 2649 l h(-1), P < 0.01). CONCLUSION The correlation with unbound midazolam clearance suggests that either score predicts the metabolic capacity of CYP3A, the most relevant drug metabolizing enzyme subfamily in humans.
Collapse
Affiliation(s)
- Albader Albarmawi
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shibata S, Takahashi H, Ono N, Wada N, Kubo H, Shinozaki K, Saito H, Inamoto N, Machida M, Atsuda K, Echizen H. Longitudinal monitoring of CYP3A activity in patients receiving 3 cycles of itraconazole pulse therapy for onychomycosis. J Clin Pharm Ther 2014; 39:181-5. [DOI: 10.1111/jcpt.12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- S. Shibata
- Department of Pharmacy; Kitasato Institute Hospital; Tokyo Japan
| | - H. Takahashi
- Department of Biopharmaceutics; Meiji Pharmaceutical University; Tokyo Japan
| | - N. Ono
- Department of Dermatology; Keio University School of Medicine; Tokyo Japan
| | - N. Wada
- Department of Dermatology; Keio University School of Medicine; Tokyo Japan
| | - H. Kubo
- Faculty of Pharmacy; Iwaki Meisei University; Fukushima Japan
| | - K. Shinozaki
- Department of Clinical Pharmacy; Center for Clinical Pharmacy and Sciences; School of Pharmacy; Kitasato University; Tokyo Japan
| | - H. Saito
- Department of Dermatology; Saitama City Hospital; Saitama Japan
| | - N. Inamoto
- Department of Dermatology; Kitasato Institute Hospital; Tokyo Japan
| | - M. Machida
- Department of Pharmacy; Misato Central General Hospital; Saitama Japan
| | - K. Atsuda
- Department of Pharmacy; Kitasato Institute Hospital; Tokyo Japan
- Department of Clinical Pharmacy; Center for Clinical Pharmacy and Sciences; School of Pharmacy; Kitasato University; Tokyo Japan
| | - H. Echizen
- Department of Pharmacotherapy; Meiji Pharmaceutical University; Tokyo Japan
| |
Collapse
|
17
|
Krens SD, McLeod HL, Hertz DL. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 2013; 14:555-74. [PMID: 23556452 DOI: 10.2217/pgs.13.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The taxanes are a class of chemotherapeutic agents that are widely used in the treatment of various solid tumors. Although taxanes are highly effective in cancer treatment, their use is associated with serious complications attributable to large interindividual variability in pharmacokinetics and a narrow therapeutic window. Unpredictable toxicity occurrence necessitates close patient monitoring while on therapy and adverse effects frequently require decreasing, delaying or even discontinuing taxane treatment. Currently, taxane dosing is based primarily on body surface area, ignoring other factors that are known to dictate variability in pharmacokinetics or outcome. This article discusses three potential strategies for individualizing taxane treatment based on patient information that can be collected before or during care. The clinical implementation of pharmacogenetics, enzyme probes or therapeutic drug monitoring could enable clinicians to personalize taxane treatment to enhance efficacy and/or limit toxicity.
Collapse
Affiliation(s)
- Stefanie D Krens
- UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina at Chapel Hill, 120 Mason Farm Road, CB 7361, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
18
|
Abstract
Breath tests (BTs) have been investigated as diagnostic tools to phenotype drug disposition in cancer patients in the pursuit to individualize drug treatment. The choice of the right phenotype probe is crucial and depends on the metabolic pathway of the anticancer agent of interest. BTs using orally or intravenously administered selective non-radioactive (13)C-labeled probes to non-invasively evaluate dihydropyrimidine dehydrogenase, cytochrome P450 (CYP) 3A4, and CYP2D6 enzyme activity have been published. Clinically, a (13)C-dextromethorphan BT to predict endoxifen levels in breast cancer patients and a (13)C-uracil BT to predict fluoropyrimidine toxicity in colorectal cancer patients are most promising. However, the clinical benefit and cost effectiveness of these phenotype BTs need to be determined in order to make the transition from an experimental setting to clinical practice as companion diagnostic tests.
Collapse
|
19
|
Fetzner L, Burhenne J, Weiss J, Völker M, Unger M, Mikus G, Haefeli WE. Daily Honey Consumption Does Not Change CYP3A Activity in Humans. J Clin Pharmacol 2013; 51:1223-32. [DOI: 10.1177/0091270010382022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Gender-specific differences in the central nervous system's response to anesthesia. Transl Stroke Res 2012; 4:462-75. [PMID: 24323342 DOI: 10.1007/s12975-012-0229-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
Males and females are physiologically distinct in their responses to various anesthetic agents. The brain and central nervous system (CNS), the main target of anesthesia, are sexually dimorphic from birth and continue to differentiate throughout life. Accordingly, gender has a substantial impact on the influence of various anesthetic agents in the brain and CNS. Given the vast differences in the male and female CNS, it is surprising to find that females are often excluded from basic and clinical research studies of anesthesia. In animal research, males are typically studied to avoid the complication of breeding, pregnancy, and hormonal changes in females. In clinical studies, females are also excluded for the variations that occur in the reproductive cycle. Being that approximately half of the surgical population is female, the exclusion of females in anesthesia-related research studies leaves a huge knowledge gap in the literature. In this review, we examine the reported sex-specific differences in the central nervous system's response to anesthesia. Furthermore, we suggest that anesthesia researchers perform experiments on both sexes to further evaluate such differences. We believe a key goal of research studying the interaction of the brain and anesthesia should include the search for knowledge of sex-specific mechanisms that will improve anesthetic care and management in both sexes.
