1
|
Scanda K, Salas-Juárez CJ, Guzmán-Silva RE, Beltran HI, Garduño I, Guzmán-Mendoza J. Synthesis and photoluminescent spectroscopic analysis of lanthanum (III) coordinated with 1,10-Phenanthroline: A study of its thermally stable behavior. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125046. [PMID: 39217951 DOI: 10.1016/j.saa.2024.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
A blue-emitting phosphor designed by lanthanum (III) coordinated with two 1,10-Phenanthroline and three nitrate ligands, [La(Phen)2(NO3)3], was obtained by an effective and simple precipitation method. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) revealed the coordination modes in the compound and the chemical structure, crystallizing in a monoclinic system in the C2/c space group. The luminescence properties, absolute quantum yield (ϕ), and luminescence lifetime decay (τ) were determined by photoluminescence spectroscopy. Under a 350 nm excitation, the sample presents three emission bands corresponding to the π* → π transitions belonging to the organic ligand. The luminescence lifetime (τ) was determined through a monoexponentially fit, obtaining a value of 5616 ns. The [La(Phen)2(NO3)3] complex exhibits an absolute quantum yield of 3 % with the same excitation conditions. In addition, the photometric analysis shows that the luminescent response to a 350 nm excitation is that of a blue-emitting high-purity phosphor with 96 % and chromatic coordinates of 0.15, 0.05. The temperature-dependent luminescence properties revealed considerable thermal stability in the 20-150 °C range with a signal loss of 47 % and an activation energy of thermal quenching (ΔE) of 0.13 eV, the first value reported for a lanthanum complex based on 1,10-Phenanthroline.
Collapse
Affiliation(s)
- K Scanda
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional. Legaria 694, Col. Irrigación. Miguel Hidalgo, 11500 Ciudad de México, México.
| | - Ch J Salas-Juárez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional. Legaria 694, Col. Irrigación. Miguel Hidalgo, 11500 Ciudad de México, México.
| | - R E Guzmán-Silva
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional. Legaria 694, Col. Irrigación. Miguel Hidalgo, 11500 Ciudad de México, México
| | - H I Beltran
- Departamento de Ciencias Básicas, DCBI, UAM Azcapotzalco, 02200 CDMX, México
| | - I Garduño
- CONAHCyT/ Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional. Legaria 694, Col. Irrigación. Miguel Hidalgo, 11500 Ciudad de México, México
| | - J Guzmán-Mendoza
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional. Legaria 694, Col. Irrigación. Miguel Hidalgo, 11500 Ciudad de México, México
| |
Collapse
|
2
|
Borisova NE, Kharcheva AV, Sumyanova TB, Gontcharenko V, Matveev PI, Starostin L, Trigub A, Ivanov AV, Patsaeva SV. Bipyridyldicarboxamides and f-metals: the influence of electron effects on the structure, stability, separation, and photophysical properties of their complexes. Dalton Trans 2024; 53:17673-17686. [PMID: 39415720 DOI: 10.1039/d4dt02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, three isomeric fluorinated bipyridyldicarboxamides were studied to evaluate the impact of the fluorine atom position on the structure, stability, Am(III)/Ln(III) separation, and photophysical properties of their complexes. The complexes of the fluorinated amides have a metal-to-ligand composition of 1 : 1, which is independent of the fluorine atom position or lanthanide metal. The bipyridyl fragments in the fluorinated complexes are flattened compared with those in unsubstituted ones. Ln-to-heteroatom distances are more affected by steric hindrance in the ligand and further by lanthanide ion radius contraction. This leads to significant effectivity of heavy lanthanide extraction compared with the light ones, particularly for 4F diamide. Fluorination leads to a slight variation in the excited triplet state of the complexes, and hence, the effectiveness of luminescence increases for Eu, Sm, and Tb complexes. Moreover, fluorination significantly affects the CIE chromaticity coordinates for the complexes.
Collapse
Affiliation(s)
- Nataliya E Borisova
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Anastasia V Kharcheva
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
- Department of Physics M.V. Lomonosov Moscow State University 1/2 Leninskie Gory, 119991 Moscow, Russia
| | - Tsagana B Sumyanova
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Victoria Gontcharenko
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Pert I Matveev
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Leonid Starostin
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexander Trigub
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexey V Ivanov
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Svetlana V Patsaeva
- Department of Physics M.V. Lomonosov Moscow State University 1/2 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yang X, Gao D, Yu J, Zhang X, Pang Q, Chai R, Yun S. Strong Red Luminescence in Europium Complexes Solution for Anti-Counterfeiting Applications. LUMINESCENCE 2024; 39:e70012. [PMID: 39533774 DOI: 10.1002/bio.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
Eu3+-activated phosphors with distinct photoluminescence properties are well-suited for diverse applications, including lighting, sensing, and imaging. Despite their potential, the large-scale and energy-efficient production of Eu3+-doped phosphors remains a significant challenge for industrial applications. This research delves into the luminescent performance of Eu3+ ions in nitrate solutions at room temperature by employing detailed spectroscopic characterization. Results reveal vibrant red luminescence at 594 nm and 616 nm in europium nitrate solutions, irrespective of concentration or solvent. We proposed a luminescent mechanism based on the formation of coordination complexes in nitrate solution. Furthermore, the investigation highlights the superior performance of NH2- over CH2-ligands in mitigating the deactivation of Eu3+ emissive state induced by OH- oscillators in H2O solvent, leading to enhanced photoluminescence. Particularly, europium nitrate solutions without lengthy preparation exhibit ligand-dependent luminescent feature, showcasing potential applications in anti-counterfeiting and coordination group structure detection. This study here not only enhances our understanding of rare earth luminescence mechanisms, but also broadens the range of rare earth luminescent materials.
Collapse
Affiliation(s)
- Xue Yang
- College of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Dangli Gao
- College of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Jia Yu
- College of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Xiangyu Zhang
- College of Science, Chang'an University, Xi'an, Shaanxi, China
| | - Qing Pang
- College of Science, Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| | - Ruipeng Chai
- College of Science, Chang'an University, Xi'an, Shaanxi, China
| | - Sining Yun
- School of Materials Science & Engineering, Functional Materials Laboratory (FML), Xi'an University of Architecture and Technology, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Liu Y, Wei Z. Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. CHEM REC 2024; 24:e202400100. [PMID: 39235547 DOI: 10.1002/tcr.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Indexed: 09/06/2024]
Abstract
In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.
Collapse
Affiliation(s)
- Yuxin Liu
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zheng Wei
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yang J, Huang X, Xu X, Lu H, Wang S, Wu S. Layered Chalcogenide Scintillators Enabled by Reversible Hydrous-Induced Phase Transformation for High-Resolution X-ray Imaging. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38497330 DOI: 10.1021/acsami.3c19558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Scintillation materials have been widely used in various fields, such as medical diagnosis and industrial detection. Chalcogenides have the potential to become a new generation of high-performance scintillation materials due to their high effective atomic number and good resistance to radiation damage. However, research on their application in radiation detection is currently very scarce. Herein, single crystals of rare earth ion-doped ternary chalcogenides NaGaS2/Eu were grown by a high-temperature solid-phase method. It exhibits unique characteristics of structure transformation by absorbing water molecules from the air. To maintain the anhydrous phase of the material, we have used a strategy of organic-inorganic composites of epoxy resin and NaGaS2/Eu to prepare devices for radiation detection and discuss the irradiation luminescence properties of the two phases. The anhydrous phase of NaGaS2/Eu demonstrates excellent sensitivity to X-rays, with a low detection limit of 250 nGy s-1, which is approximately 1/22 of the medical imaging dose. Additionally, composite flexible films were prepared, which exhibited excellent performance in X-ray imaging. These films enable clear observation of a wide range of objects with a high spatial resolution of up to 13.2 line pairs per millimeter (lp mm-1), indicating that chalcogenide holds promising prospects in the realm of X-ray imaging applications.
