1
|
Xu X, Li T, Zhang L, Liu X. Effect of silencing the E74B gene on the development and metamorphosis of Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2024; 80:1435-1445. [PMID: 37939129 DOI: 10.1002/ps.7874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The growth and development transition of insects are mainly mediated by ecdysone. As one of the ecdysone-induced transcription factors, E74 is involved in many physiological processes of insect growth and development. However, E74 and its function in Helicoverpa armigera remains unclear. RESULTS In this study, E74B, a subtype of the E74, was identified for the first time in H. armigera. Bioinformatics analysis showed that H. armigera E74B shared the highest homology with E74B in Bombyx mori, which belongs to the E26 transformation-specific (ETS) superfamily. The expression profile showed that the transcription level of HaE74B increased in the late stages of fourth to sixth instars compared with the early stages; it was also high in the pupa and midgut. Moreover, we investigated the function of HaE74B through RNA interference and 20E rescue experiments. The results showed silencing of E74B affected the molting and growth of larvae, resulting in the death of more than 60% of larvae. In addition, it also seriously affected the metamorphosis of H. armigera, which reduced the pupae rate, the eclosion rate of the pupae, and fecundity. Application of 20E partially restored the defects in the molting, development and pupae rate of H. armigera. CONCLUSION Taken together, these results demonstrated that HaE74B plays a critical role in the growth, development, and metamorphosis of H. armigera, which serves as a molecular target and sets out a theoretical foundation for RNAi-mediated control of this key pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinhui Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Tingting Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
2
|
Zhang B, Yao B, Li X, Jing T, Zhang S, Zou H, Zhang G, Zou C. E74 knockdown represses larval development and chitin synthesis in Hyphantria cunea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105216. [PMID: 36127058 DOI: 10.1016/j.pestbp.2022.105216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
E74 is a key transcription factor induced by 20E, which plays a broad role in many physiological events during insect growth and development, including vitellogenesis, organ remodeling and new tissue formation, programmed cell death and metamorphosis. However, whether it is involved in regulating insect chitin biosynthesis remains largely unclear. Here, the E74 gene was identified for the first time from Hyphantria cunea, a notorious defoliator of forestry. Thereafter, the role of HcE74 in regulating growth, development and chitin synthesis in H. cunea larvae was evaluated. Bioinformatics analysis showed that HcE74 shared the highest identity (95.53%) with E74A of Spodoptera litura, which belonged to Ets superfamily. The results of RNAi bioassay showed that the larval mortality on 6 d after HcE74 knockdown was up to 51.11 ± 6.94%. Meanwhile, a distinct developmental deformity phenotype was found when HcE74 was silenced. These results indicated that HcE74 plays an important role in the development and molting of H. cunea larvae. Moreover, HcE74 knockdown also significantly decreased the expression of four key genes related to chitin synthesis, including glucose-6-phosphate isomerase (HcG6PI), UDP-N-acetylglucosamine pyrophosphorylase (HcUAP), chitin synthetase A (HcCHSA), and chitin synthetase B (HcCHSB). As a result, the content of chitin in midgut and epidermis decreased by 0.54- and 0.08-fold, respectively. Taken together, these results demonstrated that HcE74 not only plays a critical role in the growth and molting of H. cunea larvae, but also probably participates in the transcriptional regulation of genes involved in chitin biosynthesis.
Collapse
Affiliation(s)
- Bihan Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Bin Yao
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Xingpeng Li
- School of Forestry, Beihua University, Jilin 132013, PR China
| | - Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Shengyu Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
3
|
Gegner J, Vogel H, Billion A, Förster F, Vilcinskas A. Complete Metamorphosis in Manduca sexta Involves Specific Changes in DNA Methylation Patterns. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.646281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transition between morphologically distinct phenotypes during complete metamorphosis in holometabolous insects is accompanied by fundamental transcriptional reprogramming. Using the tobacco hornworm (Manduca sexta), a powerful model for the analysis of insect evolution and development, we conducted a genome-wide comparative analysis of gene expression and DNA methylation in caterpillars and adults to determine whether complete metamorphosis has an epigenetic basis in this species. Bisulfite sequencing indicated a generally low level of DNA methylation with a unimodal CpGO/E distribution. Expression analysis revealed that 24 % of all known M. sexta genes (3.729) were upregulated in last-instar larvae relative to the adult moth, whereas 26 % (4.077) were downregulated. We also identified 4.946 loci and 4.960 regions showing stage-specific differential methylation. Interestingly, genes encoding histone acetyltransferases and histone deacetylases were differentially methylated in the larvae and adults, indicating there is crosstalk between different epigenetic mechanisms. The distinct sets of methylated genes in M. sexta larvae and adults suggest that complete metamorphosis involves epigenetic modifications associated with profound transcriptional reprogramming, involving approximately half of all the genes in this species.