Collapse
|
21
|
Phenotyping drug disposition in oncology. Cancer Treat Rev 2012; 38:715-25. [DOI: 10.1016/j.ctrv.2011.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/11/2022]
|
22
|
Shoaf SE, Bricmont P, Mallikaarjun S. Effects of CYP3A4 inhibition and induction on the pharmacokinetics and pharmacodynamics of tolvaptan, a non-peptide AVP antagonist in healthy subjects. Br J Clin Pharmacol 2012; 73:579-87. [PMID: 21988334 DOI: 10.1111/j.1365-2125.2011.04114.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Before these trials were done, the effects of CYP3A4 inhibition and induction on the pharmacokinetics (PK) and pharmacodynamics (PD) of tolvaptan in healthy subjects were unknown. As tolvaptan is a CYP3A4 substrate, knowing the effects of inhibition and induction on CYP3A4-mediated metabolism was important for dosing recommendations. WHAT THIS STUDY ADDS This paper describes the changes in tolvaptan PK and PD following inhibition or induction of CYP3A4 and explores the mechanisms behind the disparity seen between tolvaptan PK and effects on urine output. It also discusses the concentrations at which tolvaptan produces its maximal response on urine output and the timing of the onset and offset of this response. AIMS In vitro studies indicated CYP3A4 alone was responsible for tolvaptan metabolism. To determine the effect of a CYP3A4 inhibitor (ketoconazole) and a CYP3A4 inducer (rifampicin) on tolvaptan pharmacokinetics (PK) and pharmacodynamics (PD), two clinical trials were performed. METHODS For CYP3A4 inhibition, a double-blind, randomized (5:1), placebo-controlled trial was conducted in 24 healthy subjects given either a single 30 mg dose of tolvaptan (n= 19) or matching placebo (n= 5) on day 1 with a 72 h washout followed by a 3 day regimen of 200 mg ketoconazole, once daily with 30 mg tolvaptan or placebo also given on day 5. For CYP3A4 induction, 14 healthy subjects were given a single dose of 240 mg tolvaptan with 48 h washout followed by a 7 day regimen of 600 mg rifampicin, once daily, with 240 mg tolvaptan also given on the seventh day. RESULTS When co-administered with ketoconazole, mean C(max) and AUC(0,∞) of tolvaptan were increased 3.48- and 5.40-fold, respectively. Twenty-four hour urine volume increased from 5.9 to 7.7 l. Erythromycin breath testing showed no difference following a single dose of tolvaptan. With rifampicin, tolvaptan mean C(max) and AUC were reduced to 0.13- and 0.17-fold of tolvaptan administered alone. Twenty-four hour urine volume decreased from 12.3 to 8.8 l. CONCLUSIONS Tolvaptan is a sensitive CYP3A4 substrate with no inhibitory activity. Due to the saturable nature of tolvaptan's effect on urine excretion rate, changes in the pharmacokinetic profile of tolvaptan do not produce proportional changes in urine output.
Collapse
Affiliation(s)
- Susan E Shoaf
- Otsuka Pharmaceutical Development & Commercialization, Inc., 2440 Research Blvd, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
23
|
Goodenough AK, Onorato JM, Ouyang Z, Chang S, Rodrigues AD, Kasichayanula S, Huang SP, Turley W, Burrell R, Bifano M, Jemal M, LaCreta F, Tymiak A, Wang-Iverson D. Quantification of 4-Beta-Hydroxycholesterol in Human Plasma Using Automated Sample Preparation and LC-ESI-MS/MS Analysis. Chem Res Toxicol 2011; 24:1575-85. [DOI: 10.1021/tx2001898] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Angela K. Goodenough
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Joelle M. Onorato
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Zheng Ouyang
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Shu Chang
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - A. David Rodrigues
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Sreeneeranj Kasichayanula
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Shu-Pang Huang
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Wesley Turley
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Richard Burrell
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Marc Bifano
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Mohammed Jemal
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Frank LaCreta
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - Adrienne Tymiak
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| | - David Wang-Iverson
- Departments of †Bioanalytical and Discovery Analytical Sciences, ‡Metabolism and Pharmacokinetics, §Discovery Medicine and Clinical Pharmacology, ∥Global Biometric Sciences, and ⊥Department of Chemical Synthesis, Research and Development, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
24
|
Diczfalusy U, Nylén H, Elander P, Bertilsson L. 4β-Hydroxycholesterol, an endogenous marker of CYP3A4/5 activity in humans. Br J Clin Pharmacol 2011; 71:183-9. [PMID: 21219398 DOI: 10.1111/j.1365-2125.2010.03773.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have proposed that 4β-hydroxycholesterol (4β-OHC) may be used as an endogenous marker of CYP3A activity. The cholesterol metabolite 4β-OHC is formed by CYP3A4. Treatment of patients with strong inducers of CYP3A enzymes, e.g. anti-epileptic drugs, resulted in 10-fold increased concentrations of plasma 4β-OHC, while treatment with CYP3A inhibitors such as ritonavir or itraconazole resulted in decreased plasma concentrations. There was a relationship between the 4β-OHC concentration and the number of active CYP3A5*1 alleles showing that 4β-OHC was not only formed by CYP3A4, but also by CYP3A5. The concentration of 4β-OHC was higher in women than in men, confirming previous studies indicating a gender difference in CYP3A4/5-activity. The rate of elimination of 4β-OHC is slow (half-life 17 days) which results in stable plasma concentrations within individuals, but limits its use to study rapid changes in CYP3A activity. In short-term studies exogenous markers such as midazolam or quinine may be superior, but in long-term studies 4β-OHC is a sensitive marker of CYP3A activity, especially to assess induction but also inhibition. Under conditions where the cholesterol concentration is changing, the ratio of 4β-OHC:cholesterol may be used as an alternative to 4β-OHC itself. The use of an endogenous CYP3A marker has obvious advantages and may be of value both during drug development and for monitoring CYP3A activity in patients.
Collapse
Affiliation(s)
- Ulf Diczfalusy
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
25
|
Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica 2011; 41:623-38. [DOI: 10.3109/00498254.2011.560294] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Abstract
Understanding the pharmacokinetics and pharmacodynamics of drugs used in psychopharmacology across the pediatric age spectrum from infants to adolescents represents a major challenge for clinicians. In pediatrics, treatment protocols use either standard dose reductions for these drugs for children below a certain age or use less conventional parameters such as weight for allometric dosing. The rationale behind this, however, is often lacking. In this review current available data on the developmental changes in absorption, distribution, metabolism, and elimination of drugs are presented with a specific focus on metabolic pathways, indicating significant differences in the development of enzymes involved in the biotransformation of drugs used in psychopharmacology. Major emphasis will be given to the genetic variation in CYP2D6 activity, the most important enzyme for the metabolism of many psychotropic medications. Finally, this review will summarize the role of the developmental pharmacologist in ensuring rational use of drugs in children with developmental disabilities and in translating pharmacological concepts from the bench to the clinic.
Collapse
Affiliation(s)
- Johannes N van den Anker
- Division of Pediatric Clinical Pharmacology, George Washington University Medical Center, Children's National Medical Center, Washington DC, USA.
| |
Collapse
|
27
|
Abstract
The advances in developmental pharmacokinetics during the past decade reside with an enhanced understanding of the influence of growth and development on drug absorption, distribution, metabolism, and excretion (ADME). However, significant information gaps remain with respect to our ability to characterize the impact of ontogeny on the activity of important drug metabolizing enzymes, transporters, and other targets. The ultimate goal of rational drug therapy in neonates, infants, children, and adolescents resides with the ability to individualize it based on known developmental differences in drug disposition and action. The clinical challenge in achieving this is accounting for the variability in all of the contravening factors that influence pharmacokinetics and pharmacodynamics (e.g., genetic variants of ADME genes, different disease phenotypes, disease progression, and concomitant treatment). Application of novel technologies in the fields of pharmacometrics (e.g., in silico simulation of exposure-response relationships; disease progression modeling), pharmacogenomics and biomarker development (e.g., creation of pharmacodynamic surrogate endpoints suitable for pediatric use) are increasingly making integrated approaches for developmentally appropriate dose regimen selection possible.
