1
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Morimoto T, Yoshida M, Sato-Tomita A, Nozawa S, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Vapor-Induced Assembly of a Platinum(II) Complex Loaded on Layered Double Hydroxide Nanoparticles. Chemistry 2023; 29:e202301993. [PMID: 37581259 DOI: 10.1002/chem.202301993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlled self-assembly of PtII complexes is key to the development of optical and stimuli-responsive materials, but designing and precisely controlling them is still difficult owing to weak intermolecular interactions. Herein, we report the successful water-vapor-induced assembly of an anionic PtII complex [Pt(CN)2 (ppy)]- (Hppy=2-phenylpyridine) electrostatically loaded onto cationically charged layered double hydroxide (LDH) nanoparticles consisting of Mg2+ and Al3+ ions. When the PtII complexes were densely loaded onto the LDH nanoparticles, the assembly was maintained, even in dilute aqueous media. In the case of sparse loading, the PtII complexes were loaded discretely in the dry state; however, when water vapor was adsorbed, the increased mobility of the PtII complexes led to their assembly on the LDH nanoparticles. The presence of water vapor led to a drastic change in luminescence from green to orange.
Collapse
Affiliation(s)
- Tamami Morimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
3
|
Kirk ML, Shultz DA, Hewitt P, Marri AR, van der Est A. Competitive reversed quartet mechanisms for photogenerated ground state electron spin polarization. Chem Sci 2023; 14:9689-9695. [PMID: 37736649 PMCID: PMC10510625 DOI: 10.1039/d3sc03049k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/06/2023] [Indexed: 09/23/2023] Open
Abstract
Photoinduced electron spin polarization (ESP) of a spin-½ organic radical (nitronyl nitroxide, NN) in a series of Pt(ii) complexes comprised of 4,4'-di-tert-butyl-2,2'-bipyridine (bpy) and 3-tert-butylcatecholate (CAT) ligands, where the CAT ligand is substituted with (CH3)n-meta-phenyl-NN (bridge-NN) groups, is presented and discussed. We show the importance of attenuating the energy gap between localized NN radical and chromophoric excited states to control both the magnitude and sign of the optically-generated ESP, and to provide deeper insight into the details of the ESP mechanism. Understanding electronic structure contributions to optically generated ESP will enhance our ability to control the nature of prepared states for a variety of quantum information science applications, where strong ESP facilitates enhanced sensitivity and readout capabilities at low applied magnetic fields and higher temperatures.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico MSC03 2060, 1 University of New Mexico Albuquerque NM 87131-0001 USA
- The Center for High Technology Materials, The University of New Mexico Albuquerque New Mexico 87106 USA
- Center for Quantum Information and Control (CQuIC), The University of New Mexico Albuquerque New Mexico 87131-0001 USA
| | - David A Shultz
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Patrick Hewitt
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Anil Reddy Marri
- Department of Chemistry, North Carolina State University Raleigh North Carolina 27695-8204 USA
| | - Art van der Est
- Department of Chemistry, Brock University St. Catharines Ontario Canada L2S 3A1
| |
Collapse
|
4
|
Zhao S, Song J, Wong KMC. Multifunctional bisalkynylplatinum(II) bipyridine complexes with rhodamine-like ligands featuring near-infrared phosphorescence and delayed fluorescence. Chem Commun (Camb) 2023; 59:11272-11275. [PMID: 37664951 DOI: 10.1039/d3cc03775d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A series of platinum(II) bipyridine complexes with two rhodamine-like alkynyl (Rhodyne) ligands were developed to show chemo-induced "ON-OFF" switching capabilities with exceptional near-infrared phosphorescence and delayed fluorescence. This study contributes to the design of versatile photosensitizers with multiple functionalities, including metal ion and biomolecule sensing, photodynamic therapy, and optoelectronics.
Collapse
Affiliation(s)
- Shunan Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 15001, China
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| | - Jianfeng Song
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, No. 1088 Xueyuan Blvd., Shenzhen, 518055, P. R. China.
| |
Collapse
|
5
|
Leary D, Zhang Y, Rodriguez JG, Akhmedov NG, Petersen JL, Dolinar BS, Milsmann C. Organometallic Intermediates in the Synthesis of Photoluminescent Zirconium and Hafnium Complexes with Pyridine Dipyrrolide Ligands. Organometallics 2023; 42:1220-1231. [PMID: 37324448 PMCID: PMC10266360 DOI: 10.1021/acs.organomet.3c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 03/12/2023]
Abstract
The two commercially available zirconium complexes tetrakis(dimethylamido)zirconium, Zr(NMe2)4, and tetrabenzylzirconium, ZrBn4, were investigated for their utility as starting materials in the synthesis of bis(pyridine dipyrrolide)zirconium photosensitizers, Zr(PDP)2. Reaction with one equivalent of the ligand precursor 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MePDPPh, resulted in the isolation and structural characterization of the complexes (MePDPPh)Zr(NMe2)2thf and (MePDPPh)ZrBn2, which could be converted to the desired photosensitizer Zr(MePDPPh)2 upon addition of a second equivalent of H2MePDPPh. Using the more sterically encumbered ligand precursor 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine, H2MesPDPPh, only ZrBn4 yielded the desired bis-ligand complex Zr(MesPDPPh)2. Careful monitoring of the reaction at different temperatures revealed the importance of the organometallic intermediate (cyclo-MesPDPPh)ZrBn, which was characterized by X-ray diffraction analysis and 1H NMR spectroscopy and shown to contain a cyclometalated MesPDPPh unit. Taking inspiration from the results for zirconium, syntheses for two hafnium photosensitizers, Hf(MePDPPh)2 and Hf(MesPDPPh)2, were established and shown to proceed through similar intermediates starting from tetrabenzylhafnium, HfBn4. Initial studies of the photophysical properties of the photoluminescent hafnium complexes indicate similar optical properties compared to their zirconium analogues.
Collapse
Affiliation(s)
- Dylan
C. Leary
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | | | - Jose G. Rodriguez
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Brian S. Dolinar
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
6
|
Espa D, Pilia L, Artizzu F, Serpe A, Deplano P, Marchiò L. Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions. Molecules 2023; 28:molecules28062566. [PMID: 36985538 PMCID: PMC10052144 DOI: 10.3390/molecules28062566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
The packing interactions of a series of electron donor (D) and electron acceptor (A) charge transfer (CT) near-IR absorbers based on platinum-dithiolene complexes are reinvestigated here as a case study also by using the Hirshfeld surface analysis. This analysis on systems, which exhibit the 1:1, 2:1 and 2:2 columnar stacking patterns between D and A, allows us to point out that several interactions of atoms and fragments are involved in the stacking interactions but also that only a limited fraction of these interactions, limited to the 1:1 D/A columnar stacking case, can be relatable to the absorption features of this class of compounds.