Collapse
|
4
|
Chen J, Li T, Pang R. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2020; 29:38-47. [PMID: 31260146 DOI: 10.1111/imb.12606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The chitin biosynthesis pathway is an important physiology process in arthropods. However, few microRNAs (miRNAs) involved in the regulation of the chitin biosynthesis pathway in insects have been reported until now. In this study, four groups of samples that either upregulated or downregulated the chitin biosynthesis pathway were collected for deep sequencing, and a total of 15 unique mature miRNAs with significantly different expression levels were found, including 11 known miRNAs and four novel miRNAs. Subsequently, we showed that miR-2703 and its new target gene chitin synthase 1a are important for ecdysone-induced chitin biosynthesis in Nilaparvata lugens, a serious insect pest of rice. The nymphs showed an obvious moulting defect phenotype, lower survival rate and significantly reduced chitin content after miR-2703 feeding or injection. Furthermore, we found that the transcription level of miR-2703 was not repressed by 20-hydroxyecdysone signalling after Broad-Complex (BR-C) double-stranded RNA (dsRNA) injection compared with the repressed levels after green fluorescent protein dsRNA injection, suggesting that the involvement of miR-2703 in the 20-hydroxyecdysone pathway contributes to BR-C activity. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in response to 20-hydroxyecdysone signalling.
Collapse
Affiliation(s)
- J Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - T Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - R Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Liu L, Wang Y, Li Y, Ding C, Zhao P, Xia Q, He H. Cross-talk between juvenile hormone and ecdysone regulates transcription of fibroin modulator binding protein-1 in Bombyx mori. Int J Biol Macromol 2019; 128:28-39. [PMID: 30682471 DOI: 10.1016/j.ijbiomac.2019.01.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/05/2023]
Abstract
Juvenile hormone (JH) and 20-hydroxyecdysone (20E) are the most important hormones in silkworm and play vital roles in silkworm development, metamorphosis, and silk protein synthesis. Fibroin modulator binding protein-1 (FMBP-1) is a novel transcription factor regulating fibroin heavy chain (fib-H) transcription in Bombyx mori. The roles of JH and 20E on FMBP-1 transcription are less known. Here, we show FMBP-1 transcription is repressed by juvenile hormone analog (JHA) and activated by 20E. We identify two Krüppel homolog 1 (Kr-h1) binding sites (KBS1 and KBS2) and an E74A binding site (EBS) in the promoter of FMBP-1. We demonstrate Kr-h1 directly binds to KBS1 and KBS2 to repress FMBP-1 transcription, and 20E promotes FMBP-1 transcription through E74A. In the presence of JH and 20E, E74A abolishes the repression of Kr-h1 and activates FMBP-1 transcription through direct binding to EBS between KBS1 and KBS2 in FMBP-1 promoter. Further, JHA and 20E treatment and RNA interference confirm the effects of JH and 20E on FMBP-1 transcription in vivo, thus affecting fib-H transcription. Our results reveal the molecular mechanism of FMBP-1 transcription regulated by the cross-talk between JH and 20E in Bombyx mori, and provide novel insights into FMBP-1 transcriptional regulation and silk protein synthesis.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Yejing Wang
- College of Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Yu Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Chaoxiang Ding
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Requirement of Leptinotarsa decemlineata gene within the 74EF puff for larval-pupal metamorphosis and appendage growth. INSECT MOLECULAR BIOLOGY 2018; 27:439-453. [PMID: 29582498 DOI: 10.1111/imb.12384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two Drosophila melanogaster E-twenty-six domain transcription factor isoforms (E74A and E74B) act differentially at the start of the 20-hydroxyecdysone (20E) signalling cascade to regulate larval-pupal metamorphosis. In the present paper, we identified the two isoforms (LdE74A and LdE74B) in Leptinotarsa decemlineata. During the larval development stage, the mRNA transcript levels of the two LdE74 isoforms were correlated with circulating 20E titres. In vitro midgut culture and in vivo dietary supplementation with 20E revealed that the presence of 20E induced expression peaks of both LdE74A and LdE74B, with similar patterns observed for the two isoforms. Moreover, the mRNA transcript levels of both LdE74A and LdE74B isoforms were significantly downregulated in the L. decemlineata ecdysone receptor RNA interference (RNAi) specimens, but not in the LdE75 RNAi beetles. Ingestion of 20E reduced the larval fresh weights and shortened the larval development period, irrespective of knockdown of LdE74 or not. RNAi of LdE74 did not affect 20E-induced expression of the Ecdysone induced protein 75-hormone receptor 3-fushi tarazu factor 1 (E75-HR3-FTZ-F1) transcriptional cascade. Thus, it seems that LdE74 mediates 20E signalling independent of the E75-HR3-FTZ-F1 transcriptional cascade. Furthermore, silencing of both LdE74 isoforms caused failure of ecdysis. Most of the LdE74 RNAi beetles remained as prepupae. The LdE74 RNAi prepupae exhibited adult character-like forms underneath after removal of the apolysed larval cuticle. Their appendages such as antennae, legs and wings were shorter than those of control larvae. Only a few LdE74 RNAi larvae finally became deformed pupae, with shortened antennae and legs. Therefore, LdE74 is required for larval-pupal metamorphosis and appendage growth in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - G-Q Li