Collapse
Affiliation(s)
- Jinhai Yang
- College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xixi Huang
- College of Chemistry, Fuzhou University, Fuzhou 350108, PR China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xieming Xu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Hao Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaihua Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Shaofan Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
6
|
Nagar A, Srivastava A, Sengupta A, Sk MA, Goyal P, Verma PK, Mohapatra PK. Experimental and Theoretical Insight into the Ionic Liquid-Mediated Complexation of Trivalent Lanthanides with β-Diketone and Its Fluorinated Analogue. Inorg Chem 2024; 63:2533-2552. [PMID: 38272469 DOI: 10.1021/acs.inorgchem.3c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A multitechnique approach with theoretical insights has been employed to understand the complexation of trivalent lanthanides with two β-diketones, viz. 1-phenyl-1,3-butanedione (L1) and 4,4,4-trifluoro-1-phenyl-1,3-butanedione (L2), in an ionic liquid (C6mim·NTf2). UV-vis spectral analysis of complexation using Nd3+ revealed the predominance of ML2+ and ML4- species. The stability constants for the PB complexes were higher (β2 ∼ 10.45 ± 0.05, β4 ∼ 15.51 ± 0.05) than those for the TPB (β2 ∼ 7.56 ± 0.05, β4 ∼ 13.19 ± 0.06). The photoluminescence titration using Eu3+ corroborated the same observations with slightly higher stability constants, probably due to the higher ionic potential of Eu3+. The more asymmetric (AL2ML4 ∼ 5.2) Eu-L2 complex was found to contain one water molecule in the primary coordination sphere of Eu3+ with more covalency of the Eu3+-O bond (Ω2L1 = 8.5 × 10-20, Ω4L1 = 1.3 × 10-20) compared to the less asymmetric Eu-L1 complex (AL1ML4 ∼ 3.5) with two water molecules having less Eu-O covalency (Judd-Offelt parameters: Ω2L1 = 7.3 × 10-20, Ω4L1 = 1.0 × 10-20). Liquid-liquid extraction studies involving Nd3+ and Eu3+ revealed the formation of the ML4- complex following an 'anion exchange' mechanism. The shift of the enol peak from 1176 to 1138 cm-1 on the complexation of the β-diketones with Eu3+ was confirmed from the FTIR spectra. 1H NMR titration of the β-diketones with La(NTf2)3 evidenced the participation of α-H of the β-diketones and protons at C2, C4, and C5 positions of the methylimidazolium ring. For the ML2 complex, 4 donor O atoms are suggested to coordinate to the trivalent lanthanides with bond distances of 2.3297-2.411 Å for La-O, 2.206-2.236 Å for Eu-O, and 2.217-2.268 Å for Nd-O, respectively, while for the ML4 complex, 8 donor O atoms were coordinated with bond lengths of 2.506-2.559 Å for La-O, 2.367-2.447 Å for Eu-O, and 2.408-2.476 Å for Nd-O. The Nd3+ ion was higher by 9.7 kcal·mol-1 than that of the La3+ ion for the 1:4 complex. The complexation energy with L1 was quite higher than that with L2 for both 1:2 and 1:4 complexes. Using cyclic voltammetry, the redox behavior of trivalent lanthanides Eu and Gd with β-diketonate in ionic liquid medium was probed and their redox energetic and kinetic parameters were determined.
Collapse
Affiliation(s)
- Adityamani Nagar
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Musharaf Ali Sk
- Homi Bhabha National Institute, Mumbai 400094, India
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Priya Goyal
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Parveen K Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
7
|
Affatigato L, Sciortino A, Sancataldo G, Incocciati A, Piacentini R, Bonamore A, Cannas M, Messina F, Licciardi M, Militello V. Engineered Ferritin with Eu 3+ as a Bright Nanovector: A Photoluminescence Study. Photochem Photobiol 2023; 99:1218-1224. [PMID: 36484733 DOI: 10.1111/php.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Ferritin nanoparticles play many important roles in theranostic and bioengineering applications and have been successfully used as nanovectors for the targeted delivery of drugs due to their ability to specifically bind the transferrin receptor (TfR1, or CD71). They can be either genetically or chemically modified for encapsulating therapeutics or probes in their inner cavity. Here, we analyzed a new engineered ferritin nanoparticle, made of the H chain mouse ferritin (HFt) fused with a specific lanthanide binding tag (LBT). The HFt-LBT has one high affinity lanthanide binding site per each of the 24 subunits and a tryptophane residue within the tag that acts as an antenna able to transfer the energy to the lanthanide ions via a LRET process. In this study, among lanthanides, we selected europium for its red emission that allows to reduce overlap with tissue auto-fluorescence. Steady state emission measurements and time-resolved emission spectroscopy have been employed to investigate the interaction between the HFt-LBT and the Eu3+ ions. This allowed us to identify the Eu3+ energy states involved in the process and to pave the way for the future use of HFt-LBT Eu3+ complex in theranostics.
Collapse
Affiliation(s)
- Luisa Affatigato
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Alice Sciortino
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Alessio Incocciati
- Department of Biochemistry - A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemistry - A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemistry - A. Rossi Fanelli, Sapienza University, Rome, Italy
| | - Marco Cannas
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Fabrizio Messina
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| | - Mariano Licciardi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Valeria Militello
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Ahmed SS, Youssef AO, Mohamed EH, Attia MS. A highly selective optical sensor Eu-BINAM for assessment of high sensitivity cardiac troponin tumor marker in serum of cancer patients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122887. [PMID: 37224630 DOI: 10.1016/j.saa.2023.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
A novel, easy, touchy and selective spectrofluorimetric technique has been successfully applied for sensitive determination of High Sensitivity Cardiac Troponin (TNHS I) in the serum samples of patients suffering malignant tumors through the usage of optical sensor Eu3+-BINAM complex. The technique is primarily based on quenching of the Eu3+-BINAM complex's luminescence intensity upon introducing various concentrations of High Sensitivity Cardiac Troponin (TNHS I). The synthesis and characterization of the optical sensor was performed via absorption and emission. The sensor was also adapted to offer excitation at 394 nm in acetonitrile at pH 7.5. Concentration of High Sensitivity Cardiac Troponin (TNHS I) in serum samples was found to be proportional to the luminescence intensity quenching of the Eu3+-BINAM complex, most prominently at λem = 618 nm. The limit of the dynamic range is 4.26 × 10-4 to 2 ng/mL. The limit of detection and quantitation were calculated to be 1.35 and 4.10 ng/mL, respectively. The suggested analytical approach proved its applicability, simplicity and comparatively interference- free. The technique was effectively recruited to quantify High Sensitivity Cardiac Troponin (TNHS I) in human serum samples. The proposed technique could be further extended to evaluate some biomarkers associated with malignancy related diseases in human.