Collapse
Affiliation(s)
- Davide Espa
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Unità di Ricerca dell’INSTM, S.S. 554-Bivio per Sestu, 09042 Cagliari, Italy
| | - Luca Pilia
- Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Correspondence: (L.P.); (P.D.); (L.M.)
| | - Flavia Artizzu
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica (DiSSTE), Università del Piemonte Orientale “A. Avogadro”, Piazza S. Eusebio 5, 13100 Vercelli, Italy
| | - Angela Serpe
- Dipartimento di Ingegneria Civile, Ambientale e Architettura, INSTM Research Unit, Università di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Istituto di Geologia Ambientale e Geoingegneria, Consiglio Nazionale delle Ricerche (IGAG-CNR), Via Marengo 2, 09123 Cagliari, Italy
| | - Paola Deplano
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Unità di Ricerca dell’INSTM, S.S. 554-Bivio per Sestu, 09042 Cagliari, Italy
- Dipartimento di Ingegneria Civile, Ambientale e Architettura, INSTM Research Unit, Università di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Correspondence: (L.P.); (P.D.); (L.M.)
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy
- Correspondence: (L.P.); (P.D.); (L.M.)
| |
Collapse
|
7
|
Kromer S, Roy S, Yarnell JE, Taliaferro CM, Castellano FN. Excited state processes of dinuclear Pt(II) complexes bridged by 8-hydroxyquinoline. Dalton Trans 2023; 52:4008-4016. [PMID: 36880277 DOI: 10.1039/d3dt00348e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Dinuclear d8 Pt(II) complexes, where two mononuclear square planar Pt(II) units are bridged in an "A-frame" geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal-metal-ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt(II) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(μ-8HQ)]2, where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered (3LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ)2] (3). The lengthened Pt-Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1-3 leads to an initially prepared excited state that relaxes within 15 ps to a 3LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations.
Collapse
Affiliation(s)
- Sarah Kromer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Subhangi Roy
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Chelsea M Taliaferro
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
8
|
Shultz DA, Stephenson R, Kirk ML. Dinuclear ligand-to-ligand charge transfer complexes. Dalton Trans 2023; 52:1970-1976. [PMID: 36691821 DOI: 10.1039/d2dt03385b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The synthesis and characterization of dinuclear ligand-to-ligand charge transfer complexes are described. Each complex is comprised of square-planar platinum(II) coordinated to a 3-tert-butyl-orthocatecholate donor and a 4,4'-di-tert-butyl-2,2'-bipyridine acceptor. Both complexes exhibit donor → acceptor ligand-to-ligand charge transfer (LL'CT) bands in the visible spectrum. The platinum complexes are covalently attached at the catecholate 5-position to either a meta- or para-phenylene bridge fragment. Both cyclic voltammetry and electronic absorption spectroscopy exhibit features characteristic of intramolecular interaction between the platinum centres. The LL'CT excited state lifetimes are ∼twofold longer than the mononuclear parent complex. The properties of these complexes are discussed and compared to similar complexes in the literature.
Collapse
Affiliation(s)
- David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | - Riley Stephenson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA.
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.,The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, USA.,Center for Quantum Information and Control (CQuIC), The University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| |
Collapse
|
9
|
Duan C, Gao Y, Chen S, Zu F, Zhang J, Cui C. Titanium-Mediated C–C Coupling of Imidoylstannanes for the Synthesis of Tetraaryl Diimines. Isolation of Titanium Iminoacyl and Ene-diamido Intermediates. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chenxi Duan
- State Key Laboratory of Element-Organic Chemsitry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuli Gao
- Petrochina Petrochemical Research Institute, Beijing 100195, People’s Republic of China
| | - Shangtao Chen
- Petrochina Petrochemical Research Institute, Beijing 100195, People’s Republic of China
| | - Fenghua Zu
- Petrochina Petrochemical Research Institute, Beijing 100195, People’s Republic of China
| | - Jianying Zhang
- State Key Laboratory of Element-Organic Chemsitry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Element-Organic Chemsitry, Nankai University, Tianjin 300071, People’s Republic of China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, People’s Republic of China
| |
Collapse
|
10
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Xu P, Qin X, Duan H, Chen H, Zhai L, Qin Y, Liu X, Zuo Y, Pei S, Lian X, Yi H, Su X, Zhang J. A thiophenic alkynylplatinum(II) terpyridyl complex: synthesis and photophysical properties. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Peng Xu
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Xi Qin
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Huiyuan Duan
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Huafeng Chen
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Lei Zhai
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Yanjie Qin
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Xin Liu
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Yulan Zuo
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Shuchen Pei
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Xin Lian
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Huan Yi
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Xiaodong Su
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| | - Jinling Zhang
- Department of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, P.R. China
| |
Collapse
|
13
|
Lieu T, Daugulis O. Copper Iodide-Mediated Synthesis of α-Diimine Ligands from Bis(imidoyl chlorides) and Arylstannanes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thien Lieu
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
14
|
McCarthy JS, McCormick MJ, Zimmerman JH, Hambrick HR, Thomas WM, McMillen CD, Wagenknecht PS. Role of the Trifluoropropynyl Ligand in Blue-Shifting Charge-Transfer States in Emissive Pt Diimine Complexes and an Investigation into the PMMA-Imposed Rigidoluminescence and Rigidochromism. Inorg Chem 2022; 61:11366-11376. [PMID: 35820113 DOI: 10.1021/acs.inorgchem.2c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Square-planar PtII complexes are of interest as dopants for the emissive layer of organic light-emitting diodes. Herein, the photophysics of three Pt bipyridyl complexes with the strongly e- withdrawing, high-field, 3,3,3-trifluoropropynyl ligand has been investigated. One complex, (phbpy)PtC2CF3 (phbpy = 6-phenyl-2,2'-dipyridyl), has also been characterized by single-crystal X-ray diffraction. All complexes reported are emissive in both RT CH2Cl2 solution (ΦPL = 0.007 to 0.027) and PMMA film (ΦPL = 0.25 to 0.42). The trifluoropropynyl ligand elevates the energy of the MLCT and LL'CT states above that of the IL π-π* state, resulting in IL emission in all cases. The emission energies of the trifluoropropynyl compounds are also blue-shifted relative to the analogous pentafluorophenylethynyl compounds, suggesting that the trifluoropropynyl ligand is one of the most electron-withdrawing alkynyl ligands. Rate constants for radiative and nonradiative deactivation were determined from experimentally determined values of ΦPL and excited-state lifetimes in both solution and PMMA films. The increase in ΦPL upon incorporation into PMMA film (rigidoluminescence) results from a decrease in the rate constant for non-radiative relaxation. Experimental activation energies for excited-state decay in combination with TDDFT are consistent with the rigidoluminescence resulting from an increase in the energy of the non-emissive triplet metal-centered state. Two of the complexes investigated, (Ph2bpy)Pt(C2CF3)2 and (t-Bu2bpy)Pt(C2CF3)2, where t-Bu2bpy = 4,4'-di-tert-butyl-2,2'-dipyridyl and Ph2bpy = 4,4'-diphenyl-2,2'-dipyridyl, exhibit concentration-dependent excimer emission (orange) along with monomer emission (blue), enabling fine-tuning of the emission color. However, excimer emission was absent in cured PMMA films up to the solubility limit for solution processing of (Ph2bpy)Pt(C2CF3)2 in CH2Cl2, demonstrating the diffusional nature of excimer formation.