- Key Laboratory of Integrated Crop Pest Management in Eastern China (Agricultural Ministry of China), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Sun Z, Shi Q, Xu C, Wang R, Wang H, Song Y, Zeng R. Regulation of NlE74A on vitellogenin may be mediated by angiotensin converting enzyme through a fecundity-related SNP in the brown planthopper, Nilaparvata lugens. Comp Biochem Physiol A Mol Integr Physiol 2018; 225:26-32. [PMID: 29932974 DOI: 10.1016/j.cbpa.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/28/2023]
Abstract
The major yolk protein precursors (YPP) gene, vitellogenin (Vg), usually considered as a reproductive indicator and molecular marker for evaluating insect fecundity, is controlled by insect hormone (mainly ecdysteroids and juvenile hormone), transcription factors and many other fecundity-related genes. To better understand the underlying molecular regulation mechanisms of the NlVg in the brown planthopper Nilaparvata lugens (N. lugens), the correlation between one early ecdysone response gene E74 and one important fecundity-related gene angiotensin converting enzyme (ACE) on the regulation of Vg gene expression, was investigated. We first showed that the mRNA expression level of NlACE were significantly higher in a high-fecundity population (HFP) than a low-fecundity population (LFP) at different development stages, and knockdown of NlACE expression by RNA interference (RNAi) results in a reduced level of NlVg expression and N. lugens fecundity. Subsequently, we analyzed the promoter of NlACE and found an E74A binding site, which was also differentially expressed in HFP and LFP. Then a gene putatively encoding E74A, namely NlE74A, predominant in the ovary and fat body was cloned and characterized. Furthermore, the developmental profile during female adult and the tissue-specific expression pattern of NlACE and NlE74A were similar to the expression pattern of NlVg gene, implying that both NlACE and NlE74A may be involved in regulating the expression of NlVg. Finally, after injecting the dsRNA of NlE74A, the NlACE expression levels were significantly reduced simultaneously at 24 h and 48 h post-injection, and the NlVg expression level was significant reduced at 24 h post-injection and the downswing was more significant at 48 h post-injection. These results imply that regulation of NlE74A on NlVg transcription might be mediated by NlACE through the E74 binding site at the NlACE promoter region in N. lugens.
Collapse
Affiliation(s)
- Zhongxiang Sun
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qi Shi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rumeng Wang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huanhuan Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Rensen Zeng
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Sun Y, Huang S, Wang S, Guo D, Ge C, Xiao H, Jie W, Yang Q, Teng X, Li F. Large-scale identification of differentially expressed genes during pupa development reveals solute carrier gene is essential for pupal pigmentation in Chilo suppressalis. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:117-125. [PMID: 28041944 DOI: 10.1016/j.jinsphys.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development.
Collapse
Affiliation(s)
- Yang Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Shuping Wang
- Technical Centre for Animal Plant and Food Inspection and Quarantine, Shanghai Entry-exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Dianhao Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Ge
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huamei Xiao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wencai Jie
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiupu Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolu Teng
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
9
|
Goncu E, Uranlı R, Selek G, Parlak O. Developmental Expression of Ecdysone-Related Genes Associated With Metamorphic Changes During Midgut Remodeling of Silkworm Bombyx mori (Lepidoptera:Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew061. [PMID: 27620558 PMCID: PMC5019025 DOI: 10.1093/jisesa/iew061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Steroid hormone 20-hydroxyecdysone is known as the systemic regulators of insect cells; however, how to impact the fate and function of mature and stem cells is unclear. For the first time, we report ecdysone regulatory cascades in both mature midgut cell and stem cell fractions related to developmental events by using histological, immunohistochemical, biochemical and gene expression analysis methods. Ecdysone receptor-B1 (EcR-B1) and ultraspiracle 1 (USP-1) mRNAs were detected mainly in mature cells during programmed cell death (PCD). Lowered E75A and probably BR-C Z4 in mature cells appear to provide a signal to the initiation of PCD. E74B, E75B and BR-C Z2 seem to be early response genes which are involved in preparatory phase of cell death. It is likely that βFTZ-F1, E74A and BR-C Z1 are probably associated with execution of death. EcR-A and USP2 mRNAs were found in stem cells during remodeling processes but EcR-B1, USP1 and E74B genes imply an important role during initial phase of metamorphic events in stem cells. BHR3 mRNAs were determined abundantly in stem cells suggesting its primary role in differentiation. All of these results showed the determination the cell fate in Bombyx mori (Linnaeus) midgut depends on type of ecdysone receptor isoforms and ecdysone-related transcription factors.