Collapse
Affiliation(s)
- Johannes N van den Anker
- Division of Pediatric Clinical Pharmacology, Department of Pediatrics, Children's National Medical Center, NW, Washington, DC 20010, USA.
| | | | | |
Collapse
|
28
|
Shord SS, Chan LN, Camp JR, Vasquez EM, Jeong HY, Molokie RE, Baum CL, Xie H. Effects of oral clotrimazole troches on the pharmacokinetics of oral and intravenous midazolam. Br J Clin Pharmacol 2010; 69:160-6. [PMID: 20233179 DOI: 10.1111/j.1365-2125.2009.03559.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AIMS The aim of the study was to determine the effects of oral clotrimazole troches on the pharmacokinetics of oral and intravenous midazolam in the plasma. METHODS We conducted a randomized, open-label, four-way crossover study in 10 healthy volunteers. Each volunteer received oral midazolam 2 mg or intravenous midazolam 0.025 mg kg(-1) with and without oral clotrimazole troches 10 mg taken three times daily for 5 days. Each study period was separated by 14 days. Serial blood samples were collected up to 24 h after oral midazolam and 6 h after intravenous midazolam. Plasma concentrations for midazolam and its metabolite 1-hydroxymidazolam were measured and fitted to a noncompartmental model to estimate the pharmacokinetic parameters. RESULTS Ten healthy volunteers aged 21-26 years provided written informed consent and were enrolled into the study. Clotrimazole decreased the apparent oral clearance of midazolam from 57 +/- 13 l h(-1)[95% confidence interval 48, 66] to 36 +/- 9.8 l h(-1) (95% confidence interval 29, 43) (P= 0.003). These changes were accompanied by a decrease in the area under the concentration-time curve (mean difference 22 microg h(-1) l(-1), P= 0.001) and bioavailability (mean difference 0.21, P= NS). There were no significant differences in the systemic clearance of midazolam with or without clotrimazole troches. CONCLUSIONS Oral clotrimazole troches decreased the apparent oral clearance of midazolam; no significant differences in the systemic clearance of midazolam were found.
Collapse
Affiliation(s)
- Stacy S Shord
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kirwan C, MacPhee I, Philips B. Using drug probes to monitor hepatic drug metabolism in critically ill patients: midazolam, a flawed but useful tool for clinical investigation of CYP3A activity? Expert Opin Drug Metab Toxicol 2010; 6:761-71. [PMID: 20402562 DOI: 10.1517/17425255.2010.482929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IMPORTANCE OF THE FIELD In the UK, acute kidney injury (AKI) occurs in 25% of patients admitted to intensive care. Outcome is worsened in the presence of AKI for reasons not easily explained. AKI unpredictably affects the pharmacokinetics and pharmacodynamics of drugs and dosing in patients with AKI is largely based on data from chronic kidney disease patients, but how appropriately is unknown. AREAS COVERED IN THIS REVIEW Midazolam as a drug probe of CYP3A activity is reviewed, with discussion of its limitations and alternatives in critically ill patients. Pharmacogenetics of CYP3A enzymes and their significance are discussed and emerging evidence that AKI affects liver metabolism is reviewed. WHAT THE READER WILL GAIN The aim is to give the reader insight into the complexities of in vivo research in critically ill patient with discussion of interaction between the kidney and liver. We explain the use of midazolam as a drug probe for the investigation of the effect of AKI on hepatic function. TAKE HOME MESSAGE Critically ill patients are difficult to manage but methods are now available for investigation of complex interrelationships that complicate the care and management of these patients with the potential to improve safety, efficacy and outcome, particularly for drug administration.
Collapse
Affiliation(s)
- Chris Kirwan
- SpR in Renal Medicine, St George's University of London, St George's Healthcare NHS Trust, Rm 30 1st floor Jenner Wing, London, UK
| | | | | |
Collapse
|
30
|
Stoch SA, Gargano C, Valentine J, Braun MP, Murphy MG, Fedgchin M, Majumdar A, Pequignot E, Gottesdiener KM, Petty KJ, Panebianco D, Dean D, Kraft WK, Greenberg HE. Double-blind crossover study to assess potential differences in cytochrome P450 3A4 activity in healthy subjects receiving ondansetron plus dexamethasone, with and without aprepitant. Cancer Chemother Pharmacol 2010; 67:1313-21. [PMID: 20734049 DOI: 10.1007/s00280-010-1421-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/29/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE Because glucocorticoids and the neurokinin-1 receptor antagonist aprepitant influence CYP3A4 activity, this study assessed whether aprepitant added to a 5-HT(3) antagonist and glucocorticoid would affect CYP3A4 induction. METHODS In this double-blind, 2-period crossover study, 12 subjects were randomized to receive a triple regimen (oral aprepitant [A] 125 mg, intravenous ondansetron [O] 32 mg, and oral dexamethasone [D] 12 mg day 1; A 80 mg and D 8 mg days 2-3; D 8 mg day 4) in 1 of 2 periods, and a dual regimen (O 32 mg and D 20 mg day 1; D 8 mg bid days 2-4); the D dose was adjusted to account for known dexamethasone/aprepitant interaction. Oral (2 mg) and intravenous (1 mg) stable isotope ((13)C(5) (15)N(1))-labeled midazolam were simultaneously given as probes on days -1, 6, 8, 15, and 22 of each period. If the a priori 90% confidence interval for the day 6 geometric mean oral midazolam AUC(0-∞) ratio (triple/dual regimen) of fold-change from baseline was above 0.5, it would be concluded that there was no clinically meaningful between-regimen difference in CYP3A4 activity. RESULTS Day 6 oral midazolam AUC(0-∞) geometric mean fold-change from baseline was 0.84 (0.30-1.58 with A, 0.46-1.69 without A). The ratio of geometric mean oral midazolam AUC(0-∞) fold-changes was 1.00 (90% confidence interval 0.80, 1.25). CONCLUSIONS Aprepitant plus a 5-HT(3) antagonist and dexamethasone is unlikely to have a significant additional inductive effect on CYP3A4 activity beyond that of the dual regimen.
Collapse
|
31
|
Sex and CYP3A5 genotype influence total CYP3A activity: high CYP3A activity and a unique distribution of CYP3A5 variant alleles in Ethiopians. THE PHARMACOGENOMICS JOURNAL 2010; 11:130-7. [PMID: 20231858 DOI: 10.1038/tpj.2010.16] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The objectives of the this study were to assess the influence of CYP3A5 genotype and sex on the variability in total CYP3A activity and to compare 4β-hydroxycholesterol and omeprazole sulfoxidation as phenotypic markers for CYP3A activity in Ethiopians. Healthy subjects (n=150) were genotyped for CYP3A5*3, *6 and *7 using allele-specific PCR and Taqman genotyping assays. Plasma levels of 4β-hydroxycholesterol, 3 h post-dose omeprazole and omeprazole sulfone, were determined by gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. The frequency of CYP3A5*1, *3, *6 and *7 was 20.5, 67.3, 12.2 and 0%, respectively. The mean plasma 4β-hydroxycholesterol level was 35.4 ng ml⁻¹. The mean 4β-hydroxycholesterol level (P=0.0001) and the 4β-hydroxycholesterol/cholesterol ratio (P=0.004) were higher in women than in men. CYP3A5 genotype significantly correlated with the plasma 4β-hydroxycholesterol concentration (P=0.003) and 4β-hydroxycholesterol/cholesterol ratio (P=0.0002). The omeprazole/omeprazole sulfone ratio was significantly correlated with 4β-hydroxycholesterol and 4β-hydroxycholesterol/cholesterol ratio in CYP3A5*0/*0 genotypes but not in individuals carrying the CYP3A5*1 allele. No correlation of omeprazole/omeprazole sulfone ratio with sex or CYP3A5 genotype was observed. A clear gene-dose effect implies plasma 4β-hydroxycholesterol level as a useful endogenous biomarker for total CYP3A activity (CYP3A5 plus CYP3A4) whereas the omeprazole/omeprazole sulfone ratio reflects mainly CYP3A4 activity. Sex and CYP3A5 genotype influence total CYP3A activity. Ethiopians display high total CYP3A activity and a unique distribution of CYP3A5 variant alleles not described hitherto.