Collapse
Affiliation(s)
- Jackson S McCarthy
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Mary Jo McCormick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - John H Zimmerman
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - H Rhodes Hambrick
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Wilson M Thomas
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Paul S Wagenknecht
- Department of Chemistry, Furman University, Greenville, South Carolina 29609, United States
| |
Collapse
|
15
|
Kirk ML, Shultz DA, Hewitt P, Chen J, van der Est A. Excited State Magneto-Structural Correlations Related to Photoinduced Electron Spin Polarization. J Am Chem Soc 2022; 144:12781-12788. [PMID: 35802385 DOI: 10.1021/jacs.2c03490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoinduced electron spin polarization (ESP) is reported in the ground state of a series of complexes consisting of an organic radical (nitronylnitroxide, NN) covalently attached to a donor-acceptor chromophore either directly or via para-phenylene bridges substituted with 0-4 methyl groups. These molecules represent a class of chromophores that undergo visible light excitation to produce an initial exchange-coupled, three-spin [bpy•-, CAT•+ (= semiquinone, SQ) and NN•], charge-separated doublet 2S1 (S = chromophore spin singlet configuration) excited state that rapidly decays by magnetic exchange-enhanced internal conversion to a 2T1 (T = chromophore excited spin triplet configuration) state. The 2T1 state equilibrates with chromophoric and NN radical-derived excited states, resulting in absorptive ESP of the recovered ground state, which persists for greater than a millisecond and can be measured by low-temperature time-resolved electron paramagnetic resonance spectroscopy. The magnitude of the ground state ESP is found to correlate with the excited state magnetic exchange interaction between the CAT+• and NN• radicals, which in turn is controlled by the structure of the bridge fragment.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States.,The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States.,Center for Quantum Information and Control (CQuIC), The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Patrick Hewitt
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Ju Chen
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
16
|
Hruzd M, le Poul N, Cordier M, Kahlal S, Saillard JY, Achelle S, Gauthier S, Robin-le Guen F. Luminescent cyclometalated alkynylplatinum(II) complexes with 1,3-di(pyrimidin-2-yl)benzene ligands: synthesis, electrochemistry, photophysics and computational studies. Dalton Trans 2022; 51:5546-5560. [PMID: 35302571 DOI: 10.1039/d1dt04237h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report on a series of cyclometalated chloro- and alkynyl-platinum(II) complexes bearing various tridentate N^C^N-cyclometalated ligands derived from 1,3-bis(pyrimidin-2-yl)benzene. The X-ray crystal structures of two alkynyl-platinum(II) complexes were determined and other structures were DFT-calculated. Electrochemical and DFT-computational studies suggest a ligand-centred reduction on the R1-substituted N^C^N ligand, whereas oxidation likely occurs either on the Pt-phenylacetylide moiety and/or the cyclometalated ligand. In CH2Cl2 solution at room temperature, the complexes show phosphorescent emissions ranging from green to orange, depending on the R1 and R2 substituents on the ligands. In KBr solid state matrix, excluding complexes bearing a trifluoromethyl substituted ligand, all compounds exhibit red emission. The presence of an alkynyl ancillary ligand has limited influence on absorption and emission spectra except in the case of the complex with the strongly electron-donating diphenylamino R2 substituent on the alkynyl ligand, for which a significant red-shift was observed. The alkynyl Pt(II) complex with OMe groups as both R1 and R2 substituents shows the best emission quantum yield (0.81 in CH2Cl2 solution) in this series. The full series of DFT calculated band gaps correlated generally well with the electrochemical and absorption data and reasonably model the impact of the substituents on the electronics of these complexes.
Collapse
Affiliation(s)
- Mariia Hruzd
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Nicolas le Poul
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu - CS 93837, F-29238 Brest Cedex 3, France
| | - Marie Cordier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Jean-Yves Saillard
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Sylvain Achelle
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Sébastien Gauthier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Françoise Robin-le Guen
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
17
|
Pintus A, Arca M. 1,2-Diselenolene ligands and related metal complexes: Design, synthesis and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Romashev NF, Abramov PA, Bakaev IV, Fomenko IS, Samsonenko DG, Novikov AS, Tong KKH, Ahn D, Dorovatovskii PV, Zubavichus YV, Ryadun AA, Patutina OA, Sokolov MN, Babak MV, Gushchin AL. Heteroleptic Pd(II) and Pt(II) Complexes with Redox-Active Ligands: Synthesis, Structure, and Multimodal Anticancer Mechanism. Inorg Chem 2022; 61:2105-2118. [PMID: 35029379 DOI: 10.1021/acs.inorgchem.1c03314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of heteroleptic square-planar Pt and Pd complexes with bis(diisopropylphenyl) iminoacenaphtene (dpp-Bian) and Cl, 1,3-dithia-2-thione-4,5-dithiolate (dmit), or 1,3-dithia-2-thione-4,5-diselenolate (dsit) ligands have been prepared and characterized by spectroscopic techniques, elemental analysis, X-ray diffraction analysis, and cyclic voltammetry (CV). The intermolecular noncovalent interactions in the crystal structures were assessed by density functional theory (DFT) calculations. The anticancer activity of Pd complexes in breast cancer cell lines was limited by their solubility. Pd(dpp-Bian) complexes with dmit and dsit ligands as well as an uncoordinated dpp-Bian ligand were devoid of cytotoxicity, while the [Pd(dpp-Bian)Cl2] complex was cytotoxic. On the contrary, all Pt(dpp-Bian) complexes demonstrated anticancer activity in a low micromolar concentration range, which was 8-20 times higher than the activity of cisplatin, and up to 2.5-fold selectivity toward cancer cells over healthy fibroblasts. The presence of a redox-active dpp-Bian ligand in Pt and Pd complexes resulted in the induction of reactive oxygen species (ROS) in cancer cells. In addition, these complexes were able to intercalate into DNA, indicating the dual mechanism of action.