Collapse
Affiliation(s)
- Ebru Goncu
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; ),
| | - Ramazan Uranlı
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Gozde Selek
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Osman Parlak
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| |
Collapse
|
10
|
Planelló R, Herrero Ó, Gómez-Sande P, Ozáez I, Cobo F, Servia MJ. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles. PLoS One 2015; 10:e0140239. [PMID: 26448051 PMCID: PMC4598127 DOI: 10.1371/journal.pone.0140239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
- * E-mail:
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Pablo Gómez-Sande
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Fernando Cobo
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - María J. Servia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias, Universidade da Coruña, UDC, Campus da Zapateira s/n, 15008 A Coruña, Spain
| |
Collapse
|
11
|
Ali MS, Rahman RF, Swapon AH. Transcriptional regulation of cuticular protein glycine-rich13 gene expression in wing disc of Bombyx mori, Lepidoptera. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev019. [PMID: 25843580 PMCID: PMC4535481 DOI: 10.1093/jisesa/iev019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Cuticular protein genes are good models to study the molecular mechanisms of signaling by ecdysteroids, which regulate molting and metamorphosis in insects. The present research demonstrates on hormonal regulation and analysis of the regulatory sequences and transcription factors important for Bombyx mori cuticular protein glycine-rich13 (CPG13) gene expression. Expression of CPG13 was strong at prepupal stage in wing tissues of B. mori. CPG13 expression was induced by the addition of 20E, which was inhibited by cycloheximide in the wing disc. The upstream region of the CPG13 gene was analyzed using a transient reporter assay with a gene gun system and identified two BR-Z2 binding sites to be important cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of these sites, followed by introduction into wing discs, significantly decreased the reporter activity. It was found that the regions carrying the binding sites for the ecdysone-responsive transcription factor BR-Z2 were responsible for the hormonal enhancement of the reporter gene activity in wing discs. Mutation of the BR-Z2 binding sites decreased the reporter activity suggesting that the BR-Z2 isoform can bind to the upstream region of the cuticle protein gene, CPG13 and activates its expression.
Collapse
Affiliation(s)
- Md Saheb Ali
- Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka 1207, Bangladesh
| | - R F Rahman
- Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka 1207, Bangladesh
| | | |
Collapse
|
12
|
Kayukawa T, Murata M, Kobayashi I, Muramatsu D, Okada C, Uchino K, Sezutsu H, Kiuchi M, Tamura T, Hiruma K, Ishikawa Y, Shinoda T. Hormonal regulation and developmental role of Krüppel homolog 1, a repressor of metamorphosis, in the silkworm Bombyx mori. Dev Biol 2014; 388:48-56. [DOI: 10.1016/j.ydbio.2014.01.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/17/2014] [Accepted: 01/26/2014] [Indexed: 10/25/2022]
|
13
|
Wang HB, Iwanaga M, Kawasaki H. Stage-specific activation of the E74B promoter by low ecdysone concentrations in the wing disc of Bombyx mori. Gene 2014; 537:322-7. [PMID: 24393712 DOI: 10.1016/j.gene.2013.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
To understand the transcriptional regulation of E74B by low concentrations of ecdysone, the promoter activity of Bombyx mori E74B was assessed in the B. mori wing disc using a transient reporter assay. We identified the transcription start sites of BmE74B and found that the core promoter region consists of initiator (Inr) and downstream promoter elements (DPE). The 3.6-kb upstream promoter region of BmE74B was responsive to 20-hydroxyecdysone (20E) in a dose-dependent manner, and the highest luciferase activity was observed in the presence of 0.2 μg/ml 20E. Moreover, the upstream BmE74B promoter activity was induced by 20E in a stage-specific and time-dependent manner, and the 3.6-kb promoter contained essential elements for the temporal regulation of BmE74B. Furthermore, we found a set of putative ecdysone response elements (EcREs). Five of these elements are highly conserved, capable of binding to the ecdysone receptor. Mutation of more than three putative EcREs, followed by introduction into the wing discs, abolished the activation of the BmE74B promoter by a low concentration of ecdysone. The results confirmed the role of ecdysone response elements in the transcription regulation of BmE74B and demonstrated that multiple putative EcREs were involved in the maximum response of BmE74B to low concentrations of ecdysone.