Collapse
|
32
|
Perera MA. The missing linkage: what pharmacogenetic associations are left to find in CYP3A? Expert Opin Drug Metab Toxicol 2010; 6:17-28. [PMID: 19968573 DOI: 10.1517/17425250903379546] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IMPORTANCE OF THE FIELD An enormous amount of drugs and endogenous substrates are metabolized by the enzymes encoded in the CYP3A gene cluster, making variation at this locus of utmost importance in the field of pharmacogenetics. However, the identification of genetic variation that contributes to the wide phenotypic variability at this locus has been elusive. While dozens of studies have investigated the effects of coding variants, none have found the definitive answer to what variant or variants explain the distribution of enzyme activity and clinical effects seen with the drug metabolized by these genes. AREAS COVERED IN THIS REVIEW This review highlights the recent pharmacogenetic work at the CYP3A locus, in particular studies on known functional variants in CYP3A4 and CYP3A5. In addition, common pharmacogenetic strategies as well as considerations specific to the CYP3A locus are discussed. WHAT THE READER WILL GAIN The reader will gain a greater understanding of the complexities involved in studying the CYP3A locus, population differences that may affect pharmacogenetic studies at this locus and the importance of variation that affect gene regulation. TAKE HOME MESSAGE More innovative and comprehensive methods to assay this region are needed, with particular attention paid to the role of gene regulation and non-coding sequence.
Collapse
Affiliation(s)
- Minoli A Perera
- University of Chicago, Section of Genetic Medicine and Committee on Clinical Pharmacology and Pharmacogenomics, Division of Biological Sciences, Department of Medicine, Chicago, IL 60637, USA.
| |
Collapse
|
33
|
Endogenous cortisol 6β-hydroxylation clearance is not an accurate probe for overall cytochrome P450 3A phenotyping in humans. Clin Chim Acta 2009; 408:92-7. [DOI: 10.1016/j.cca.2009.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/25/2009] [Accepted: 07/27/2009] [Indexed: 11/22/2022]
|
34
|
Abstract
We assessed the suitability of 4beta-hydroxycholesterol (4betaOH-C) as an endogenous cytochrome P450 3A (CYP3A) phenotyping metric. 4betaOH-C and its ratio to cholesterol (4betaOH-C/C) were determined in five cocktail phenotyping studies, with and without co-medication with a potential CYP3A inhibitor. These parameters were compared with established midazolam-based CYP3A metrics: clearance after intravenous (i.v.) administration (M-Cl) and apparent clearance after oral administration (M-Cl/F), reflecting hepatic and overall activity, respectively. In a common evaluation of periods without co-medication, there was a slight positive correlation of 4betaOH-C and 4betaOH-C/C with midazolam metrics: M-Cl (r = 0.239 and 0.348, respectively) and M-Cl/F (r = 0.267 and 0.353, respectively); P (one-sided) < 0.05. Co-medication with lopinavir/ritonavir caused a strong decrease in midazolam metrics and a mild decrease in cholesterol metrics. However, the intake of propiverine resulted in opposite trends for midazolam-based and cholesterol-based metrics. The information currently available does not justify the use of 4betaOH-C for estimation of basal CYP3A activity. Further studies to address the temporal variations in local CYP3A activity are needed to assess its role as a biomarker during CYP3A inhibition.
Collapse
|
35
|
Shiran MR, Lennard MS, Iqbal MZ, Lagundoye O, Seivewright N, Tucker GT, Rostami-Hodjegan A. Contribution of the activities of CYP3A, CYP2D6, CYP1A2 and other potential covariates to the disposition of methadone in patients undergoing methadone maintenance treatment. Br J Clin Pharmacol 2009; 67:29-37. [PMID: 19133059 DOI: 10.1111/j.1365-2125.2008.03312.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate the influence of different cytochrome P450 (CYP) activities and other potential covariates on the disposition of methadone in patients on methadone maintenance therapy (MMT). METHODS Eighty-eight patients (58 male; 21-55 years; 84 White) on MMT were studied. CYP2D6 activity [3 h plasma metabolic ratio of dextromethorphan (DEX) to dextrorphan (DOR)] was determined in 44 patients (29 male; 24-55 years), CYP1A2 activity (salivary caffeine elimination half-life) in 44 patients (21 male; 24-55 years) and CYP3A activity (oral clearance of midazolam) in 49 patients (33 male; 23-55 years). Data on all three CYPs were obtained from 32 subjects. Total plasma concentrations of (RS)-methadone and total and unbound plasma concentrations of both enantiomers were measured by LC/MS. Population pharmacokinetics and subsequent multiple regression analysis were used to calculate methadone oral clearance and to identify its covariates. RESULTS Between 61 and 68% of the overall variation in total plasma trough concentrations of (RS)-, (R)- and (S)-methadone was explained by methadone dose, duration of addiction before starting MMT, CYP3A activity and illicit morphine use. CYP3A activity explained 22, 16, 15 and 23% of the variation in unbound (R)-, unbound (S)-, total (RS)- and total (S)-methadone clearances, respectively. Neither CYP2D6 nor CYP1A2 activity was related to methadone disposition. CONCLUSIONS CYP3A activity has a modest influence on methadone disposition. Inhibitors and inducers of this enzyme should be monitored in patients taking methadone.
Collapse
Affiliation(s)
- Mohammad-Reza Shiran
- Academic Unit of Clinical Pharmacology, University of Sheffield and Sheffield Care Trust, Substance Misuse Services, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Buchanan FF, Myles PS, Cicuttini F. Patient Sex and its Influence on General Anaesthesia. Anaesth Intensive Care 2009; 37:207-18. [DOI: 10.1177/0310057x0903700201] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Physiological and pharmacological differences exist between men and women. Women wake faster than men following general anaesthesia. Women also differ from men in their postoperative recovery as reflected by differences in postoperative pain, nausea and vomiting and overall quality of recovery. These gender differences seem to be more pronounced in premenopausal women, suggesting hormonal mechanisms are a major contributing factor.