Collapse
Affiliation(s)
- Nikolai F Romashev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Ivan V Bakaev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 1 Pirogov st., Novosibirsk 630090, Russia
| | - Iakov S Fomenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia
| | - Kelvin K H Tong
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Dohyun Ahn
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis, 5 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Aleksey A Ryadun
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Olga A Patutina
- Institute of Chemical Biology and Fundamental Medicine, 8 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Kirk ML, Shultz DA, Hewitt P, van der Est A. Excited State Exchange Control of Photoinduced Electron Spin Polarization in Electronic Ground States. J Phys Chem Lett 2022; 13:872-878. [PMID: 35045702 DOI: 10.1021/acs.jpclett.1c03491] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ground-state electron spin polarization (ESP) is generated in radical elaborated (bpy)Pt(CAT-NN) and (bpy)Pt(CAT-p-Me2PhMe2-NN) (bpy = 5,5'-di-tert-butyl-2,2'-bipyridine, CAT = 3-tert-butylcatecholate, p-Ph = para-phenylene, NN = nitronylnitroxide). Photoexcitation produces an exchange-coupled, three-spin, charge-separated doublet 2S1 (S = chromophore excited spin singlet configuration) excited state that rapidly decays to a 2T1 (T = chromophore excited spin triplet configuration) excited state. The SQ-bridge-NN bond torsions affect the magnitude of the excited state exchange interaction (JSQ-NN), which determines the 2T1-4T1 energy gap. Ground state ESP is dependent on the magnitude of JSQ-NN, and we postulate that this results from differences in 2T1 and 4T1 state mixing. Mechanisms that lead to the rapid transfer of the excited state ESP to the ground state are discussed. Although subnanosecond 2T1 state lifetimes are measured optically in solution, the ground state ESP decays very slowly at 20 K and is observable for more than a millisecond.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
- The Center for High Technology Materials, The University of New Mexico, Albuquerque, New Mexico 87106, United States
| | - David A Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Patrick Hewitt
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Art van der Est
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
20
|
Roy S, Lopez AA, Yarnell JE, Castellano FN. Metal-Metal-to-Ligand Charge Transfer in Pt(II) Dimers Bridged by Pyridyl and Quinoline Thiols. Inorg Chem 2021; 61:121-130. [PMID: 34955020 DOI: 10.1021/acs.inorgchem.1c02469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The investigation of two distinct species of square planar dinuclear Pt(II) dimers based on anti-[Pt(C∧N)(μ-N∧S)]2, where C∧N is either 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and N∧S is pyridine-2-thiol (pyt), 6-methylpyridine-2-thiol (Mpyt), or 2-quinolinethiol (2QT), is presented. Each molecule was thoroughly characterized with electronic structure calculations, static UV-vis and photoluminescence (PL) spectroscopy, and cyclic voltammetry, along with transient absorbance and time-gated PL experiments. These visible absorbing chromophores feature metal-metal-to-ligand charge-transfer (MMLCT) excited states that originate from intramolecular d8-d8 metal-metal σ-interactions and are manifested in the ground- and excited-state properties of these molecules. All five molecules reported (anti-[Pt(ppy)(μ-Mpyt)]2 could not be isolated), three of which are newly conceived here, possess electronic absorptions past 500 nm and high quantum yield PL emission with spectra extending into the far red (λem > 700 nm), originating from the charge-transfer state in each instance. Each chromophore displays excited-state decay kinetics adequately modeled by single exponentials as recorded using dynamic absorption and PL experiments; each technique yields similar decay kinetics. The combined data illustrate that pyridyl and quinoline-thiolates in conjunction with select cyclometalates represent classes of MMLCT chromophores that exhibit excited-state properties suitable for promoting light-energized chemical reactions and provide a molecular platform suitable for evaluating coherence phenomena in transient metal-metal bond-forming photochemistry.