Collapse
Affiliation(s)
- Hua-Bing Wang
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Masashi Iwanaga
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan
| | - Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, 350 Mine, Utsunomiya, Tochigi 321-8505, Japan.
| |
Collapse
|
14
|
Zhai Y, Zhang J, Sun Z, Dong X, He Y, Kang K, Liu Z, Zhang W. Proteomic and transcriptomic analyses of fecundity in the brown planthopper Nilaparvata lugens (Stål). J Proteome Res 2013; 12:5199-212. [PMID: 24083549 DOI: 10.1021/pr400561c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
As an r-strategy insect species, the brown planthopper (BPH) Nilaparvata lugens (Stål) is a serious pest of rice crops in the temperate and tropical regions of Asia and Australia, which may be due to its robust fecundity. Here we combined 2-DE comparative proteomic and RNA-seq transcriptomic analyses to identify fecundity-related proteins and genes. Using high- and low-fecundity populations as sample groups, a total of 54 and 75 proteins were significantly altered in the third and sixth day brachypterous female stages, respectively, and 39 and 54 of these proteins were identified by MALDI-TOF/TOF MS. In addition, 71,966 unigenes were quantified by Illumina sequencing. On the basis of the transcriptomic analysis, 7408 and 1639 unigenes demonstrated higher expression levels in the high-fecundity population in the second day brachypterous female adults and the second day fifth instar nymphs, respectively, and 411 unigenes were up-regulated in both groups. Of these dozens of proteins and thousands of unigenes, five were differentially expressed at both the protein and mRNA levels at all four time points, suggesting that these genes may regulate fecundity. Glutamine synthetase (GS) was chosen for further functional studies. RNAi knockdown of the GS gene reduced the fecundity of N. lugens by 64.6%, disrupted ovary development, and inhibited vitellogenin (Vg) expression. Our results show that a combination of proteomic and transcriptomic analyses provided five candidate proteins and genes for further study. The knowledge gained from this study may lead to a more fundamental understanding of the fecundity of this important agricultural insect pest.
Collapse
Affiliation(s)
- Yifan Zhai
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-Sen University , No. 135 Xingang West Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ali MS, Iwanaga M, Kawasaki H. Ecdysone-responsive transcriptional regulation determines the temporal expression of cuticular protein genes in wing discs of Bombyx mori. Gene 2013; 512:337-47. [DOI: 10.1016/j.gene.2012.09.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 01/09/2023]
|
16
|
Ali MS, Wang HB, Iwanaga M, Kawasaki H. Expression of cuticular protein genes, BmorCPG11 and BMWCP5 is differently regulated at the pre-pupal stage in wing discs of Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2012; 162:44-50. [DOI: 10.1016/j.cbpb.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 01/02/2023]
|
17
|
Ali MS, Iwanaga M, Kawasaki H. Ecdysone-responsive transcription factors determine the expression region of target cuticular protein genes in the epidermis of Bombyx mori. Dev Genes Evol 2012; 222:89-97. [DOI: 10.1007/s00427-012-0392-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/29/2012] [Indexed: 11/29/2022]
|
18
|
Wang G, Liu PC, Wang JX, Zhao XF. A BTB domain-containing gene is upregulated by immune challenge. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:58-71. [PMID: 21374716 DOI: 10.1002/arch.20421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 01/27/2011] [Indexed: 05/30/2023]
Abstract
20-Hydroxyecdysone (20E) is an important hormone that regulates the development of insects. Although previous evidence revealed that 20E promotes innate immunity in insects, the mechanism involved is still unclear. In this study, the HaBBP gene from Helicoverpa armigera is cloned, which contains BTB (broad-complex, tramtrack, and bric-a-brac), a BACK (BTB and carboxyl-terminus kelch repeats), and PHR (PAM, highwire, and RPM) domains. RT-PCR analysis of HaBBP and western blot analysis of HaBBP show that the mRNA and protein level are higher in the fat body and hemocytes during the molting and metamorphic stages compared with the feeding stage. HaBBP was upregulated by 20E in hemocytes. Knockdown of the 20E receptor EcR-B1 and the heterodimeric partner ultraspiracle protein USP1 in an epidermal cell line (HaEpi) blocked the transcription of HaBBP. HaBBP is distributed in granulocytes and plasmatocytes. Immune stimulation by Escherichia coli caused the upregulation of HaBBP in both hemocytes and fat body. Thus, HaBBP is regulated by the 20E signaling pathway, and is likely involved in the insect innate immunity.