Collapse
Affiliation(s)
- F. F. Buchanan
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital and Academic Board of Anaesthesia and Perioperative Medicine, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital
| | - P. S. Myles
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital and Academic Board of Anaesthesia and Perioperative Medicine, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital, Academic Board of Anaesthesia and Perioperative Medicine, Monash University and NHMRC Practitioner Fellow
| | - F. Cicuttini
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital and Academic Board of Anaesthesia and Perioperative Medicine, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Rheumatology Unit, Alfred Hospital and Department of Epidemiology and Monash University
| |
Collapse
|
37
|
Abstract
The liver is fundamentally important in drug metabolism. In oncology, the astute clinician must not only understand the meaning and limitations of commonly ordered liver biochemical tests, but also be aware of which anticancer agents might induce liver dysfunction, and of the strategies for appropriate dosing of patients with pre-existing liver dysfunction. In part I of our Review, we highlighted both the importance and inadequacies of identifying serum biochemical liver abnormalities in oncology; we also discussed a lack of routine formal investigation of liver function. We summarised chemotherapy-related hepatotoxicity and other causes of liver toxic effects in patients with cancer. Here in part II, we discuss trials that have specifically assessed chemotherapy dosing strategies in the setting of overt biochemical liver dysfunction and we note their recommendations. Furthermore, we review other assessments of liver metabolic and excretory function, particularly in the setting of chemotherapy drug handling. We discuss the potential use of these metabolic probes in practice.
Collapse
Affiliation(s)
- Kathryn M Field
- Division of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | |
Collapse
|
38
|
Abstract
The liver plays a central role in the pharmacokinetics of the majority of drugs. Liver dysfunction may not only reduce the blood/plasma clearance of drugs eliminated by hepatic metabolism or biliary excretion, it can also affect plasma protein binding, which in turn could influence the processes of distribution and elimination. Portal-systemic shunting, which is common in advanced liver cirrhosis, may substantially decrease the presystemic elimination (i.e., first-pass effect) of high extraction drugs following their oral administration, thus leading to a significant increase in the extent of absorption. Chronic liver diseases are associated with variable and non-uniform reductions in drug-metabolizing activities. For example, the activity of the various CYP450 enzymes seems to be differentially affected in patients with cirrhosis. Glucuronidation is often considered to be affected to a lesser extent than CYP450-mediated reactions in mild to moderate cirrhosis but can also be substantially impaired in patients with advanced cirrhosis. Patients with advanced cirrhosis often have impaired renal function and dose adjustment may, therefore, also be necessary for drugs eliminated by renal exctretion. In addition, patients with liver cirrhosis are more sensitive to the central adverse effects of opioid analgesics and the renal adverse effects of NSAIDs. In contrast, a decreased therapeutic effect has been noted in cirrhotic patients with beta-adrenoceptor antagonists and certain diuretics. Unfortunately, there is no simple endogenous marker to predict hepatic function with respect to the elimination capacity of specific drugs. Several quantitative liver tests that measure the elimination of marker substrates such as galactose, sorbitol, antipyrine, caffeine, erythromycin, and midazolam, have been developed and evaluated, but no single test has gained widespread clinical use to adjust dosage regimens for drugs in patients with hepatic dysfunction. The semi-quantitative Child-Pugh score is frequently used to assess the severity of liver function impairment, but only offers the clinician rough guidance for dosage adjustment because it lacks the sensitivity to quantitate the specific ability of the liver to metabolize individual drugs. The recommendations of the Food and Drug Administration (FDA) and the European Medicines Evaluation Agency (EMEA) to study the effect of liver disease on the pharmacokinetics of drugs under development is clearly aimed at generating, if possible, specific dosage recommendations for patients with hepatic dysfunction. However, the limitations of the Child-Pugh score are acknowledged, and further research is needed to develop more sensitive liver function tests to guide drug dosage adjustment in patients with hepatic dysfunction.
Collapse
|
39
|
Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 2008; 64:1147-61. [PMID: 18762933 DOI: 10.1007/s00228-008-0553-z] [Citation(s) in RCA: 421] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 08/05/2008] [Indexed: 12/21/2022]
Abstract
The liver plays a central role in the pharmacokinetics of the majority of drugs. Liver dysfunction may not only reduce the blood/plasma clearance of drugs eliminated by hepatic metabolism or biliary excretion, it can also affect plasma protein binding, which in turn could influence the processes of distribution and elimination. Portal-systemic shunting, which is common in advanced liver cirrhosis, may substantially decrease the presystemic elimination (i.e., first-pass effect) of high extraction drugs following their oral administration, thus leading to a significant increase in the extent of absorption. Chronic liver diseases are associated with variable and non-uniform reductions in drug-metabolizing activities. For example, the activity of the various CYP450 enzymes seems to be differentially affected in patients with cirrhosis. Glucuronidation is often considered to be affected to a lesser extent than CYP450-mediated reactions in mild to moderate cirrhosis but can also be substantially impaired in patients with advanced cirrhosis. Patients with advanced cirrhosis often have impaired renal function and dose adjustment may, therefore, also be necessary for drugs eliminated by renal exctretion. In addition, patients with liver cirrhosis are more sensitive to the central adverse effects of opioid analgesics and the renal adverse effects of NSAIDs. In contrast, a decreased therapeutic effect has been noted in cirrhotic patients with beta-adrenoceptor antagonists and certain diuretics. Unfortunately, there is no simple endogenous marker to predict hepatic function with respect to the elimination capacity of specific drugs. Several quantitative liver tests that measure the elimination of marker substrates such as galactose, sorbitol, antipyrine, caffeine, erythromycin, and midazolam, have been developed and evaluated, but no single test has gained widespread clinical use to adjust dosage regimens for drugs in patients with hepatic dysfunction. The semi-quantitative Child-Pugh score is frequently used to assess the severity of liver function impairment, but only offers the clinician rough guidance for dosage adjustment because it lacks the sensitivity to quantitate the specific ability of the liver to metabolize individual drugs. The recommendations of the Food and Drug Administration (FDA) and the European Medicines Evaluation Agency (EMEA) to study the effect of liver disease on the pharmacokinetics of drugs under development is clearly aimed at generating, if possible, specific dosage recommendations for patients with hepatic dysfunction. However, the limitations of the Child-Pugh score are acknowledged, and further research is needed to develop more sensitive liver function tests to guide drug dosage adjustment in patients with hepatic dysfunction.