Collapse
Affiliation(s)
- Shahenda S Ahmed
- Analytical Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed O Youssef
- Analytical Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, British University, Cairo, Egypt
| | - Mohamed S Attia
- Analytical Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Nielsen VRM, Nawrocki PR, Sørensen TJ. Electronic Structure of Neodymium(III) and Europium(III) Resolved in Solution Using High-Resolution Optical Spectroscopy and Population Analysis. J Phys Chem A 2023; 127:3577-3590. [PMID: 37053513 DOI: 10.1021/acs.jpca.3c00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Solution chemistry of the lanthanide(III) ions is unexplored and relevant: extraction and recycling processes exclusively operate in solution, MRI is a solution-phase method, and bioassays are done in solution. However, the molecular structure of the lanthanide(III) ions in solution is poorly described, especially for the near-IR (NIR)-emitting lanthanides, as these are difficult to investigate using optical tools, which has limited the availability of experimental data. Here we report a custom-built spectrometer dedicated to investigation of lanthanide(III) luminescence in the NIR region. Absorption, luminescence excitation, and luminescence spectra of five complexes of europium(III) and neodymium(III) were acquired. The obtained spectra display high spectral resolution and high signal-to-noise ratios. Using the high-quality data, a method for determining the electronic structure for the thermal ground states and emitting states is proposed. It combines Boltzmann distributions with population analysis and uses the experimentally determined relative transition probabilities from both excitation and emission data. The method was tested on the five europium(III) complexes and was used to resolve the electronic structures of the ground state and the emitting state of neodymium(III) in five different solution complexes. This is the first step toward correlating optical spectra with chemical structure in solution for NIR-emitting lanthanide complexes.
Collapse
Affiliation(s)
- Villads R M Nielsen
- Department of Chemistry and Nano-Science Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Patrick R Nawrocki
- Department of Chemistry and Nano-Science Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry and Nano-Science Centre, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Günther A, Wollenberg A, Vogel M, Drobot B, Steudtner R, Freitag L, Hübner R, Stumpf T, Raff J. Speciation and spatial distribution of Eu(III) in fungal mycelium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158160. [PMID: 35988601 DOI: 10.1016/j.scitotenv.2022.158160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Europium, as an easy-to-study analog of the trivalent actinides, is of particular importance for studying the behavior of lanthanides and actinides in the environment. Since different soil organisms can influence the migration behavior of these elements, a detailed knowledge of these interaction mechanisms is important. The aim of this study was to investigate the interaction of mycelia of selected wood-inhabiting (S. commune, P. ostreatus, L. tigrinus) and soil-inhabiting fungi (L. naucinus) with Eu(III). In addition to determining the Eu(III) complexes in the sorption solution, the formed Eu(III) fungal species were characterized using scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, chemical microscopy in combination with the time-resolved laser-induced fluorescence spectroscopy. Our data show that S. commune exhibited significantly higher Eu(III) binding capacity in comparison to the other fungi. Depending on fungal strain, the metal was immobilized on the cell surface, in the cell membranes, and within the membranes of various organelles, or in the cytoplasm in some cases. During the bioassociation process two different Eu(III) fungal species were formed in all investigated fungal strain. The phosphate groups of organic ligands were identified as being important functional groups to bind Eu(III) and thus immobilize the metal in the fungal matrix. The information obtained contributes to a better understanding of the role of fungi in migration, removal or retention mechanisms of rare earth elements and trivalent actinides in the environment.
Collapse
Affiliation(s)
- Alix Günther
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany.
| | - Anne Wollenberg
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Manja Vogel
- HZDR Innovation GmbH, Bautzner Landstr. 400, 01328 Dresden, Germany; VKTA-Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Leander Freitag
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Department of Biogeochemistry, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
| |
Collapse
|
11
|
Manna K, Sutter JP, Natarajan S. Blue-Emitting Ligand-Mediated Assembly of Rare-Earth MOFs toward White-Light Emission, Sensing, Magnetic, and Catalytic Studies. Inorg Chem 2022; 61:16770-16785. [PMID: 36227059 DOI: 10.1021/acs.inorgchem.2c02611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New lanthanide carboxylate compounds with two- (2D) and three-dimensional (3D) structures have been prepared by employing 2,5-bis(prop-2-yn-1-yloxy)terephthalic acid (2,5-BPTA) as an organic linker. The compounds, [Ln(C14H8O6)(C7O3H4)·2H2O]·4(H2O), Ln = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy and [Ln(C7O3H4)3·(C3H7ON)·(H2O)]·2(H2O)(C3H7NO), Ln = La, Ce, Pr, have two- and three-dimensional structures, respectively. In all compounds, lanthanide ions are connected together, forming a dimer, which is connected by the 2,5-BPTA ligand. In the two-dimensional structure, there are two 2,5-BPTA moieties present, and in the three-dimensional structure, there are three 2,5-BPTA moieties present. The lanthanide centers are nine-coordinated, the 2D structure has a tricapped trigonal prismatic arrangement, and the 3D structure has a monocapped distorted square antiprismatic arrangement. The Pr compound forms in both 2D and 3D structures, whose formation depends on the time of the reaction (2 days─2D and 5-6 days─3D). The ligand emits in the blue region, and using the characteristic emission of Eu3+ (red) and Tb3+ (green) ions, we achieve white light emission in the (Y0.96Tb0.02Eu0.02) compound. The overall quantum yield for the white light emission is 28%. The strong green luminescence of the Tb3+-containing compound was employed to selectively sense the Cr3+ and Fe3+ ions in aqueous solution with limits of detection (LODs) at 0.41 and 8.6 ppm, respectively. The Tb compound was found to be a good heterogeneous catalyst for the Ullman-type O-arylation reaction between phenol and bromoarene with yields of 95%. Magnetic studies on the Gd-, Tb-, and Dy-containing compounds showed weak exchange interactions within the dimeric Ln2 units. The present work demonstrates the many utilities of the rare-earth-containing MOFs, especially toward white-light emission, metal-ion sensing, and heterogeneous catalysis.
Collapse
Affiliation(s)
- Krishna Manna
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Jean-Pascal Sutter
- Laboratoire de Chime de Coordination du CNRS, Université de Toulouse, CNRS 205 route de Narbonne, 31077 Toulouse, France
| | - Srinivasan Natarajan
- Framework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Turning a Targeting β-Catenin/Bcl9 Peptide Inhibitor into a GdOF@Au Core/Shell Nanoflower for Enhancing Immune Response to Cancer Therapy in Combination with Immune Checkpoint Inhibitors. Pharmaceutics 2022; 14:pharmaceutics14061306. [PMID: 35745877 PMCID: PMC9228893 DOI: 10.3390/pharmaceutics14061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
Combination administration is becoming a popular strategy in current cancer immunotherapy to enhance tumor response to ICIs. Recently, a peptide drug, a protein–protein interaction inhibitor (PPI), that disrupts the β-catenin/Bcl9 interaction in the tumoral Wnt/β-catenin pathway has become a promising candidate drug for immune enhancement and tumor growth inhibition. However, the peptide usually suffers from poor cell membrane permeability and proteolytic degradation, limiting its adequate accumulation in tumors and ultimately leading to side effects. Herein, a gadolinium–gold-based core/shell nanostructure drug delivery system was established, where Bcl9 was incorporated into a gadolinium–gold core–shell nanostructure and formed GdOFBAu via mercaptogenic self-assembly. After construction, GdOFBAu, when combined with anti-PD1 antibodies, could effectively inhibit tumor growth and enhance the response to immune therapy in MC38 tumor-bearing mice; it not only induced the apoptosis of cancer cells, but also promoted the tumor infiltration of Teff cells (CD8+) and decreased Treg cells (CD25+). More importantly, GdOFBAu maintained good biosafety and biocompatibility during treatment. Taken together, this study may offer a promising opportunity for sensitizing cancer immunotherapy via metal–peptide self-assembling nanostructured material with high effectiveness and safety.
