1
|
Wang J, Ma H, Guo H, Chen Y, Liu Y. Clinical applications of phosphocreatine and related mechanisms. Life Sci 2024; 355:123012. [PMID: 39181314 DOI: 10.1016/j.lfs.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Phosphocreatine (PCr), a naturally occurring creatine phosphorylated molecule, is a high-energy phosphate compound that is one of the most important substances involved in cell energy metabolism, and also has anti-apoptosis and anti-oxidative stress effects. It is precisely because of its role in maintaining energy homeostasis that PCr is widely used in diseases related to energy damage. In the regulation of cell signal, PCr mainly plays a role through MAPK, NF-κB, PI3K/AKT, ERK/Nrf2/HO-1 and JAK2/STAT3. In clinical applications, PCr is commonly used as a cardioprotective drug, such as ischemic heart disease, myocardial fibrosis, myocardial infarction, arrhythmia, and myocarditis. In recent years, further research on PCr has found that PCr also has a positive role in the treatment of other diseases, including diabetes-induced liver injury, kidney injury, cerebral ischemia-reperfusion injury, and neurodegenerative diseases. In this paper, the literature on PCr in three databases, Web of Sciences, SciFinder, and PubMed, was summarized and analyzed, and the research progress of PCr in recent years was reviewed, hoping to provide help for the expansion of its application in clinical therapy.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Huizhong Ma
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Haohao Guo
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yuan Chen
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Yufeng Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China; Natural Products Pharmaceutical Engineering Technology Research Center of Liaoning Province, Shenyang 110036, China.
| |
Collapse
|
2
|
Meng Y, Du Z, Li Y, Wang L, Gao P, Gao X, Li C, Zhao M, Jiang Y, Tu P, Guo X. Integration of Metabolomics With Pharmacodynamics to Elucidate the Anti-myocardial Ischemia Effects of Combination of Notoginseng Total Saponins and Safflower Total Flavonoids. Front Pharmacol 2018; 9:667. [PMID: 29988484 PMCID: PMC6026671 DOI: 10.3389/fphar.2018.00667] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/04/2018] [Indexed: 01/20/2023] Open
Abstract
Notoginseng (Sanqi), the roots and rhizomes of Panax notoginseng and safflower, the flowers of Carthamus tinctorius, are widely used traditional Chinese medicines (TCMs) for the treatment of cardiovascular diseases. Positive evidences have fueled growing acceptance for cardioprotective effects of the combination of the notoginseng total saponins and safflower total flavonoids (CNS) against myocardial ischemia (MI). However, the underlying cardioprotective mechanisms of CNS are still obscured. Metabolomics is a comprehensive tool for investigating biological mechanisms of disease, monitoring therapeutic outcomes, and advancing drug discovery and development. Herein, we investigated the cardioprotective effects of CNS on the isoproterenol (ISO)-induced MI rats by using plasma and urine metabolomics based on ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) and multiple pharmacodynamics approaches. The results showed that pretreatment with CNS could attenuate the cardiac injury resulting from ISO, as evidenced by decreasing the myocardial infarct size, converting the echocardiographic, histopathological, and plasma biochemical abnormalities, and reversing the perturbations of plasma and urine metabolic profiles, particularly for the 55.0 mg/kg dosage group. In addition, 44 metabolites were identified as the potential MI biomarkers, mainly including a range of free fatty acids (FFAs), sphingolipids, and glycerophospholipids. CNS pretreatment group may robustly ameliorate these potential MI-related biomarkers. The accumulation of LysoPCs and FFAs, caused by PLA2, may activate NF-κB pathway and increase proinflammatory cytokines. However, our results showed that CNS at 55.0 mg/kg dosage could maximally attenuate the NF-κB signaling pathway, depress the expressions of TNF-α, IL-6, IL-1β, and PLA2. The results suggested that the anti-inflammatory property of CNS may contribute to its cardioprotection against MI. Our results demonstrate that the integrating of metabolomics with pharmacodynamics provides a reasonable approach for understanding the therapeutic effects of TCMs and CNS provide a potential candidate for prevention and treatment of MI.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lichao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingbo Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Perasso L, Spallarossa P, Gandolfo C, Ruggeri P, Balestrino M. Therapeutic Use of Creatine in Brain or Heart Ischemia: Available Data and Future Perspectives. Med Res Rev 2011; 33:336-63. [DOI: 10.1002/med.20255] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luisa Perasso
- Department of Neuroscience, Opthalmology and Genetics; University of Genova; Genova Italy
- Department of Experimental Medicine, Section of Human Physiology; University of Genova; Genova Italy
| | - Paolo Spallarossa
- Department of Internal Medicine and Cardionephrology; University of Genova; Genova Italy
| | - Carlo Gandolfo
- Department of Neuroscience, Opthalmology and Genetics; University of Genova; Genova Italy
| | - Piero Ruggeri
- Department of Experimental Medicine, Section of Human Physiology; University of Genova; Genova Italy
| | - Maurizio Balestrino
- Department of Neuroscience, Opthalmology and Genetics; University of Genova; Genova Italy
| |
Collapse
|
4
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|