Collapse
Affiliation(s)
- Subhangi Roy
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Antonio A Lopez
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
21
|
Feuerstein W, Breher F. Non-palindromic (C^C^D) gold(III) pincer complexes are not accessible by intramolecular oxidative addition of biphenylenes - an experimental and quantum chemical study. Dalton Trans 2021; 50:9754-9767. [PMID: 34169955 DOI: 10.1039/d1dt00953b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We herein report on the synthesis of biphenylenes substituted with a pyridine (N), a phosphine (P) and a carbene (C') donor as well as a carbene donor with additional pyridine in the lateral position. We describe the synthesis and structures of derived gold(i) complexes, which we tried to use for the synthesis of non-palindromic [(C^C^D)AuIII] pincer complexes by means of an intramolecular oxidative addition of the strained biphenylene ring. However, the anticipated formation of gold(iii) complexes failed due to kinetic and thermodynamic reasons, which we extensively investigated by quantum chemical calculations. Furthermore, we shed light on the oxidative addition of biphenylene to two different gold(i) systems reported in the literature. Our comprehensive quantum-chemical analysis is complemented by NMR experiments.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry, Division Molecular Chemistry, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
22
|
Redox-active ligands: Recent advances towards their incorporation into coordination polymers and metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213891] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Lee S, Lee Y, Kim K, Heo S, Jeong DY, Kim S, Cho J, Kim C, You Y. Twist to Boost: Circumventing Quantum Yield and Dissymmetry Factor Trade-Off in Circularly Polarized Luminescence. Inorg Chem 2021; 60:7738-7752. [PMID: 33760606 DOI: 10.1021/acs.inorgchem.1c00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circularly polarized luminescence (CPL) enables promising applications in asymmetric photonics. However, the performances of CPL molecules do not yet meet the requirements of these applications. The shortcoming originates from the trade-off in CPL between the photoluminescence quantum yield (PLQY) and the photoluminescence dissymmetry factor (gPL). In this study, we developed a molecular strategy to circumvent this trade-off. Our approach takes advantage of the strong propensity of [Pt(N^C^N)Cl], where the N^C^N ligand is 1-(2-oxazoline)-3-(2-pyridyl)phenylate, to form face-to-face stacks. We introduced chiral substituents, including (S)-methyl, (R)- and (S)-isopropyl, and (S)-indanyl groups, into the ligand framework. This asymmetric control induces torsional displacements that give homohelical stacks of the Pt(II) complexes. X-ray single-crystal structure analyses for the (S)-isopropyl Pt(II) complex reveal the formation of a homohelical dimer with a Pt···Pt distance of 3.48 Å, which is less than the sum of the van der Waals radii of Pt. This helical stack elicits the metal-metal-to-ligand charge-transfer (MMLCT) transition that exhibits strong chiroptical activity due to the electric transition moment making an acute angle to the magnetic transition moment. The PLQY and gPL values of the MMLCT phosphorescence emission of the (S)-isopropyl Pt(II) complex are 0.49 and 8.4 × 10-4, which are improved by factors of ca. 6 and 4, respectively, relative to the values of the unimolecular emission (PLQY, 0.078; gPL, 2.4 × 10-4). Our photophysical measurements for the systematically controlled Pt(II) complexes reveal that the CPL amplifications depend on the chiral substituent. Our investigations also indicate that excimers are not responsible for the enhanced chiroptical activity. To demonstrate the effectiveness of our approach, organic electroluminescence devices were fabricated. The MMLCT emission devices were found to exhibit simultaneous enhancements in the external quantum efficiency (EQE, 9.7%) and the electroluminescence dissymmetry factor (gEL, 1.2 × 10-4) over the unimolecular emission devices (EQE, 5.8%; gEL, 0.3 × 10-4). These results demonstrate the usefulness of using the chiroptically active MMLCT emission for achieving an amplified CPL.
Collapse
Affiliation(s)
- Sumin Lee
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yongmoon Lee
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Seunga Heo
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangsub Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.,Department of Chemistry, UNIST, Ulsan 44919, Republic of Korea
| | - Changsoon Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
24
|
Wu SH, Shao JY, Zhao Z, Ma J, Yang R, Chen N, Tang JH, Bian Z, Zhong YW. Ligand Engineering toward Deep Blue Emission in Nonplanar Terdentate Platinum(II) Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, People’s Republic of China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Zifeng Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, People’s Republic of China
| | - Rong Yang
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, People’s Republic of China
| | - Na Chen
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, People’s Republic of China
| | - Jian-Hong Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Zuqiang Bian
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
25
|
Beucher H, Kumar S, Kumar R, Merino E, Hu WH, Stemmler G, Cuesta-Galisteo S, González JA, Bezinge L, Jagielski J, Shih CJ, Nevado C. Phosphorescent κ 3 -(N^C^C)-Gold(III) Complexes: Synthesis, Photophysics, Computational Studies and Application to Solution-Processable OLEDs. Chemistry 2020; 26:17604-17612. [PMID: 32780903 DOI: 10.1002/chem.202003571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3 -(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL ) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A-1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.
Collapse
Affiliation(s)
- Hélène Beucher
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Roopender Kumar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Estíbaliz Merino
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Wei-Hsu Hu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Gerrit Stemmler
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Sergio Cuesta-Galisteo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Jorge A González
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Léonard Bezinge
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Jakub Jagielski
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH-Zürich, 8093, Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
26
|
Feuerstein W, Holzer C, Gui X, Neumeier L, Klopper W, Breher F. Synthesis of New Donor-Substituted Biphenyls: Pre-ligands for Highly Luminescent (C^C^D) Gold(III) Pincer Complexes. Chemistry 2020; 26:17156-17164. [PMID: 32735695 PMCID: PMC7821303 DOI: 10.1002/chem.202003271] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/31/2020] [Indexed: 12/31/2022]
Abstract
We herein report on new synthetic strategies for the preparation of pyridine and imidazole substituted 2,2'-dihalo biphenyls. These structures are pre-ligands suitable for the preparation of respective stannoles. The latter can successfully be transmetalated to K[AuCl4 ] forming non-palindromic [(C^C^D)AuIII ] pincer complexes featuring a lateral pyridine (D=N) or N-heterocyclic carbene (NHC, D=C') donor. The latter is the first report on a pincer complex with two formally anionic sp2 and one carbenic carbon donor. The [(C^C^D)AuIII ] complexes show intense phosphorescence in solution at room temperature. We discuss the developed multistep strategy and touch upon synthetic challenges. The prepared complexes have been fully characterized including X-ray diffraction analysis. The gold(III) complexes' photophysical properties have been investigated by absorption and emission spectroscopy as well as quantum chemical calculations on the quasi-relativistic two-component TD-DFT and GW/Bethe-Salpeter level including spin-orbit coupling. Thus, we shed light on the electronic influence of the non-palindromic pincer ligand and reveal non-radiative relaxation pathways of the different ligands employed.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Christof Holzer
- Institute of Theoretical Solid State PhysicsKarlsruhe Institute of, Technology (KIT)Wolfgang-Gaede-Straße 176131KarlsruheGermany
| | - Xin Gui
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Lilly Neumeier
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of, Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Frank Breher
- Institute of Inorganic ChemistryKarlsruhe Institute of, Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| |
Collapse
|
27
|
Han X, Sahihi M, Whitfield S, Jimenez I. Tuning excited state of bipyridyl platinum(II) complexes with bio-active flavonolate ligand: Structures, photoreactivity, and DFT calculations. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Samiee S, Pouladzadeh A, Mahdavifar Z. Exploring the optical and nonlinear optical features of heteroleptic complexes with BODIPY and amido-BODIPY substitutions; A comparative theoretical study. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020; 59:18723-18730. [PMID: 32666592 DOI: 10.1002/anie.202008383] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
30
|
Saito D, Ogawa T, Yoshida M, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Intense Red‐Blue Luminescence Based on Superfine Control of Metal–Metal Interactions for Self‐Assembled Platinum(II) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Tomohiro Ogawa
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Current address: Institute for Integrated Cell-Materials Sciences Kyoto University Kyoto 606-8501 Japan
| | - Masaki Yoshida
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Atsushi Kobayashi
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| |
Collapse
|
31
|
Zhang Q, Wong KMC. Photophysical, ion-sensing and biological properties of rhodamine-containing transition metal complexes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213336] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yam VWW, Law ASY. Luminescent d8 metal complexes of platinum(II) and gold(III): From photophysics to photofunctional materials and probes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213298] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Li E, Jie K, Liu M, Sheng X, Zhu W, Huang F. Vapochromic crystals: understanding vapochromism from the perspective of crystal engineering. Chem Soc Rev 2020; 49:1517-1544. [PMID: 32016241 DOI: 10.1039/c9cs00098d] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vapochromic materials, which undergo colour and/or emission changes upon exposure to certain vapours or gases, have received increasing attention recently because of their wide range of applications in, e.g., chemical sensors, light-emitting diodes, and environmental monitors. Vapochromic crystals, as a specific kind of vapochromic materials, can be investigated from the perspective of crystal engineering to understand the mechanism of vapochromism. Moreover, understanding the vapochromism mechanism will be beneficial to design and prepare task-specific vapochromic crystals as one kind of low-cost 'electronic nose' to detect toxic gases or volatile organic compounds. This review provides important information in a broad scientific context to develop new vapochromic materials, which covers organometallic or coordination complexes and organic crystals, as well as the different mechanisms of the related vapochromic behaviour. In addition, recent examples of supramolecular vapochromic crystals and metal-organic-framework (MOFs) vapochromic crystals are introduced.