Collapse
|
13
|
Kong H, Liu S, Shi Y, Li K, Ma P, Wang J, Niu J. Organic-inorganic one-dimensional hybrid aggregates constructed from aromatic-bisphosphonate-functionalized polyoxomolybdates. Dalton Trans 2022; 51:6235-6241. [PMID: 35364603 DOI: 10.1039/d1dt04126f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five novel lanthanide-substituted polyoxomolybdates (NH4)5Na3H2[{Ln(H2O)7}2{Mo5O15(1,4-O3PCH2C6H4CH2PO3)}4]·nH2O [Ln = Tb3+ (1), Ho3+ (2), Er3+ (3), Tm3+ (4), Yb3+ (5); n = 33, 32, 41, 30, 47] have been prepared in a conventional aqueous solution reaction of ammonium molybdate with Ln3+ ions and p-xylyenediphosphonic acid. Crystal structure analyses reveal that 1-5 are isomorphic. The prominent architecture characteristic is that their structural units consist of a tetrameric cyclic-shaped [{Mo5O15(1,4-O3PCH2C6H4CH2PO3)}4]16- segment stabilized by two [Ln(H2O)7]3+ cations, which are connected to propagate one-dimensional chain by Ln3+ ions. As is known, compounds 1-5 stand for the first Ln-substituted aromatic-bisphosphonate-functionalized polyoxomolybdates. The solid-state photoluminescence measurement of 1 has been performed at ambient temperature, and it displayed the characteristic emissions of Tb ions based on its 4f-4f transitions. In addition, the magnetic properties of 1-5 compounds show that they all exhibit anti-ferromagnetic interactions.
Collapse
Affiliation(s)
- Hui Kong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Siyu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Yanan Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Keli Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
14
|
Chamberlain TW, Perrella RV, Oliveira TM, de Sousa Filho PC, Walton RI. A Highly Stable Yttrium Organic Framework as a Host for Optical Thermometry and D 2 O Detection. Chemistry 2022; 28:e202200410. [PMID: 35157353 PMCID: PMC9313560 DOI: 10.1002/chem.202200410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/12/2022]
Abstract
The yttrium organic framework (Y0.89 Tb0.10 Eu0.01 )6 (BDC)7 (OH)4 (H2 O)4 (BDC=benzene-1,4-dicarboxylate) is hydrothermally stable up to at least 513 K and thermally stable in air in excess of 673 K. The relative intensities of luminescence of Tb3+ and Eu3+ are governed by Tb3+ -to-Eu3+ phonon-assisted energy transfer and Tb3+ -to-ligand back transfer and are responsible for the differing temperature-dependent luminescence of the two ions. This provides a ratiometric luminescent thermometer in the 288-573 K temperature range, not previously seen for MOF materials, with a high sensitivity, 1.69±0.04 % K-1 at 523 K. In aqueous conditions, loosely bound H2 O can be replaced by D2 O in the same material, which modifies decay lifetimes to yield a quantitative luminescent D2 O sensor with a useful sensitivity for practical application.
Collapse
Affiliation(s)
| | - Rafael V. Perrella
- Institute of ChemistryUniversity of CampinasPO Box 615413083-970CampinasSPBrazil
| | - Tamires M. Oliveira
- Institute of ChemistryUniversity of CampinasPO Box 615413083-970CampinasSPBrazil
| | | | | |
Collapse
|
15
|
Verma PK, Gujar RB, Ansari SA, Musharaf Ali S, J. M. Egberink R, Huskens J, Verboom W, Mohapatra PK. Sequestration of Am3+ and Eu3+ into ionic liquid containing Aza-macrocycle based multiple-diglycolamide ligands: Extraction, complexation, luminescence and DFT studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Lu YB, Wu JW, Zhu SD, Wang SQ, Zhang SY, Liu CM, Li R, Li J, Ai JH, Xie YR. 3-Pyridylacetic-Based Lanthanide Complexes Exhibiting Magnetic Entropy Changes, Single-Molecule Magnet, and Fluorescence. ACS OMEGA 2022; 7:2604-2612. [PMID: 35097258 PMCID: PMC8793079 DOI: 10.1021/acsomega.1c04728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Four complexes from lanthanides, 3-pyridylacetate, and 1,10-phenanthroline, formulated as [Ln2(3-PAA)2(μ-Cl)2(phen)4](ClO4)2 [Ln = Gd(1), Dy(2), Eu(3), Tb(4), 3-PAA = 3-pyridylacetic acid, phen = 1,10-phenanthroline], were obtained. The four compounds were characterized by IR spectra, thermogravimetric analyses, powder X-ray diffraction, and single-crystal X-ray diffraction. Compounds 1-4 are isomorphous, and they have a dinuclear structure. Magnetic studies reveal that 1 shows the magnetocaloric effect with -ΔS m max = 19.03 J kg-1 K-1 at 2 K for ΔH = 5 T, and 2 displays a field-induced single-molecule magnet with U eff = 19.02 K. The photoluminescent spectra of 3 and 4 exhibit strong characteristic emission, which demonstrate that the ligand-to-EuIII/TbIII energy transfer is efficient.
Collapse
Affiliation(s)
- Ying-Bing Lu
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
- National-Local
Joint Engineering Research Center of Heavy Metals Pollutants Control
and Resource Utilization, Nanchang Hangkong
University, Nanchang 330000, P. R. China
| | - Jun-Wei Wu
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Shui-Dong Zhu
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Sheng-Qian Wang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Shi-Yong Zhang
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Cai-Ming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Rong Li
- School
of Materials Science & Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Juan Li
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Jia-Hao Ai
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| | - Yong-Rong Xie
- College
of Chemistry and Chemical Engineering, Gannan
Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
17
|
Felício MR, Vaz PD, Nunes CD, Nolasco MM. Novel versatile europium and terbium complexes as bioprobes and anticancer agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj03011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focusing on the pertinent research on dual activity (as probes and cancer inhibitors), two novel Eu and Tb lanthanide complexes were prepared in this work alongside their binuclear counterparts holding Cu as the secondary metal.
Collapse
Affiliation(s)
- Mário R. Felício
- Institute of Molecular Sciences, Centro de Química Estrutural – FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro D. Vaz
- Champalimaud Centre for the Unknown, Champalimaud Foundation, Av. Brasília, 1400-038 Lisboa, Portugal
| | - Carla D. Nunes
- Institute of Molecular Sciences, Centro de Química Estrutural – FCUL, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Mariela M. Nolasco
- Chemistry Department and CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Dahlen M, Reinfandt N, Jin C, Gamer MT, Fink K, Roesky PW. Hetero-bimetallic Lanthanide-Coinage Metal Compounds Featuring Possible Metal-Metal Interactions in the Excited State. Chemistry 2021; 27:15127-15135. [PMID: 34328235 PMCID: PMC8597103 DOI: 10.1002/chem.202102430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/25/2022]
Abstract
Heterometallic complexes, combining metals of the outer rims of the d-block, for example lanthanides(III) (Ln) and coinage metals(I) (M) are scarcely reported, synthetically challenging and highly interesting in terms of their interactions. In this context, we synthesized hetero-bimetallic Ln-M compounds ligated by the phosphine functionalized amidinate system (N,N'-bis[(2-diphenylphosphino)phenyl]formamidinate, "dpfam"). The resulting compounds [dpfam3 LnM][OTf] (Ln = La, Nd and M = Ag, Au) feature a close proximity of the two metal centres and were investigated experimentally by photoluminescence spectroscopy and quantum chemical calculations. The latter showed rare La-Au interactions for the first excited state.