Collapse
Affiliation(s)
- Roger K Verbeeck
- School of Pharmacy, Catholic University of Louvain, Brussels, Belgium.
| |
Collapse
|
40
|
Roberts PJ, Rollins KD, Kashuba ADM, Paine MF, Nelsen AC, Williams EE, Moran C, Lamba JK, Schuetz EG, Hawke RL. The influence of CYP3A5 genotype on dexamethasone induction of CYP3A activity in African Americans. Drug Metab Dispos 2008; 36:1465-9. [PMID: 18490434 PMCID: PMC2770345 DOI: 10.1124/dmd.107.020065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The CYP3A5(*)1 allele has been associated with differences in the metabolism of some CYP3A substrates. CYP3A5 polymorphism may also influence susceptibility for certain drug interactions. We have previously noted a correlation between basal CYP3A activity and the inductive effects of dexamethasone using the erythromycin breath test (ERBT). To determine whether CYP3A5 polymorphism influences induction of CYP3A activity, we examined the effect of an antiemetic regimen of dexamethasone, and the prototypical inducer rifampin, on the ERBT in African American volunteers prospectively stratified by CYP3A5(*)1 allele carrier status. Mean basal ERBTs were significantly higher in CYP3A5(*)1 carriers (2.71 +/- 0.53%) versus noncarriers (2.12 +/- 0.37%, P = 0.006). Rifampin increased ERBTs in CYP3A5(*)1 carriers (4.68 versus 2.60%, P = 0.0008) and noncarriers (3.55 versus 2.11%, P = 0.0017), whereas dexamethasone increased ERBTs only in CYP3A5(*)1 noncarriers (3.03 versus 2.14%, P = 0.031). CYP3A5 polymorphism appears to influence susceptibility to induction-type drug interactions for some inducers, and CYP3A5(*)1 noncarriers may be more susceptible to the inductive effects of dexamethasone as a result of lower basal CYP3A activity.
Collapse
Affiliation(s)
- Patrick J Roberts
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Franke RM, Baker SD, Mathijssen RH, Schuetz EG, Sparreboom A. Influence of solute carriers on the pharmacokinetics of CYP3A4 probes. Clin Pharmacol Ther 2008; 84:704-9. [PMID: 18509328 DOI: 10.1038/clpt.2008.94] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We hypothesized that the assessment of baseline CYP3A4 activity is influenced by probe-specific differences in hepatocellular uptake mechanisms. There was no significant correlation between the erythromycin breath test (ERMBT) parameters and midazolam clearance in 30 cancer patients (R(2) < 0.01), regardless of their CYP3A5 genotype status. In cellular models overexpressing 10 different solute carriers, erythromycin uptake was significantly increased by OATP1A2 (P < 0.005) and OATP1B3 (P < 0.01). Midazolam was not a substrate for any of the tested transporters. In a separate cohort of 119 patients, 6 nonsynonymous variants in the OATP1B3 gene SLCO1B3 were identified. Individuals carrying two copies of the T allele at the 334 locus had a 2.4-fold lower value for ERMBT 1/T(max) (P = 0.001), a measure reflecting more rapid hepatic uptake. These findings suggest that differential affinities for solute carriers should be considered when selecting an appropriate phenotypic probe to allow tailored dosing of pharmaceuticals that are CYP3A4 substrates.
Collapse
Affiliation(s)
- R M Franke
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
42
|
Isoherranen N, Ludington SR, Givens RC, Lamba JK, Pusek SN, Dees EC, Blough DK, Iwanaga K, Hawke RL, Schuetz EG, Watkins PB, Thummel KE, Paine MF. The Influence of CYP3A5 Expression on the Extent of Hepatic CYP3A Inhibition Is Substrate-Dependent: An in Vitro-in Vivo Evaluation. Drug Metab Dispos 2007; 36:146-54. [DOI: 10.1124/dmd.107.018382] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Chugh R, Wagner T, Griffith KA, Taylor JMG, Thomas DG, Worden FP, Leu KM, Zalupski MM, Baker LH. Assessment of ifosfamide pharmacokinetics, toxicity, and relation to CYP3A4 activity as measured by the erythromycin breath test in patients with sarcoma. Cancer 2007; 109:2315-22. [PMID: 17464949 DOI: 10.1002/cncr.22669] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Ifosfamide is a chemotherapeutic agent that requires cytochrome P450 3A (CYP3A) for bioactivation and metabolism. To the authors' knowledge, the correlation between dose, pharmacokinetics, CYP3A, and toxicity has not been fully evaluated. A randomized Phase II trial was performed on 22 soft tissue sarcoma patients treated with doxorubicin (60 mg/m(2)/cycle) and either high-dose ifosfamide (12 g/m(2)/cycle) or standard-dose ifosfamide (6 g/m(2)/cycle). The pharmacokinetics of ifosfamide and CYP3A measurements observed are reported. METHODS Pharmacokinetic parameters for ifosfamide, 2-dichloroethylifosfamide (2-DCE), and 3-dichloroethylifosfamide (3-DCE) were collected after the first ifosfamide infusion in 13 patients. Bayesian designed limited pharmacokinetic data were collected from an additional 41 patients. The erythromycin breath test (ERMBT) was performed on 81 patients as an in vivo phenotypic assessment of CYP3A activity. RESULTS Fourteen-hour (peak) plasma levels of ifosfamide, 2-DCE, and 3-DCE were found to correlate strongly with the respective area under the curve (AUC) 0-24 values (r=0.97, 0.94, and 0.95; P<.0001). Patients who experienced a grade 3-4 absolute neutrophil count (ANC), platelet, or creatinine toxicity (using the National Cancer Institute Common Toxicity Criteria [version 2]) were found to have statistically significantly higher median 14-hour plasma levels of ifosfamide, 2-DCE, and 3-DCE compared with patients with grade 0-2 toxicity. ERMBT was not found to correlate with pharmacokinetic parameters of ifosfamide and metabolites or toxicity. CONCLUSIONS The 14-hour plasma level of ifosfamide, 2-DCE, and 3-DCE is a simple and appropriate substitute for describing the AUC of ifosfamide after 1 day of a 1-hour to 2-hour infusion of drug. Fourteen-hour plasma levels of ifosfamide and metabolites are useful predictors of neutropenia, thrombocytopenia, and creatinine toxicity. ERMBT was not found to accurately correlate with ifosfamide pharmacokinetics or clinical toxicity.