Collapse
Affiliation(s)
- Errui Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
34
|
Feuerstein W, Breher F. Synthetic access to a phosphorescent non-palindromic pincer complex of palladium by a double oxidative addition – comproportionation sequence. Chem Commun (Camb) 2020; 56:12589-12592. [DOI: 10.1039/d0cc04065g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A highly phosphorescent non-palindromic (C^C^N) palladium complex may be prepared by means of a double oxidative addition – comproportionation sequence, which is a new approach for the synthesis of non-palindromic pincer complexes.
Collapse
Affiliation(s)
- Wolfram Feuerstein
- Karlsruhe Institute of Technology (KIT)
- Institute of Inorganic Chemistry
- Division Molecular Chemistry
- 76131 Karlsruhe
- Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT)
- Institute of Inorganic Chemistry
- Division Molecular Chemistry
- 76131 Karlsruhe
- Germany
| |
Collapse
|
35
|
Affiliation(s)
- Jong-Hwa Shon
- Department of Chemistry, University of Houston, Houston, TX, USA
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
36
|
Samiee S, Hossienpour P. Tuning the electronic and optical properties of Pt(diimine)(dithiolate) complexes through different anchoring groups; A DFT/TD-DFT study. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Ikeshita M, Ito M, Naota T. Variations in the Solid-State Emissions of Clothespin-Shaped Binuclear trans
-Bis(salicylaldiminato)platinum(II) with Halogen Functionalities. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Masahiro Ikeshita
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Machikaneyama 560-8531 Toyonaka Osaka Japan
| | - Mizuki Ito
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Machikaneyama 560-8531 Toyonaka Osaka Japan
| | - Takeshi Naota
- Department of Chemistry; Graduate School of Engineering Science; Osaka University; Machikaneyama 560-8531 Toyonaka Osaka Japan
| |
Collapse
|
38
|
Le NHT, Inoue R, Kawamorita S, Komiya N, Naota T. Phosphorescent Molecules That Resist Concentration Quenching in the Solution State: Concentration-Driven Emission Enhancement of Vaulted trans-Bis[2-(iminomethyl)imidazolato]platinum(II) Complexes. Inorg Chem 2019; 58:9076-9084. [DOI: 10.1021/acs.inorgchem.9b00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ngoc Ha-Thu Le
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Inoue
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Soichiro Kawamorita
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Chemistry Laboratory, The Jikei University School of Medicine, Kokuryo, Chofu, Tokyo 182-8570, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
39
|
Yamada S, Matsumoto T, Chang HC. Impact of Group 10 Metals on the Solvent-Induced Disproportionation of o-Semiquinonato Complexes. Chemistry 2019; 25:8268-8278. [PMID: 30963643 DOI: 10.1002/chem.201900172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 01/29/2023]
Abstract
The oxidation of [MII (3,5-DTBCat)(DTBbpy)] (M=Ni ([Ni]), Pd ([Pd]), and Pt ([Pt]); 3,5-DTBCat=3,5-di-tert-butylcatecholato; DTBbpy=4,4'-di-tert-butyl-2,2'-bipyridine) afforded the dimeric {[NiII (3,5-DTBSQ)(DTBbpy)](PF6 )}2 ({[Ni](PF6 )}2 ; 3,5-DTBSQ=3,5-di-tert-butylsemiquinonato) and monomeric semiquinonato (SQ) complexes [MII (3,5-DTBSQ)(DTBbpy)](PF6 ) (M=Pd ([Pd](PF6 )) and Pt ([Pt](PF6 ))). The negative solvatochromic properties of the SQ complexes allowed us to estimate the relative order of their dipole moments: [Pd](PF6 )>[Pt](PF6 )>{[Ni](PF6 )}2 . The complexes [Pd](PF6 ) and [Pt](PF6 ) adopt monomeric structures and are stable in CH2 Cl2 and toluene, whereas they gradually disproportionate at room temperature to [M] and 3,5-di-tert-butylbenzoquinone (3,5-DTBBQ) in polar solvents such as THF, MeOH, EtOH, DMF, or DMSO. The results of spectroscopic studies suggested that the oxidized nickel complex adopts a monomeric structure ([Ni](PF6 )) in CH2 Cl2 , but a dimeric structure ({[Ni](PF6 )}2 ) in the other investigated solvents. In polar solvents, {[Ni](PF6 )}2 may disproportionate to [Ni] and 3,5-DTBBQ at 323 K, thereby demonstrating a significant solvent- and metal-dependence in temperature. The relative activities of {[Ni](PF6 )}2 and [M](PF6 ) toward disproportionation are related to the electrochemically estimated Kdis values in CH2 Cl2 and DMF. The present work demonstrates that solvent polarity and the dipole moments of the SQ complexes promote disproportionation, which can be controlled by a judicious choice of the metal ion, solvent, and temperature.