Collapse
Affiliation(s)
- Milena Dahlen
- Institute for Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 15, Geb. 30.4576131KarlsruheGermany
| | - Niklas Reinfandt
- Institute for Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 15, Geb. 30.4576131KarlsruheGermany
| | - Chengyu Jin
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Michael T. Gamer
- Institute for Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 15, Geb. 30.4576131KarlsruheGermany
| | - Karin Fink
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Peter W. Roesky
- Institute for Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstr. 15, Geb. 30.4576131KarlsruheGermany
| |
Collapse
|
19
|
Jiang L, Li J, Xia D, Gao M, Li W, Fu DY, Zhao S, Li G. Lanthanide Polyoxometalate Based Water-Jet Film with Reversible Luminescent Switching for Rewritable Security Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49462-49471. [PMID: 34618425 DOI: 10.1021/acsami.1c13898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Luminescent security printing is of particular importance in the information era. However, the use of conventional paper still carries a lot of economic and environmental issues. Therefore, developing new environmentally friendly security printing material with a low cost is imperative. To achieve the aforementioned goals, novel lanthanide polyoxometalate doped gelatin/glycerol films with high transparency, high strength, and good flexibility have been developed via a solution-casting method. The electrostatic interaction between zwitterionic gelatin and polyoxometalate was confirmed by attenuated total reflection Fourier transform infrared spectroscopy. Luminescent spectra and digital images indicated that the films exhibited reversible luminescent switching properties through association and dissociation of hydrogen bonds between glycerol and water molecules, allowing its potential application as water-jet rewritable paper for luminescent security printing. Furthermore, the printed information can be conveniently "erased" by heating, and the film can be reused for printing. The film exhibited excellent ability to be both rewritten and re-erased. A QR code pattern and hybrid printing were employed to improve the security of information. In addition, the rewritable films possessed excellent regeneration ability and low toxicity, as well as good stability against UV irradiation and organic solvents. The water-jet rewritable film based on lanthanide polyoxometalate for luminescent security printing, to the best of our knowledge, has not yet been reported up to date. This work provides an attractive alternative strategy on fabricating rewritable films for luminescent security printing in terms of cutting down the cost, simplifying the preparation process, and protecting the environment.
Collapse
Affiliation(s)
- Lijun Jiang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Jingfang Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Diandong Xia
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Min Gao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Weizuo Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Sicong Zhao
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, PR China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| |
Collapse
|
20
|
ŞEN YUVAYAPAN S, ÇOLAK AT, ŞAHİN O, CELIK C. Synthesis, Characterization, and Use of Lanthanide Chelate of β-Diketonate Based Ligand as a Luminescent Biolabel. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.949970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Molodtsov K, Demnitz M, Schymura S, Jankovský F, Zuna M, Havlová V, Schmidt M. Molecular-Level Speciation of Eu(III) Adsorbed on a Migmatized Gneiss As Determined Using μTRLFS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4871-4879. [PMID: 33705108 DOI: 10.1021/acs.est.0c07998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The interaction of Eu(III) with thin sections of migmatized gneiss from the Bukov Underground Research Facility (URF), Czech Republic, was characterized by microfocus time-resolved laser-induced luminescence spectroscopy (μTRLFS) with a spatial resolution of ∼20 μm, well below typical grain sizes of the material. By this approach, sorption processes can be characterized on the molecular level while maintaining the relationship of the speciation with mineralogy and topography. The sample mineralogy was characterized by powder X-ray diffraction and Raman microscopy, and the sorption was independently quantified by autoradiography using 152Eu. Representative μTRLFS studies over large areas of multiple mm2 reveal that sorption on the heterogeneous material is not dominated by any of the typical major constituent minerals (quartz, feldspar, and mica). Instead, minor phases such as chlorite and prehnite control the Eu(III) distribution, despite their low contribution to the overall composition of the material, as well as common but less studied phases like Mg-hornblende. In particular, prehnite shows high a sorption uptake as well as strong binding of Eu to the mineral surface. Sorption on prehnite and hornblende happens at the expense of feldspar, which showed the highest sorption uptake in a previous spatially resolved study on granitic rock. Similarly, sorption on quartz is reduced, even though only low quantities of strongly bound Eu(III) were found here previously. Our results illustrate how competition of mineral surfaces for adsorbing cations drives the metal distribution in heterogeneous systems.
Collapse
Affiliation(s)
- Konrad Molodtsov
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Maximilian Demnitz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Stefan Schymura
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Research Site Leipzig, 04318 Leipzig, Germany
| | - Filip Jankovský
- ÚJV Řež, a.s., Hlavní 130, Řež, 250 68 Husinec, Czech Republic
| | - Milan Zuna
- ÚJV Řež, a.s., Hlavní 130, Řež, 250 68 Husinec, Czech Republic
| | - Václava Havlová
- ÚJV Řež, a.s., Hlavní 130, Řež, 250 68 Husinec, Czech Republic
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
22
|
Wang D, Ge K, Chu R, Xu Z, Yang J, Zhu C. A Reliable Fluorescence‐enhanced Chemical Sensor (Eu@mil‐61) for the Directed Detection of 2‐Naphthol. ChemistrySelect 2021. [DOI: 10.1002/slct.202004834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Da Wang
- College of Environmental and Material Engineering Yantai University Yantai China
| | - Kai‐Ming Ge
- College of Environmental and Material Engineering Yantai University Yantai China
| | - Rui‐Qing Chu
- College of Environmental and Material Engineering Yantai University Yantai China
| | - Zhi‐Jun Xu
- College of Environmental and Material Engineering Yantai University Yantai China
| | - Jian‐Hua Yang
- College of Environmental and Material Engineering Yantai University Yantai China
| | - Cui‐Xue Zhu
- College of Environmental and Material Engineering Yantai University Yantai China
| |
Collapse
|
23
|
Zhang S, Yin W, Yang Z, Yang Y, Li Z, Zhang S, Zhang B, Dong F, Lv J, Han B, Lei Z, Ma H. Functional Copolymers Married with Lanthanide(III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5539-5550. [PMID: 33481562 DOI: 10.1021/acsami.0c19827] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lanthanide(III)-based luminescent materials have attracted great research interests due to their unique optical, electronic, and chemical characteristics. Up to now, how to extend these materials into large, broad application fields is still a great challenging task. In this contribution, we are intended to present a simple but facile strategy to enhance the luminescence from lanthanide ions and impart lanthanide(III)-based luminescent materials with more applicable properties, leading to meet the requirements from different purposes, such as being used as highly emissive powders, hydrogels, films, and sensitive probes under external stimuli. Herein, a water soluble, blue color emissive, temperature sensitive, and film-processable copolymer (Poly-ligand) was designed and synthesized. Upon complexing with Eu3+ and Tb3+ ions, the red color-emitting Poly-ligand-Eu and green color-emitting Poly-ligand-Tb were produced. After finely tuning the ratios between them, a standard white color emitting Poly-ligand-Eu1:Tb4 (CIE = 0.33 and 0.33) was obtained. Furthermore, the resulted materials not only possessed the emissive luminescent property but also inherited functions from the copolymer of Poly-ligand. Thus, these lanthanide(III)-based materials were used for fingerprint imaging, luminescent soft matters formation, colorful organic light-emitting diode device fabrication, and acid/alkali vapors detection.
Collapse
Affiliation(s)
- Shaoxiong Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Weidong Yin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Zengming Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Shengjun Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Bo Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
24
|
Bertrand GHV, Hamel M, Dumazert J, Coulon R, Frangville C. Pan‐lanthanides method for plastic doping, application in photophysics, and scintillation with proof of photoelectric event occurrences. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Matthieu Hamel
- CEA LIST Laboratoire Capteurs et Architectures Electroniques Gif‐sur‐Yvette France
| | - Jonathan Dumazert
- CEA LIST Laboratoire Capteurs et Architectures Electroniques Gif‐sur‐Yvette France
| | - Romain Coulon
- CEA LIST Laboratoire Capteurs et Architectures Electroniques Gif‐sur‐Yvette France
| | - Camille Frangville
- CEA LIST Laboratoire Capteurs et Architectures Electroniques Gif‐sur‐Yvette France
| |
Collapse
|
25
|
Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Mikrochim Acta 2021; 188:26. [DOI: 10.1007/s00604-020-04667-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
|
26
|
Dong L, Lu YB, Zhu SD, Wu JW, Zhang XT, Liao Y, Liu CM, Liu SJ, Xie YR, Zhang SY. A new family of dinuclear lanthanide complexes exhibiting luminescence, magnetic entropy changes and single molecule magnet behaviors. CrystEngComm 2021. [DOI: 10.1039/d0ce01477j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four isomorphic and dinuclear lanthanide complexes were synthesized. Complexes EuIII and TbIII exhibit strong emissions, while GdIII shows the magnetocaloric effect and DyIII displays a single-molecule magnet.