Collapse
Affiliation(s)
- Rashmi Chugh
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kharasch ED, Walker A, Isoherranen N, Hoffer C, Sheffels P, Thummel K, Whittington D, Ensign D. Influence of CYP3A5 genotype on the pharmacokinetics and pharmacodynamics of the cytochrome P4503A probes alfentanil and midazolam. Clin Pharmacol Ther 2007; 82:410-26. [PMID: 17554244 DOI: 10.1038/sj.clpt.6100237] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hepatic and first-pass cytochrome P4503A (CYP3A) probe alfentanil (ALF) is also metabolized in vitro by CYP3A5. Human hepatic microsomal ALF metabolism is higher in livers with at least one CYP3A5*1 allele and higher CYP3A5 protein content, compared with CYP3A5*3 homozygotes with little CYP3A5. The influence of CYP3A5 genotype on ALF pharmacokinetics and pharmacodynamics was studied, and compared to midazolam (MDZ), another CYP3A probe. Healthy volunteers (58 men, 41 women) were genotyped for CYP3A5 *1, *3, *6, and *7 alleles. They received intravenous MDZ then ALF, and oral MDZ and ALF the next day. Plasma MDZ and ALF concentrations were determined by mass spectrometry. Dark-adapted pupil diameters were determined coincident with blood sampling. In CYP3A5(*)3/(*)3 (n=62), (*)1/(*)3 (n=28), and (*)1/(*)1 (n=8) genotypes, systemic clearances of ALF were 4.6+/-1.8, 4.8+/-1.7, and 3.9+/-1.7 ml/kg/min and those of MDZ were 7.8+/-2.3, 7.7+/-2.3, and 6.0+/-1.4 ml/kg/min, respectively (not significant), and apparent oral clearances were 11.8+/-7.2, 13.3+/-6.1, and 12.6+/-8.2 ml/kg/min for ALF and 35.2+/-19.0, 36.4+/-15.7, and 29.4+/-9.3 ml/kg/min for MDZ (not significant). Clearances were not different between African Americans (n=25) and Whites (n=68), or between CYP3A5 genotypes within African Americans. ALF pharmacodynamics was not different between CYP3A5 genotypes. There was consistent concordance between ALF and MDZ, in clearances and extraction ratios. Thus, in a relatively large cohort of healthy subjects with constitutive CYP3A activity, CYP3A5 genotype had no effect on the systemic or apparent oral clearances, or pharmacodynamics, of the CYP3A probes ALF and MDZ, despite affecting their hepatic microsomal metabolism.
Collapse
Affiliation(s)
- E D Kharasch
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University, St Louis, Missouri, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Schwartz JB. The Current State of Knowledge on Age, Sex, and Their Interactions on Clinical Pharmacology. Clin Pharmacol Ther 2007; 82:87-96. [PMID: 17495875 DOI: 10.1038/sj.clpt.6100226] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pharmacokinetic and pharmacodynamic changes occur with increasing age. Sex differences in pharmacokinetics and pharmacodynamics exist and persist at older age. The issue for the clinician is how to best treat the older patient with currently available knowledge. This communication highlights age- and sex-related differences in pharmacokinetics that should influence clinical practice and prescribing guidelines to optimize clinical responses. The most compelling data for sex-specific medication dosing guidelines for older patients are related to volume of distribution differences, or size differences, between the sexes and to differences in glomerular filtration rates.
Collapse
Affiliation(s)
- J B Schwartz
- Jewish Home of San Francisco, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
46
|
Baririan N, Van Obbergh L, Desager JP, Verbeeck RK, Wallemacq P, Starkel P, Horsmans Y. Alfentanil-induced miosis as a surrogate measure of alfentanil pharmacokinetics in patients with mild and moderate liver cirrhosis. Clin Pharmacokinet 2007; 46:261-70. [PMID: 17328584 DOI: 10.2165/00003088-200746030-00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVES (i) To evaluate the pupillary response to alfentanil as a surrogate measure of alfentanil pharmacokinetics in cirrhotic patients and to compare the data observed in cirrhotic patients with those found in healthy volunteers (historical control group); and (ii) to compare this test with other liver function tests in cirrhotic patients. METHODS Six patients with mild cirrhosis (Child-Pugh grade A) and six patients with moderate cirrhosis (Child-Pugh grade B) were studied after a single 15 microg/kg bolus of alfentanil. Alfentanil plasma concentrations were measured by liquid chromatography-tandem mass spectrometry, and pupillary responses were measured with a Pupilscan II pupillometer. Alfentanil pharmacokinetics (plasma concentration, area under the plasma concentration-time curve from time zero to infinity [AUC(infinity(p))] and from time zero to 2 hours [AUC(2(p))], apparent volume of distribution at steady state, clearance and terminal elimination half-life [t((1/2)(p))]) and miosis pseudo-kinetic parameters [AUC(infinity)((miosis)), AUC(2)((miosis)), t((1/2))((miosis))] were determined using a noncompartmental analysis method. In six patients (three Child-Pugh grade A and three Child-Pugh grade B), antipyrine (measure of liver intrinsic activity) and D-sorbitol (measure of liver blood flow) tests were performed. RESULTS A significant correlation was found between the alfentanil AUC(infinity(p)) and AUC(infinity)((miosis)) (r = 0.6, p < 0.05) in cirrhotic patients. This correlation was even more significant if AUC determinations were limited to the first 2 hours after alfentanil administration (r = 0.9, p < 0.01). Statistically significant differences in pharmacokinetics and miosis pseudo-kinetic parameters were observed between cirrhotic patients and healthy volunteers from our previous experiment (historical control group). The correlations were significant between alfentanil clearance and antipyrine clearance (n = 6, r = 0.9, p < 0.05), alfentanil clearance and steady-state hepatic blood clearance [CL(H(b))] measured by the D-sorbitol test (n = 6, r = 0.9, p < 0.05). CONCLUSION Alfentanil pharmacokinetic parameters were correlated with miosis pseudo-kinetic parameters in cirrhotic patients. There was a significant decrease in pharmacokinetics and miosis pseudo-kinetics in cirrhotic patients compared with volunteers from the historical control group. Alfentanil-induced miosis has the advantage of being noninvasive and can be limited to miosis measurements during the first 2 hours after alfentanil administration in cirrhotic patients. We thus propose to substitute the AUC(2(miosis)) for alfentanil pharmacokinetics in cirrhosis.
Collapse
Affiliation(s)
- Nariné Baririan
- Clinical Pharmacology and Gastroenterology Unit, St Luc University Hospital (Université Catholique de Louvain), Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Fuhr U, Jetter A, Kirchheiner J. Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the "cocktail" approach. Clin Pharmacol Ther 2007; 81:270-83. [PMID: 17259951 DOI: 10.1038/sj.clpt.6100050] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phenotyping for drug metabolizing enzymes and transporters is used to assess quantitatively the effect of an intervention (e.g., drug therapy, diet) or a condition (e.g., genetic polymorphism, disease) on their activity. Appropriate selection of test drug and metric is essential to obtain results applicable for other substrates of the respective enzyme/transporter. The following phenotyping metrics are recommended based on the level of validation and on practicability: CYP1A2, paraxanthine/caffeine in plasma 6 h after 150 mg caffeine; CYP2C9, tolbutamide plasma concentration 24 h after 125 mg tolbutamide; CYP2C19, urinary excretion of 4'-OH-mephenytoin 0-12 h after 50 mg mephenytoin; CYP2D6, urinary molar ratio debrisoquine/4-OH-debrisoquine 0-8 h after 10 mg debrisoquine; and CYP3A4, plasma clearance of midazolam after 2 mg midazolam (all drugs given orally).