Collapse
Affiliation(s)
- Gang Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | |
Collapse
|
19
|
Hiruma K, Riddiford LM. Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1390-5. [PMID: 20361974 DOI: 10.1016/j.jinsphys.2010.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 05/21/2023]
Abstract
This paper provides a compilation of diagrammatic representations of the expression profiles of epidermal and fat body mRNAs during the last two larval instars and metamorphosis of the tobacco hornworm, Manduca sexta. Included are those encoding insecticyanin, three larval cuticular proteins, dopa decarboxylase, moling, and the juvenile hormone-binding protein JP29 produced by the dorsal abdominal epidermis, and arylphorin and the methionine-rich storage proteins made by the fat body. The mRNA profiles of the ecdysteroid-regulated cascade of transcription factors in the epidermis during the larval molt and the onset of metamorphosis and in the pupal wing during the onset of adult development are also shown. These profiles are accompanied by a brief summary of the current knowledge about the regulation of these mRNAs by ecdysteroids and juvenile hormone based on experimental manipulations, both in vivo and in vitro.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | | |
Collapse
|
20
|
Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF. Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 2010; 315:282-91. [PMID: 19897013 DOI: 10.1016/j.mce.2009.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 10/20/2022]
Abstract
To probe the specific functions of the chaperone protein Hsc70 in 20-hydroxyecdysone signaling, we report on the roles of the Hsc70 from Helicoverpa armigera. RT-PCR analysis revealed that the genes for HaEcRB1 and HaUSP1 were upregulated in 5th molting and metamorphic molting larvae, whereas HaHsc70 maintained a constitutive expression level throughout larval development. Silencing HaEcRB1, HaUSP1 or HaHsc70 by RNAi inhibited the expression of a set of 20E-responsive genes. Immunocytochemical assay demonstrated that HaHsc70 is located predominantly in the cytoplasm of unstimulated cells and partially translocated to the nucleus after stimulation by 20E. Knockdown of HaHsc70 by RNAi decreased the amount of both HaEcRB1 and HaUSP1 in the nucleus. HaHsc70 was capable of binding to HaUSP1 in pull-down assays. These data suggest that Hsc70 participates in the 20E signal transduction pathway via binding to USP1 and mediating the expression of EcRB1, USP1 and then a set of 20E-responsive genes.
Collapse
Affiliation(s)
- Wei-Wei Zheng
- School of Life Sciences, the Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong University, Shanda Road 27, Jinan 250100, Shandong, China
| | | | | | | | | | | |
Collapse
|
21
|
Hiruma K, Riddiford LM. The molecular mechanisms of cuticular melanization: the ecdysone cascade leading to dopa decarboxylase expression in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:245-253. [PMID: 19552890 DOI: 10.1016/j.ibmb.2009.01.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/19/2008] [Accepted: 01/13/2009] [Indexed: 05/28/2023]
Abstract
Many insect developmental color changes are known to be regulated by both ecdysone and juvenile hormone. Yet the molecular mechanisms underlying this regulation have not been well understood. This review highlights the hormonal mechanisms involved in the regulation of two key enzymes [dopa decarboxylase (DDC) and phenoloxidase] necessary for insect cuticular melanization, and the molecular action of 20-hydroxyecdysone on various transcription factors leading to DDC expression at the end of a larval molt in Manduca sexta. In addition, the ecdysone cascade found in M. sexta is compared with that of other organisms.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki, Japan.
| | | |
Collapse
|
22
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
23
|
Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol 2009; 325:341-50. [DOI: 10.1016/j.ydbio.2008.10.016] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/02/2008] [Accepted: 10/06/2008] [Indexed: 11/15/2022]
|
24
|
Parthasarathy R, Palli SR. Molecular analysis of juvenile hormone analog action in controlling the metamorphosis of the red flour beetle, Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 70:57-70. [PMID: 19072925 PMCID: PMC3556276 DOI: 10.1002/arch.20288] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The juvenile hormone analogs (JHA) are known to disrupt insect development but the molecular mechanisms of their action have been studied only in a few model insects belonging to orders Diptera and Lepidoptera. Here, we investigated the mechanisms of JHA action in red flour beetle, Tribolium castaneum, belonging to the order Coleoptera. Application of JHA during penultimate and final instar larval stages blocked larval-pupal metamorphosis and induced supernumerary larval molts. When compared to the control insects undergoing larval-pupal molt, down-regulation of expression of transcription factor, Broad, and up-regulation of other genes involved in 20-hydroxyecdysone (20E) action (FTZ-F1, E74) were observed in JHA-treated larvae undergoing supernumerary larval molts. The presence of JHA during the final instar larval stage blocked the midgut remodeling wherein programmed cell death (PCD) of larval cells and proliferation and differentiation of imaginal cells to pupal gut epithelium were impaired. The comparative analysis of 20E-induced gene expression in the midguts of JHA-treated and control insects revealed that JHA suppressed the expression of EcRA, EcRB, Broad, E74, E75A, and E75B, resulting in a block in PCD as well as proliferation and differentiation of imaginal cells.