Collapse
Affiliation(s)
- Shota Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takeshi Matsumoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
40
|
Eddy LE, Thakker PU, McMillen CD, Pienkos JA, Cordoba JJ, Edmunds CE, Wagenknecht PS. A comparison of the metal-ligand interactions of the pentafluorophenylethynyl and trifluoropropynyl ligands in transition metal cyclam complexes. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Samiee S, Hossienpour P. A comparative theoretical study on the optoelectronic and nonlinear optical properties of [Pt(bpy)(qdt)] derivatives with electron-donating and -withdrawing anchors. NEW J CHEM 2019. [DOI: 10.1039/c9nj02463h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A series of [Pt(bpy)(qdt)] {bpy = 2,2′-bipyridine; qdt = quinoxaline-2,3-dithiolate} derivatives was chosen to study the effect of structural modifications on the optoelectronic and nonlinear optical (NLO) properties of the molecules.
Collapse
Affiliation(s)
- Sepideh Samiee
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| | - Parisa Hossienpour
- Department of Chemistry
- Faculty of Science
- Shahid Chamran University of Ahvaz
- Ahvaz
- Iran
| |
Collapse
|
42
|
Stein BW, Yang J, Mtei R, Wiebelhaus NJ, Kersi DK, LePluart J, Lichtenberger DL, Enemark JH, Kirk ML. Vibrational Control of Covalency Effects Related to the Active Sites of Molybdenum Enzymes. J Am Chem Soc 2018; 140:14777-14788. [PMID: 30208274 DOI: 10.1021/jacs.8b08254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multitechnique spectroscopic and theoretical study of the Cp2M(benzenedithiolato) (M = Ti, V, Mo; Cp = η5-C5H5) series provides deep insight into dithiolene electronic structure contributions to electron transfer reactivity and reduction potential modulation in pyranopterin molybdenum enzymes. This work explains the magnitude of the dithiolene folding distortion and the concomitant changes in metal-ligand covalency that are sensitive to electronic structure changes as a function of d-electron occupancy in the redox orbital. It is shown that the large fold angle differences correlate with covalency, and the fold angle distortion is due to a pseudo-Jahn-Teller (PJT) effect. The PJT effect in these and related transition metal dithiolene systems arises from the small energy differences between metal and sulfur valence molecular orbitals, which uniquely poise these systems for dramatic geometric and electronic structure changes as the oxidation state changes. Herein, we have used a combination of resonance Raman, magnetic circular dichroism, electron paramagnetic resonance, and UV photoelectron spectroscopies to explore the electronic states involved in the vibronic coupling mechanism. Comparison between the UV photoelectron spectroscopy (UPS) of the d2 M = Mo complex and the resonance Raman spectra of the d1 M = V complex reveals the power of this combined spectroscopic approach. Here, we observe that the UPS spectrum of Cp2Mo(bdt) contains an intriguing vibronic progession that is dominated by a "missing-mode" that is composed of PJT-active distortions. We discuss the relationship of the PJT distortions to facile electron transfer in molybdenum enzymes.
Collapse
Affiliation(s)
- Benjamin W Stein
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC 032060, 1 University of New Mexico , Albuquerque , New Mexico 87131 , United States.,Chemistry Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC 032060, 1 University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Regina Mtei
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC 032060, 1 University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Nicholas J Wiebelhaus
- Department of Chemistry and Biochemistry , The University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - Dominic K Kersi
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC 032060, 1 University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Jesse LePluart
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC 032060, 1 University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Dennis L Lichtenberger
- Department of Chemistry and Biochemistry , The University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - John H Enemark
- Department of Chemistry and Biochemistry , The University of Arizona , 1306 E. University Boulevard , Tucson , Arizona 85721 , United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology , The University of New Mexico , MSC 032060, 1 University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
43
|
Yang J, Kersi DK, Richers CP, Giles LJ, Dangi R, Stein BW, Feng C, Tichnell CR, Shultz DA, Kirk ML. Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes. Inorg Chem 2018; 57:13470-13476. [DOI: 10.1021/acs.inorgchem.8b02087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Christopher R. Tichnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - David A. Shultz
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | | |
Collapse
|
44
|
Haque A, Al-Balushi RA, Al-Busaidi IJ, Khan MS, Raithby PR. Rise of Conjugated Poly-ynes and Poly(Metalla-ynes): From Design Through Synthesis to Structure-Property Relationships and Applications. Chem Rev 2018; 118:8474-8597. [PMID: 30112905 DOI: 10.1021/acs.chemrev.8b00022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Conjugated poly-ynes and poly(metalla-ynes) constitute an important class of new materials with potential application in various domains of science. The key factors responsible for the diverse usage of these materials is their intriguing and tunable chemical and photophysical properties. This review highlights fascinating advances made in the field of conjugated organic poly-ynes and poly(metalla-ynes) incorporating group 4-11 metals. This includes several important aspects of conjugated poly-ynes viz. synthetic protocols, bonding, electronic structure, nature of luminescence, structure-property relationships, diverse applications, and concluding remarks. Furthermore, we delineated the future directions and challenges in this particular area of research.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Rayya A Al-Balushi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Idris Juma Al-Busaidi
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Muhammad S Khan
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36, Al-Khod 123 , Sultanate of Oman
| | - Paul R Raithby
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| |
Collapse
|
45
|
Attar SS, Artizzu F, Marchiò L, Espa D, Pilia L, Casula MF, Serpe A, Pizzotti M, Orbelli-Biroli A, Deplano P. Uncommon Optical Properties and Silver-Responsive Turn-Off/On Luminescence in a Pt II Heteroleptic Dithiolene Complex. Chemistry 2018; 24:10503-10512. [PMID: 29767426 DOI: 10.1002/chem.201801697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 11/10/2022]
Abstract
Complex [Pt(iPr2 pipdt)(Quinoxdt)] (iPr2 pipdt=1,4-diisopropyl-piperazine-2,3-dithione; Quinoxdt=[1,4]dithiino[2,3-b]quinoxaline-2,3-dithiolate) exhibits a remarkable green emission at 570 nm (room temperature), which is above the lowest excited state. The complex is characterized by negative solvatochromism as well as a high second-order polarizability. Addition of AgI ions induces 1) hypsochromic shift of the lowest frequencies and 2) reversible quenching of luminescence. The corresponding Ni and Pd complexes have also been prepared and investigated to assist interpretation of optical properties within the triad. Computational studies based on DFT and time-dependent DFT highlight the electronic properties of [Pt(iPr2 pipdt)(Quinoxdt)]. The preferential site of interaction between the Pt complex and incoming AgI is evidenced by the shape of the Fukui functions, pointing to the thiolic sulfur and platinum atoms as the most reactive sites towards a soft cation. Calculated optical properties are in agreement with experimental findings. This study sheds light on the structure-property relationship for this class of compounds.