Collapse
|
27
|
Verma PK, Mohapatra PK, Yadav AK, Jha SN, Bhattacharyya D, Leoncini A, Huskens J, Verboom W. Role of diluent in the unusual extraction of Am 3+ and Eu 3+ ions with benzene-centered tripodal diglycolamides: local structure studies using luminescence spectroscopy and XAS. NEW J CHEM 2021. [DOI: 10.1039/d1nj02594e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two benzene-centered tripodal DGA ligands (LI and LII) were used for the extraction of Am3+/Eu3+ from HNO3 medium into n-dodecane modified with various amounts of isodecanol. Luminescence spectroscopy and EXAFS studies were carried out for structural information.
Collapse
Affiliation(s)
- Parveen K. Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | - Ashok K. Yadav
- Applied Molecular and Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Shambhu N. Jha
- Applied Molecular and Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Dibyendu Bhattacharyya
- Applied Molecular and Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Andrea Leoncini
- Laboratory of Molecular Nanofabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Laboratory of Molecular Nanofabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Willem Verboom
- Laboratory of Molecular Nanofabrication, MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
28
|
Hassan SU, Farid MA, Wang Y. A series of lanthanide–quinoxaline-2,3(1 H,4 H)-dione complexes containing 1D chiral Ln 2O 3 (Ln = Eu, Tb, Sm, Dy) chains: luminescent properties and response to small molecules. RSC Adv 2021; 11:33309-33318. [PMID: 35497530 PMCID: PMC9044319 DOI: 10.1039/d1ra05719g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Abstract
A series of isostructural lanthanide–quinoxaline-2,3(1H,4H)-dione containing 1D chiral chains shows high sensing effect toward the small solvent molecules, in which tertiary butanol was an excellent sensitizer, while tetrahydrofuran was a highly quenching species.
Collapse
Affiliation(s)
- Sadaf ul Hassan
- University of Management & Technology, Lahore campus, Lahore, 54770, Pakistan
- COMSATS University Islamabad (CUI), Lahore Campus, Lahore, 54000, Pakistan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Muhammad Asim Farid
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yingxia Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
29
|
Chen Z, Yang X, Song L, Wang X, Xiao Q, Xu H, Feng Q, Ding S. Extraction and complexation of trivalent rare earth elements with tetraalkyl diglycolamides. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Photophysical, DFT and molecular docking studies of Sm(III) and Eu(III) complexes of newly synthesized coumarin ligand. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Facile synthesis and characterization of macromolecular Eu(III) complexes with β-diketone ligands and poly(4-vinyl pyridine-co-methyl methacrylate). JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Chorazy S, Zakrzewski JJ, Magott M, Korzeniak T, Nowicka B, Pinkowicz D, Podgajny R, Sieklucka B. Octacyanidometallates for multifunctional molecule-based materials. Chem Soc Rev 2020; 49:5945-6001. [PMID: 32685956 DOI: 10.1039/d0cs00067a] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octacyanidometallates have been successfully employed in the design of heterometallic coordination systems offering a spectacular range of desired physical properties with great potential for technological applications. The [M(CN)8]n- ions comprise a series of complexes of heavy transition metals in high oxidation states, including NbIV, MoIV/V, WIV/V, and ReV. Since the discovery of the pioneering bimetallic {MnII4[MIV(CN)8]2} and {MnII9[MV(CN)8]6} (M = Mo, W) molecules in 2000, octacyanidometallates were fruitfully explored as precursors for the construction of diverse d-d or d-f coordination clusters and frameworks which could be obtained in the crystalline form under mild synthetic conditions. The primary interest in [M(CN)8]n--based networks was focused on their application as molecule-based magnets exhibiting long-range magnetic ordering resulting from the efficient intermetallic exchange coupling mediated by cyanido bridges. However, in the last few years, octacyanidometallate-based materials proved to offer varied and remarkable functionalities, becoming efficient building blocks for the construction of molecular nanomagnets, magnetic coolers, spin transition materials, photomagnets, solvato-magnetic materials, including molecular magnetic sponges, luminescent magnets, chiral magnets and photomagnets, SHG-active magnetic materials, pyro- and ferroelectrics, ionic conductors as well as electrochemical containers. Some of these materials can be processed into the nanoscale opening the route towards the development of magnetic, optical and electronic devices. In this review, we summarise all important achievements in the field of octacyanidometallate-based functional materials, with the particular attention to the most recent advances, and present a thorough discussion on non-trivial structural and electronic features of [M(CN)8]n- ions, which are purposefully explored to introduce desired physical properties and their combinations towards advanced multifunctional materials.
Collapse
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Tomasz Korzeniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
33
|
Gamonal A, Sun C, Mariano AL, Fernandez-Bartolome E, Guerrero-SanVicente E, Vlaisavljevich B, Castells-Gil J, Marti-Gastaldo C, Poloni R, Wannemacher R, Cabanillas-Gonzalez J, Sanchez Costa J. Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal-Organic Frameworks for Highly Sensitive NO 2 Sensors. J Phys Chem Lett 2020; 11:3362-3368. [PMID: 32195588 DOI: 10.1021/acs.jpclett.0c00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A novel gas sensing mechanism exploiting lanthanide luminescence modulation upon NO2 adsorption is demonstrated here. Two isostructural lanthanide-based metal-organic frameworks (MOFs) are used, including an amino group as the sensitive recognition center for NO2 molecules. The transfer of energy from the organic ligands to Ln is strongly dependent on the presence of NO2, resulting in an unprecedented photoluminescent sensing scheme. Thereby, NO2 exposition triggers either a reversible enhancement or a decrease in the luminescence intensity, depending on the lanthanide ion (Eu or Tb). Our experimental studies combined with density functional theory and complete active space self-consistent field calculations provide an understanding of the nature and effects of NO2 interactions within the MOFs and the signal transduction mechanism.
Collapse
Affiliation(s)
- Arturo Gamonal
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Chen Sun
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - A Lorenzo Mariano
- SIMaP laboratory, CNRS, University Grenoble Alpes, Grenoble 38400, France
| | | | | | - Bess Vlaisavljevich
- University of South Dakota, 414 East Clark Street, Vermillion, South Dakota 57069, United States
| | - Javier Castells-Gil
- Instituto de Ciencia Molecular, Universitat de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Carlos Marti-Gastaldo
- Instituto de Ciencia Molecular, Universitat de Valencia, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Roberta Poloni
- SIMaP laboratory, CNRS, University Grenoble Alpes, Grenoble 38400, France
| | | | | | - Jose Sanchez Costa
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
34
|
Piccinelli F, Paterlini V, Monari M, Bettinelli M. Sensitivity of a solid Eu(III) complex towards acetonitrile vapor: Structural and spectroscopic characterization. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Picayo G, Etz BD, Vyas S, Jensen MP. Characterization of the ALSEP Process at Equilibrium: Speciation and Stoichiometry of the Extracted Complex. ACS OMEGA 2020; 5:8076-8089. [PMID: 32309717 PMCID: PMC7161052 DOI: 10.1021/acsomega.0c00209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
We have determined the identity of the complexes extracted into the ALSEP process solvent from solutions of nitric acid. The ALSEP process is a new solvent extraction separation designed to separate americium and curium from trivalent lanthanides in irradiated nuclear fuel. ALSEP employs a mixture of two extractants, 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and N,N,N',N'-tetra(2-ethylhexyl)diglycolamide (TEHDGA) in n-dodecane, which makes it difficult to ascertain the nature of the extracted metal complexes. It is often asserted that the weak acid extractant HEH[EHP] does not participate in the extracted complex under ALSEP extraction conditions (2-4 M HNO3). However, the analysis of the Am extraction equilibria, Nd absorption spectra, and Eu fluorescence emission spectra of metal-loaded organic phases argues for the participation of HEH[EHP] in the extracted complex despite the high acidity of the aqueous phases. The extracted complex was determined to contain fully protonated molecules of HEH[EHP] with an overall stoichiometry of M(TEHDGA)2(HEH[EHP])2·3NO3. Computations also demonstrate that replacing one TEHDGA molecule with one (HEH[EHP])2 dimer is likely energetically favorable compared to Eu(TEHDGA)3·3NO3, whether the HEH[EHP] dimer is monodentate or bidentate.