Collapse
Affiliation(s)
- R Parthasarathy
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
25
|
Sekimoto T, Iwami M, Sakurai S. 20-Hydroxyecdysone regulation of two isoforms of the Ets transcription factor E74 gene in programmed cell death in the silkworm anterior silk gland. INSECT MOLECULAR BIOLOGY 2007; 16:581-90. [PMID: 17894557 DOI: 10.1111/j.1365-2583.2007.00751.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Programmed cell death of larval-specific tissues in insects is under the control of 20-hydroxyecdysone (20E). The ecdysteroid-regulated early genes are conserved in the programmed cell death of anterior silk glands (ASGs) in Bombyx mori and salivary glands in Drosophila melanogaster. We identified and characterized two isoforms of the Ets transcription factor E74 gene in B. mori (BmE74). In ASGs of B. mori last instar larvae, the Bm74A mRNA level increased concomitantly with an increase in haemolymph ecdysteroid titre after gut purge. The optimal 20E concentration for stimulation of Bm74A in ASGs was 4 microM, a similar value to the peak haemolymph ecdysteroid concentration after gut purge. In contrast, BmE74B expression peaked on day 5 of the feeding period, after which it did not increase again. These findings suggest that the BmE74 isoforms play different roles in the regulation of programmed cell death in B. mori ASGs.
Collapse
Affiliation(s)
- T Sekimoto
- Division of Life Sciences, Graduate School of Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Japan
| | | | | |
Collapse
|
26
|
Beckstead RB, Lam G, Thummel CS. Specific transcriptional responses to juvenile hormone and ecdysone in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:570-8. [PMID: 17517334 PMCID: PMC1976265 DOI: 10.1016/j.ibmb.2007.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/28/2007] [Indexed: 05/10/2023]
Abstract
Previous studies have shown that ecdysone (E), and its immediate downstream product 20-hydroxyecdysone (20E), can have different biological functions in insects, suggesting that E acts as a distinct hormone. Here, we use Drosophila larval organ culture in combination with microarray technology to identify genes that are transcriptionally regulated by E, but which show little or no response to 20E. These genes are coordinately expressed for a brief temporal interval at the onset of metamorphosis, suggesting that E acts together with 20E to direct puparium formation. We also show that E74B, pepck, and CG14949 can be induced by juvenile hormone III (JH III) in organ culture, and that CG14949 can be induced by JH independently of protein synthesis. In contrast, E74A and E75A show no response to JH in this system. These studies demonstrate that larval organ culture can be used to identify Drosophila genes that are regulated by hormones other than 20E, and provide a basis for studying crosstalk between multiple hormone signaling pathways.
Collapse
Affiliation(s)
| | | | - Carl S. Thummel
- *Corresponding author. Tel.: +801-581-2937; fax: +801-581-5374. E-mail address: (C.S. Thummel)
| |
Collapse
|
27
|
Keshan B, Hiruma K, Riddiford LM. Developmental expression and hormonal regulation of different isoforms of the transcription factor E75 in the tobacco hornworm Manduca sexta. Dev Biol 2006; 295:623-32. [PMID: 16697364 DOI: 10.1016/j.ydbio.2006.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 03/12/2006] [Accepted: 03/31/2006] [Indexed: 10/24/2022]
Abstract
E75A and E75B, isoforms of the E75 orphan nuclear receptor, are sequentially up-regulated in the abdominal epidermis of the tobacco hornworm Manduca sexta by 20-hydroxyecdysone (20E) during larval and pupal molts, with E75A also increasing at pupal commitment (Zhou et al., Dev. Biol. 193, 127-138, 1998). We have now cloned E75C and show that little is expressed in the epidermis during larval life with trace amounts seen just before ecdysis. Instead, E75C is found in high amounts during the development of the adult wings as the ecdysteroid titer is rising, and this increase was prevented by juvenile hormone (JH) that prevented adult development. By contrast, E75D is expressed transiently during the larval and pupal molts as the ecdysteroid titer begins to decline and again just before ecdysis, but in the developing adult wings is expressed on the rise of 20E. Removal of the source of JH had little effect on either E75C or E75D mRNA expression during the larval and pupal molts. At the time of pupal commitment, in vitro experiments show that 20E up-regulates E75D and JH prevents this increase. Neither E75A nor E75D mRNA was up-regulated by JH alone. Thus, E75C is primarily involved in adult differentiation whereas E75D has roles both during the molt and pupal commitment.