Collapse
Affiliation(s)
- Salahuddin S Attar
- Department of Chemical and Soil Sciences, University of Cagliari, INSTM Research Unit, 09042, Monserrato (CA), Italy
| | - Flavia Artizzu
- L3-Luminescent Lanthanide Lab, Department of Chemistry, Ghent University, Krijgslaan 281-building S3, 9000, Gent, Belgium
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Davide Espa
- Department of Chemical and Soil Sciences, University of Cagliari, INSTM Research Unit, 09042, Monserrato (CA), Italy
| | - Luca Pilia
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Maria F Casula
- Department of Chemical and Soil Sciences, University of Cagliari, INSTM Research Unit, 09042, Monserrato (CA), Italy
| | - Angela Serpe
- Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università di Cagliari, Via Marengo 2, 09123, Cagliari, Italy
| | - Maddalena Pizzotti
- Department of Chemistry, INSTM Research Unit, University of Milan, Via C. Golgi 19, 20133, Milano, Italy
| | - Alessio Orbelli-Biroli
- Istituto di Scienze e Tecnologie Molecolari del CNR (CNR-ISTM), SmartMatLab Centre, CNR, Via C. Golgi 19, 20133, Milano, Italy
| | - Paola Deplano
- Department of Chemical and Soil Sciences, University of Cagliari, INSTM Research Unit, 09042, Monserrato (CA), Italy
| |
Collapse
|
46
|
Gauthier S, Porter A, Achelle S, Roisnel T, Dorcet V, Barsella A, Le Poul N, Guevara Level P, Jacquemin D, Robin-Le Guen F. Mono- and Diplatinum Polyynediyl Complexes as Potential Push–Pull Chromophores: Synthesis, Characterization, TD-DFT Modeling, and Photophysical and NLO Properties. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Gauthier
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Ariel Porter
- Center of Natural Sciences, Northern Kentucky University, Nunn Drive, Highland Heights, Kentucky 41099, United States
| | - Sylvain Achelle
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Thierry Roisnel
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Alberto Barsella
- Département d’Optique ultra-rapide et Nanophotonique, IPCMS-CNRS, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
| | - Nicolas Le Poul
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu, CS
93837, F-29238 Brest Cedex 3, France
| | - Patricia Guevara Level
- Laboratoire CEISAM-UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, F-44322 Nantes Cedex 3, France
| | - Denis Jacquemin
- Laboratoire CEISAM-UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, F-44322 Nantes Cedex 3, France
| | - Françoise Robin-Le Guen
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
47
|
Cheng Y, Li L, Wei F, Wong KMC. Alkynylplatinum(II) Terpyridine System Coupled with Rhodamine Derivative: Interplay of Aggregation, Deaggregation, and Ring-Opening Processes for Ratiometric Luminescence Sensing. Inorg Chem 2018; 57:6439-6446. [DOI: 10.1021/acs.inorgchem.8b00448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yukun Cheng
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Ling Li
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Fangfang Wei
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, No. 1088, Tangchang Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| |
Collapse
|
48
|
Robust sensitizer-assisted platinized titanium dioxide in photocatalytic removal of 4-chlorophenol in water: Light tunable sensitizer. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.02.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Kinzhalov MA, Katkova SA, Doronina EP, Novikov AS, Eliseev II, Ilichev VA, Kukinov AA, Starova GL, Bokach NA. Red photo- and electroluminescent half-lantern cyclometalated dinuclear platinum(II) complex. Z KRIST-CRYST MATER 2018. [DOI: 10.1515/zkri-2018-2075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
New cyclometalated dinuclear platinum(II) complex bearing bridged 4,6-dimethylpyrimidine-2(1H)-thiolate (μ-C6H7N2S-κN,S) ligands, [{Pt(ppy)(μ-C6H7N2S-κN,S)}2] (3) (ppy=(2-phenylpyridinato-C2,N)) was prepared via the reaction of chloro-bridged dimer [{Pt(ppy)Cl}2] with 4,6-dimethylpyrimidine-2(1H)-thione (C6H8N2S) in the presence of t-BuOK. The complex holds dinuclear frameworks with short Pt(II)···Pt(II) distance (2.8877(3) Å), and exhibit red intense luminescence from the triplet metal-metal-to-ligand charge-transfer at 697 nm in CH2Cl2 solution and at 649 nm in solid state at RT. Single crystal XRD analysis reveals the metallophilic interactions Pt···Pt with significant covalent contribution in the structure of 3 which were studied by quasi-relativistic and relativistic DFT calculations (viz., M06/MWB60(Pt) and 6-311+G* (other atoms); M06/DZP-DKH levels of theory) and topological analysis of the electron density distribution within the framework of Bader’s theory (QTAIM method). Estimated strength of the Pt···Pt contact is 8.1–12.2 kcal/mol and it is mostly determined by crystal packing effects and weak attractive interactions between the adjacent metal centers due to overlapping of their dz2 and pz orbitals. An organic light-emitting diode based on this complex showed red electroluminescence with maximal luminance of 115 cd/m2 and current efficiency of 2.45 cd/A at this luminance.
Collapse
Affiliation(s)
- Mikhail A. Kinzhalov
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| | - Svetlana A. Katkova
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| | - Elizaveta P. Doronina
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| | - Alexander S. Novikov
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| | - Ivan I. Eliseev
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| | - Vasiliy A. Ilichev
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS , Tropinina 49 , Nizhny Novgorod 603950 , Russia
| | - Andrey A. Kukinov
- G.A. Razuvaev Institute of Organometallic Chemistry of RAS , Tropinina 49 , Nizhny Novgorod 603950 , Russia
| | - Galina L. Starova
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| | - Nadezhda A. Bokach
- Saint Petersburg State University , Universitetskaya Nab. 7/9 , St. Petersburg, 199034 , Russian Federation
| |
Collapse
|
50
|
Li G, Mark MF, Lv H, McCamant DW, Eisenberg R. Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen. J Am Chem Soc 2018; 140:2575-2586. [DOI: 10.1021/jacs.7b11581] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guocan Li
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Michael F. Mark
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Hongjin Lv
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - David W. McCamant
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Richard Eisenberg
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|