Collapse
Affiliation(s)
- Gabriela
A. Picayo
- Chemistry
Department, Colorado School of Mines, 1012 14th St, Golden, Colorado 80401, United States
| | - Brian D. Etz
- Chemistry
Department, Colorado School of Mines, 1012 14th St, Golden, Colorado 80401, United States
| | - Shubham Vyas
- Chemistry
Department, Colorado School of Mines, 1012 14th St, Golden, Colorado 80401, United States
| | - Mark P. Jensen
- Chemistry
Department, Colorado School of Mines, 1012 14th St, Golden, Colorado 80401, United States
- Nuclear
Science and Engineering Program, Colorado
School of Mines, 920 15th St, Golden, Colorado 80401, United States
| |
Collapse
|
36
|
Liang L, Sun N, Yu Y, Ren S, Wu A, Zheng L. Photoluminescent polymer hydrogels with stimuli-responsiveness constructed from Eu-containing polyoxometalate and imidazolium zwitterions. SOFT MATTER 2020; 16:2311-2320. [PMID: 32051977 DOI: 10.1039/d0sm00082e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic-organic co-assembly of anionic polyoxometalates (POMs) with zwitterions provides a facile way to fabricate functional soft materials. In this paper, a translucent, photoluminescent polymer hydrogel was fabricated from Weakley-type POM Na9EuW10O36 (EuW10) and polymerizable imidazole-type zwitterion 3-(1-vinyl-3-imidazolio)propanesulfonate (VIPS) via a one-step synthesis method. Detailed characterization indicated that the polymerization of double bonds in VIPS and electrostatic interactions between EuW10 and VIPS play important roles in the formation of the hydrogels. Additionally, the introduction of non-polymerizable zwitterions 3-(1-methyl-3-imidazolio)propanesulfonate (MIPS) or 3-(1-decyl-3-imidazolio)propanesulfonate (C10IPS) can improve the mechanical and luminous performances of the hydrogels. Especially, C10IPS with a long alkyl chain would more significantly alter the coordination environment of EuW10, and consequently resulted in a more efficient energy transfer process. Further investigations revealed that the chemical environment around the Eu3+ can be highly influenced by organic solvents with stronger coordination abilities than water molecules, such as acetone. The translucency and luminescence intensity of the hydrogels can be reversibly transformed after alternately immersing in acetone or H2O for several minutes. Our results provided a useful strategy for the fabrication of luminescent hydrogels by regulating the noncovalent interactions between POMs and zwitterions.
Collapse
Affiliation(s)
- Liwen Liang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Yang Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Shujing Ren
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Aoli Wu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China.
| |
Collapse
|
37
|
Tcelykh L, Kozhevnikova Khudoleeva V, Goloveshkin A, Lepnev L, Popelensky T, Utochnikova V. Sensing of H 2O in D 2O: is there an easy way? Analyst 2020; 145:759-763. [PMID: 31840687 DOI: 10.1039/c9an02023c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Tb-Eu based luminescence sensor materials toward H2O detection in D2O with the highest sensitivity of 24%/%(H2O), exceeding the previously reported ones by an order of magnitude. The theoretical description of such sensors based on the terbium-europium systems was performed and proved that the sensitivity is proportional to the number of inner-sphere water molecules.
Collapse
Affiliation(s)
- L Tcelykh
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991, Moscow, Russian Federation.
| | | | | | | | | | | |
Collapse
|
38
|
Gupta SK, Rajeshwari B, Achary SN, Tyagi AK, Kadam RM. Controlling the luminescence in K 2Th(PO 4) 2:Eu 3+ by energy transfer and excitation photon: a multicolor emitting phosphor. NEW J CHEM 2020. [DOI: 10.1039/d0nj03117h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work highlighted green, red, and white light emission from a single K2Th(PO4)2 compound consisting of actinide and an alkali ion through defect, doping, excitation, and energy transfer manipulation.
Collapse
Affiliation(s)
- Santosh K. Gupta
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - B. Rajeshwari
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - S. N. Achary
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - A. K. Tyagi
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - R. M. Kadam
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| |
Collapse
|
39
|
Ge K, He X, Xu Z, Chu R. A Luminescent Lanthanide‐Functionalized Metal‐Organic Framework as a Highly Selective and Sensitive Chemical Sensor for Dopamine. ChemistrySelect 2019. [DOI: 10.1002/slct.201903609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kaiming Ge
- College of Environmental and Material EngineeringYantai University Yantai China
| | - Xiaochun He
- College of Environmental and Material EngineeringYantai University Yantai China
| | - Zhijun Xu
- College of Environmental and Material EngineeringYantai University Yantai China
| | - Ruiqing Chu
- College of Environmental and Material EngineeringYantai University Yantai China
| |
Collapse
|
40
|
Yan J, Yan S, Hou P, Lu W, Ma PX, He W, Lei B. A Hierarchical Peptide-Lanthanide Framework To Accurately Redress Intracellular Carcinogenic Protein-Protein Interaction. NANO LETTERS 2019; 19:7918-7926. [PMID: 31645103 DOI: 10.1021/acs.nanolett.9b03028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are a vital and yet underexploited class of therapeutic targets for their crucial roles in cellular processes and involvement in disease initiation and progression. Although some successful chemistry and nanotechnologies have been introduced into peptide PPI modulators to allow cell and tissue permeability, significant challenges remain with regard to the efficient and precise modulation of PPIs within specific cells of diseased tissues, such as solid tumors. Herein, an intratumoral transformable hierarchical framework, termed iPLF, was fabricated via a two-step self-assembly between peptides and lanthanide-doped nanocrystals. In this proof-of-concept study, using NanoEL effect, TME response, and tumor marker targeting, iPLF in vivo delivered the p53-MDM2 modulator DPMI into tumor cells and β-catenin-Bcl9 modulator Bcl9p into tumor stem cells. This crafted programmed nanomedicine with triple-stage delivery and responsiveness accurately modulated the specific intracellular protein-protein interactions, resulting in the suppression of tumor growth and metastasis in vivo, while maintaining a highly favorable safety profile. iPLF reached the goal of accurate, potent, and hazard-free intracellular PPI modulation, thereby providing a means to improve current knowledge of PPI networks and a novel therapeutic strategy for a great variety of diseases.