Collapse
Affiliation(s)
- U Fuhr
- Department of Pharmacology, Clinical Pharmacology Unit, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
48
|
Ryu JY, Song IS, Sunwoo YE, Shon JH, Liu KH, Cha IJ, Shin JG. Development of the “Inje Cocktail” for High-throughput Evaluation of Five Human Cytochrome P450 Isoforms in vivo. Clin Pharmacol Ther 2007; 82:531-40. [PMID: 17392720 DOI: 10.1038/sj.clpt.6100187] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To develop and validate an in vivo cocktail method for high-throughput phenotyping of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A, 12 healthy subjects received five probe drugs alone or simultaneously. The in vivo phenotyping index of CYP2C9, the ratio of 8 h urine concentration of losartan to its metabolite after a single administration of losartan, was not significantly different from that obtained using the five-drug cocktail. Similarly, the ratios of [omeprazole]/[5-hydroxyomeprazole] (CYP2C19) and [paraxanthine]/[caffeine] (CYP1A2) in 4 h plasma samples and the log ratio of [dextromethorphan]/[dextrorphan] (CYP2D6) in 8 h urine samples and the 4 h plasma concentrations of midazolam (CYP3A) after single administration or well-established three-drug cocktail of caffeine, omeprazole, and dextromethorphan were not significantly different from those after the new five-drug cocktail. In conclusion, the new five-drug cocktail regimen, named the "Inje cocktail," can be used as a tool to phenotype in vivo enzyme activities of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A with only 4 h blood sampling and 8 h urine collection following simultaneous administration of the five probe drugs.
Collapse
Affiliation(s)
- J Y Ryu
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Ohno Y, Hisaka A, Suzuki H. General Framework for the Quantitative Prediction of CYP3A4-Mediated Oral Drug Interactions Based on the AUC Increase by Coadministration of??Standard Drugs. Clin Pharmacokinet 2007; 46:681-96. [PMID: 17655375 DOI: 10.2165/00003088-200746080-00005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Cytochrome P450 (CYP) 3A4 is the most prevalent metabolising enzyme in the human liver and is also a target for various drug interactions of significant clinical concern. Even though there are numerous reports regarding drug interactions involving CYP3A4, it is far from easy to estimate all potential interactions, since too many drugs are metabolised by CYP3A4. For this reason, a comprehensive framework for the prediction of CYP3A4-mediated drug interactions would be of considerable clinical importance. OBJECTIVE The objective of this study was to provide a robust and practical method for the prediction of drug interactions mediated by CYP3A4 using minimal in vivo information from drug-interaction studies, which are often carried out early in the course of drug development. DATA SOURCES The analysis was based on 113 drug-interaction studies reported in 78 published articles over the period 1983-2006. The articles were used if they contained sufficient information about drug interactions. Information on drug names, doses and the magnitude of the increase in the area under the concentration-time curve (AUC) were collected. METHODS The ratio of the contribution of CYP3A4 to oral clearance (CR(CYP)(3A4)) was calculated for 14 substrates (midazolam, alprazolam, buspirone, cerivastatin, atorvastatin, ciclosporin, felodipine, lovastatin, nifedipine, nisoldipine, simvastatin, triazolam, zolpidem and telithromycin) based on AUC increases observed in interaction studies with itraconazole or ketoconazole. Similarly, the time-averaged apparent inhibition ratio of CYP3A4 (IR(CYP)(3A4)) was calculated for 18 inhibitors (ketoconazole, voriconazole, itraconazole, telithromycin, clarithromycin, saquinavir, nefazodone, erythromycin, diltiazem, fluconazole, verapamil, cimetidine, ranitidine, roxithromycin, fluvoxamine, azithromycin, gatifloxacin and fluoxetine) primarily based on AUC increases observed in drug-interaction studies with midazolam. The increases in the AUC of a substrate associated with coadministration of an inhibitor were estimated using the equation 1/(1 - CR(CYP)(3A4) x IR(CYP)(3A4)), based on pharmacokinetic considerations. RESULTS The proposed method enabled predictions of the AUC increase by interactions with any combination of these substrates and inhibitors (total 251 matches). In order to validate the reliability of the method, the AUC increases in 60 additional studies were analysed. The method successfully predicted AUC increases within 67-150% of the observed increase for 50 studies (83%) and within 50-200% for 57 studies (95%). Midazolam is the most reliable standard substrate for evaluation of the in vivo inhibition of CYP3A4. The present analysis suggests that simvastatin, lovastatin and buspirone can be used as alternatives. To evaluate the in vivo contribution of CYP3A4, ketoconazole or itraconazole is the selective inhibitor of choice. CONCLUSION This method is applicable to (i) prioritize clinical trials for investigating drug interactions during the course of drug development and (ii) predict the clinical significance of unknown drug interactions. If a drug-interaction study is carefully designed using appropriate standard drugs, significant interactions involving CYP3A4 will not be missed. In addition, the extent of CYP3A4-mediated interactions between many other drugs can be predicted using the current method.
Collapse
Affiliation(s)
- Yoshiyuki Ohno
- Department of Pharmacy, University of Tokyo Hospital Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Yeo KP, Lowe SL, Lim MT, Voelker JR, Burkey JL, Wise SD. Pharmacokinetics of ruboxistaurin are significantly altered by rifampicin-mediated CYP3A4 induction. Br J Clin Pharmacol 2006; 61:200-10. [PMID: 16433874 PMCID: PMC1884993 DOI: 10.1111/j.1365-2125.2005.02540.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS The aim of this study was to evaluate the effect of rifampicin co-administration on the pharmacokinetics of ruboxistaurin and its active metabolite, N-desmethyl ruboxistaurin and, in addition, to compare the changes in pharmacokinetics of ruboxistaurin and N-desmethyl ruboxistaurin with the urinary 6beta-hydroxycortisol : cortisol ratio. Ruboxistaurin is a specific protein-kinase-C beta inhibitor in clinical development for the treatment of diabetic microvascular complications. METHODS This was a two-period, one-sequence study. Sixteen healthy male subjects completed both study periods. In period one, a single 64 mg oral dose of ruboxistaurin was administered. In period two, 600 mg rifampicin was administered daily for 9 days, during which another single 64 mg ruboxistaurin dose was administered on day 7. Blood samples were collected and assayed for ruboxistaurin and N-desmethyl ruboxistaurin. CYP3A4 induction was assessed by ratios of urinary 6beta-hydroxycortisol : cortisol (6beta-OHC : C) obtained via 24 h and morning-spot sampling techniques. Results Following repeated doses of rifampicin, both the mean C(max) and AUC(0,infinity) of ruboxistaurin were significantly reduced by approximately 95% (P < or = 0.001). For the metabolite, the mean C(max) decreased by 68% (P < or = 0.001), and AUC(0,infinity) decreased by 77% (P < or = 0.001). The t(max) values did not appear affected. The 6beta-OHC : C ratios from both 24 h and morning spot methods increased significantly, consistent with CYP3A4 induction. CONCLUSIONS The effect of rifampicin co-administration on the exposure of ruboxistaurin is consistent with ruboxistaurin being a substrate of CYP3A4. Therefore, co-administration with known CYP3A4 inducing agents (rifampicin, carbamazepine, phenobarbital, etc.) may decrease the concentrations of ruboxistaurin and N-desmethyl-ruboxistaurin. In this study, 6beta OHC : C ratios substantially underestimated the impact of rifampicin on ruboxistaurin.
Collapse
Affiliation(s)
- Kwee Poo Yeo
- Lilly-NUS Centre for Clinical Pharmacology, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|