Collapse
Affiliation(s)
- Bela Keshan
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | | | | |
Collapse
|
28
|
Hiruma K, Riddiford LM. Differential control of MHR3 promoter activity by isoforms of the ecdysone receptor and inhibitory effects of E75A and MHR3. Dev Biol 2004; 272:510-21. [PMID: 15282165 DOI: 10.1016/j.ydbio.2004.04.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 04/22/2004] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
MHR3 is an ecdysone-inducible transcription factor whose expression in both Manduca sexta epidermis and the Manduca GV1 cell line is induced by 20-hydroxyecdysone (20E) in vitro. There are four putative ecdysone response elements (EcRE) in the 2.6-kb flanking region of the MHR3 promoter. The most proximal, EcRE1, is necessary for activation of the promoter by 20E in the GV1 cells because the mutation of EcRE1 caused the loss of responsiveness to 20E. Previous studies showed that EcR-B1/USP-1 bound only to EcRE1 and high levels of this complex increased the 20E-induced activation, whereas the presence of high USP-2 prevented this increased activation. When we expressed EcR-A alone or in combination with USP-1 under the control of Autographa californica baculovirus promoter (pIE1hr), the activation of the 2.6-kb promoter by 20E was reduced by about 50%. Moreover, when EcR-A was expressed together with both EcR-B1 and USP-1, it reduced the normal activation caused by EcR-B1 and USP-1 by 50%. Gel mobility shift assays showed no binding of EcR-A/USP-1 to EcRE1. The presence of EcR-A, however, reduced the binding of EcR-B1/USP-1 by about 50%. These findings suggest that EcR-A competes with EcR-B1 for binding of USP-1, leading to a decline in activity of the promoter. In addition, E75A, another ecdysone-induced transcription factor, and MHR3 itself suppressed MHR3 promoter activity by binding to the monomeric response element (MRE2). Therefore, MHR3 can be down-regulated both by itself and by E75A.
Collapse
Affiliation(s)
- Kiyoshi Hiruma
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | |
Collapse
|
29
|
Sun G, Zhu J, Raikhel AS. The early gene E74B isoform is a transcriptional activator of the ecdysteroid regulatory hierarchy in mosquito vitellogenesis. Mol Cell Endocrinol 2004; 218:95-105. [PMID: 15130514 DOI: 10.1016/j.mce.2003.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
In the mosquito Aedes aegypti, blood feeding activates vitellogenesis that involves yolk protein precursor (YPP) genes in an insect metabolic tissue, the fat body. Vitellogenesis is regulated by the 20-hydroxyecdysone (20E) regulatory hierarchy, in which the Ets-domain protein E74 is a key transcriptional regulator. The mosquito AaE74 gene encodes two isoforms-AaE74A and AaE74B. Both AaE74 isoforms are 20E-inducible early gene products. AaE74B reaches its maximal expression at 10(-7)M of 20E, while AaE74A requires 10(-6)M of 20E, a concentration at which the YPP genes reach their maximal induction level. In transfection assay, AaE74B is capable of activating a reporter construct containing E74-response elements, while expression of AaE74A has no effect on the basal levels of the reporter. The AaE74B binding activity is present in the fat body nuclei only during active vitellogenesis. Taken together, our findings demonstrate that AaE74B isoform plays the role of a transcriptional activator during vitellogenesis.
Collapse
Affiliation(s)
- GuoQiang Sun
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
30
|
Riddiford LM, Hiruma K, Zhou X, Nelson CA. Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1327-1338. [PMID: 14599504 DOI: 10.1016/j.ibmb.2003.06.001] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This short review summarizes our current knowledge about the role of transcription factors regulated by ecdysteroids and juvenile hormone (JH) in larval molting and metamorphosis in the tobacco hornworm, Manduca sexta, and Drosophila melanogaster. We show new evidence that EcR-A/USP-2 and E75A contribute to the down-regulation of MHR3 after the peak of ecdysteroid. Also, there is suggestive evidence that both MHR4 and betaFTZ-F1 may regulate the expression of dopa decarboxylase as the ecdysteroid titer declines. We summarize the regulation by JH of the Broad transcription factor that normally appears in the epidermis in the final larval instar and specifies pupal cuticle formation at the metamorphic molt. Premature expression of different Broad isoforms also is shown to cause precocious degeneration of the prothoracic glands as well as to prevent ecdysteroid release during its presence.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA 98195-1800, USA.
| | | | | | | |
Collapse
|