Collapse
Affiliation(s)
- Jin Yan
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710054 , China
| | - Siqi Yan
- The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , P.R. China
| | - Peng Hou
- The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , P.R. China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Peter X Ma
- Department of Biologic and Materials Sciences, Department of Biomedical Engineering, Macromolecular Science and Engineering Center, Department of Materials Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wangxiao He
- Department of Talent Highland , The First Affiliated Hospital of Xi'an Jiao Tong University , Xi'an 710061 , China
| | - Bo Lei
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology , Xi'an Jiaotong University , Xi'an 710054 , China
| |
Collapse
|
41
|
Utochnikova V. The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Zhang Y, Sheng S, Mao S, Wu X, Li Z, Tao W, Jenkinson IR. Highly sensitive and selective fluorescent detection of phosphate in water environment by a functionalized coordination polymer. WATER RESEARCH 2019; 163:114883. [PMID: 31362209 DOI: 10.1016/j.watres.2019.114883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Phosphate, due to its somatotrophic effect on organisms, can cause severe eutrophication with excessive content in water. Conventional methods for phosphate detection, which are based on complicated instruments, are time-consuming. Here we report a luminescent lanthanide functionalized coordination polymer (Eu@BUC-14) by doping Eu3+ cations to BUC-14 nanocrystals. This Eu3+ functionalized hybrid (Eu@BUC-14) presents excellent luminescence features of Eu3+ ion that originated from efficient energy transfer from the ligand. The detection results show that Eu@BUC-14 is a highly efficient luminescent probe for phosphate detection in aqueous solutions, exhibiting high sensitivity with a low detection limit of 0.88 μM and a short response time of within 5 min. More significantly, Eu@BUC-14 has a high specificity for PO43- over fifteen other pollutant anions and eleven metal cations. The sensing mechanism is proposed via an in-depth analysis of the interaction between PO43- and Eu3+. Simultaneously, it displays high adsorption ability toward PO43- (57.9 mg P/g), making it an outstanding multifunctional material. And the adsorption process plays an important role in preconcentration of PO43- which can lead to a quick fluorescent response with high quenching efficiency. The practicality of Eu@BUC-14 was also validated by sensing PO43- in real environment water samples.
Collapse
Affiliation(s)
- Yanqiu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Sensen Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Shun Mao
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiaohan Wu
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, International Joint Research Center for Sustainable Urban Water System, College of Environmental Science & Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ian R Jenkinson
- Agency for Consultation and Research in Oceanography, 19320, La Roche Canillac, France
| |
Collapse
|
43
|
Liang Z, Wu H, Singh V, Qiao Y, Li M, Ma P, Niu J, Wang J. Assembly of Lanthanide-Containing Polyoxotantalate Clusters with Efficient Photoluminescence Properties. Inorg Chem 2019; 58:13030-13036. [DOI: 10.1021/acs.inorgchem.9b01952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhijie Liang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Hechen Wu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Vikram Singh
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Yuanyuan Qiao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Miaomiao Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, People’s Republic of China
| |
Collapse
|
44
|
Ilmi R, Khan MS, Li Z, Zhou L, Wong WY, Marken F, Raithby PR. Utilization of Ternary Europium Complex for Organic Electroluminescent Devices and as a Sensitizer to Improve Electroluminescence of Red-Emitting Iridium Complex. Inorg Chem 2019; 58:8316-8331. [DOI: 10.1021/acs.inorgchem.9b00303] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rashid Ilmi
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Muhammad S. Khan
- Department of Chemistry, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman
| | - Zhenzhen Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People’s Republic of China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon Hong Kong
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Paul R. Raithby
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
45
|
Khannam M, Sahoo SK, Mukherjee C. Effect of Ligand Chirality and Hyperconjugation on the Thermodynamic Stability of a Tris(aquated) GdIII
Complex: Synthesis, Characterization, and T
1
-Weighted Phantom MR Image Study. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mahmuda Khannam
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati Assam India
| | - Suban K. Sahoo
- Department of Applied Chemistry; S.V. National Institute of Technology; 395007 Surat Gujarat India
| | - Chandan Mukherjee
- Department of Chemistry; Indian Institute of Technology Guwahati; 781039 Guwahati Assam India
| |
Collapse
|
46
|
Sorption of Eu(III) on Eibenstock granite studied by µTRLFS: A novel spatially-resolved luminescence-spectroscopic technique. Sci Rep 2019; 9:6287. [PMID: 31000739 PMCID: PMC6472502 DOI: 10.1038/s41598-019-42664-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/04/2019] [Indexed: 11/08/2022] Open
Abstract
In this study a novel technique, micro-focus time-resolved laser-induced luminescence spectroscopy (µTRLFS) is presented to investigate heterogeneous systems like granite (mainly consisting of quartz, feldspar, and mica), regarding their sorption behavior. µTRLFS is a spatially-resolved upgrade of conventional TRLFS, which allows point-by-point analysis of single minerals by reducing the beam size of the analytic laser beam to below the size of mineral grains. This provides visualization of sorption capacity as well as speciation of a luminescent probe, here Eu3+. A thin-section of granitic rock from Eibenstock, Saxony, Germany was analyzed regarding its mineralogy with microprobe X-ray fluorescence (µXRF) and electron probe microanalysis (EPMA). Afterwards, it was reacted with 5.0 × 10−5 mol/L Eu3+ at pH 8.0 and uptake was quantified by autoradiography. Finally, the µTRLFS studies were conducted. The results clearly show that the materials interact differently with Eu3+, and often even on one mineral grain different speciations can be found. Alkali-feldspar shows very high uptake, with an inhomogeneous distribution, and intermediate sorption strength. On quartz uptake is almost 10-fold lower, while the complexation strength is higher than on feldspar. This may be indicative of adsorption only at surface defect sites, in accordance with low hydration of the observed species.
Collapse
|
47
|
Complexation of CMPO with trivalent f-cations in ionic liquid medium: Solvent extraction, spectroscopic, EXAFS and DFT studies. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Yip Y, Yan Z, Law G, Wong W. Reaction‐Based Europium Complex for Specific Detection of Cysteine Over Homocysteine and Glutathione with Variable‐Temperature Kinetic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuk‐Wang Yip
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Zhiyuan Yan
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Ga‐Lai Law
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| | - Wing‐Tak Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen PR China
- State Key Laboratory of Chemical Biology and Drug Discovery Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom Hong Kong SAR
| |
Collapse
|
49
|
Exploring polylactide/poly(butylene adipate-co-terephthalate)/rare earth complexes biodegradable light conversion agricultural films. Int J Biol Macromol 2019; 127:210-221. [PMID: 30641191 DOI: 10.1016/j.ijbiomac.2019.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/01/2023]
Abstract
In this work, rare earth europium was combined with different organic ligands to obtain two kinds of rare earth conversion agents, Eu(DBM)4CPC and Eu(TTA)3(TPPO)2. Two kinds of conversion films were successfully prepared by combining them with polylactide and poly(butylene adipate-co-terephthalate). Results showed that the film has excellent light conversion ability and high color purity, and rare earth complexes improved melt flowing property and decreased melt viscosity of blend. At the same time, the elongation at break of the film increased greatly, which could up to 595.0/460.9% in the both machine direction (MD) and transverse direction (TD). The results of GPC show that rare earth complexes can make main chain of PLA scission, which causes rapid molecular weight reduction, and the effect of Eu(DBM)4CPC on the molecular weight of PLA was more significant than Eu(TTA)3(TPPO)2. SEM shows that the complicity of PLA and PBAT has been improved, the dispersed phase of the blend is more uniform. DSC shows that both rare earth complexes can improve the crystallization capacity of PLA. And with the addition of cetylpyridinium chloride could improve the compatibility of rare earth complexes and polymer materials, the light transmittance and hydrophilicity of the film also increased obviously.
Collapse
|
50
|
Gujar RB, Ansari SA, Goswami D, Mohapatra PK. Role of TBP on the extraction of trivalent f-cations with CMPO dissolved in a room temperature ionic liquid. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1539108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rajesh B. Gujar
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Seraj A. Ansari
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Dibakar Goswami
- Bioorganic Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|