1
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|
2
|
O'Brien ÁC, Hallis LJ, Regnault C, Morrison D, Blackburn G, Steele A, Daly L, Tait A, Tremblay MM, Telenko DE, Gunn J, McKay E, Mari N, Salik MA, Ascough P, Toney J, Griffin S, Whitfield P, Lee M. Using Organic Contaminants to Constrain the Terrestrial Journey of the Martian Meteorite Lafayette. ASTROBIOLOGY 2022; 22:1351-1362. [PMID: 36264546 PMCID: PMC9618387 DOI: 10.1089/ast.2021.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.
Collapse
Affiliation(s)
- Áine Clare O'Brien
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- SUERC, University of Glasgow, East Kilbride, UK
| | - Lydia Jane Hallis
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Clement Regnault
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | | | - Gavin Blackburn
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Andrew Steele
- Carnegie Planets, Carnegie Science, Washington DC, USA
| | - Luke Daly
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, Australia
- Department of Materials, University of Oxford, Oxford, UK
| | - Alastair Tait
- School of Earth, Atmosphere & Environment Monash University, Rainforest Walk Clayton, Victoria, Australia
| | - Marissa Marie Tremblay
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Darcy E.P. Telenko
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Jacqueline Gunn
- School of Professional Services, Glasgow Caledonian University, Cowcaddens Road, Glasgow, UK
| | | | - Nicola Mari
- Dipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Pavia, Italy
| | - Mohammad Ali Salik
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | | | - Jaime Toney
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Sammy Griffin
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| | - Phil Whitfield
- Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Switchback Rd, Bearsden, Glasgow, UK
| | - Martin Lee
- School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens, Glasgow, UK
| |
Collapse
|
3
|
McCaig HC, Stockton A, Crilly C, Chung S, Kanik I, Lin Y, Zhong F. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith. ASTROBIOLOGY 2016; 16:703-714. [PMID: 27623199 DOI: 10.1089/ast.2015.1443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED The analysis of the organic compounds present in the martian regolith is essential for understanding the history and habitability of Mars, as well as studying the signs of possible extant or extinct life. To date, pyrolysis, the only technique that has been used to extract organic compounds from the martian regolith, has not enabled the detection of unaltered native martian organics. The elevated temperatures required for pyrolysis extraction can cause native martian organics to react with perchlorate salts in the regolith and possibly result in the chlorohydrocarbons that have been detected by in situ instruments. Supercritical carbon dioxide (SCCO2) extraction is an alternative to pyrolysis that may be capable of delivering unaltered native organic species to an in situ detector. In this study, we report the SCCO2 extraction of unaltered coronene, a representative polycyclic aromatic hydrocarbon (PAH), from martian regolith simulants, in the presence of 3 parts per thousand (ppth) sodium perchlorate. PAHs are a class of nonpolar molecules of astrobiological interest and are delivered to the martian surface by meteoritic infall. We also determined that the extraction efficiency of coronene was unaffected by the presence of perchlorate on the regolith simulant, and that no sodium perchlorate was extracted by SCCO2. This indicates that SCCO2 extraction can provide de-salted samples that could be directly delivered to a variety of in situ detectors. SCCO2 was also used to extract trace native fluorescent organic compounds from the martian regolith simulant JSC Mars-1, providing further evidence that SCCO2 extraction may provide an alternative to pyrolysis to enable the delivery of unaltered native organic compounds to an in situ detector on a future Mars rover. KEY WORDS Biomarkers-Carbon dioxide-In situ measurement-Mars-Search for Mars' organics. Astrobiology 16, 703-714.
Collapse
Affiliation(s)
- Heather C McCaig
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | | | - Candice Crilly
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
- 3 Occidental College , Los Angeles, California
| | - Shirley Chung
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Isik Kanik
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Ying Lin
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Fang Zhong
- 1 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| |
Collapse
|
4
|
Mora MF, Stockton AM, Willis PA. Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life. Electrophoresis 2012; 33:2624-38. [DOI: 10.1002/elps.201200102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Sephton MA. Pyrolysis and mass spectrometry studies of meteoritic organic matter. MASS SPECTROMETRY REVIEWS 2012; 31:560-569. [PMID: 22407548 DOI: 10.1002/mas.20354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 05/31/2023]
Abstract
Meteorites are fragments of extraterrestrial materials that fall to the Earth's surface. The carbon-rich meteorites are derived from ancient asteroids that have remained relatively unprocessed since the formation of the Solar System 4.56 billion years ago. They contain a variety of extraterrestrial organic molecules that are a record of chemical evolution in the early Solar System and subsequent aqueous and thermal processes on their parent bodies. The major organic component (>70%) is a macromolecular material that resists straightforward solvent extraction. In response to its intractable nature, the most common means of investigating this exotic material involves a combination of thermal decomposition (pyrolysis) and mass spectrometry. Recently the approach has also been used to explore controversial claims of organic matter in meteorites from Mars. This review summarizes the pyrolysis data obtained from meteorites and outlines key interpretations.
Collapse
Affiliation(s)
- M A Sephton
- Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
6
|
Steele A, McCubbin FM, Fries M, Kater L, Boctor NZ, Fogel ML, Conrad PG, Glamoclija M, Spencer M, Morrow AL, Hammond MR, Zare RN, Vicenzi EP, Siljestrom S, Bowden R, Herd CDK, Mysen BO, Shirey SB, Amundsen HEF, Treiman AH, Bullock ES, Jull AJT. A Reduced Organic Carbon Component in Martian Basalts. Science 2012; 337:212-5. [DOI: 10.1126/science.1220715] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Alajtal AI, Edwards HGM, Elbagerma MA, Scowen IJ. The effect of laser wavelength on the Raman Spectra of phenanthrene, chrysene, and tetracene: implications for extra-terrestrial detection of polyaromatic hydrocarbons. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 76:1-5. [PMID: 20308013 DOI: 10.1016/j.saa.2010.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 05/29/2023]
Abstract
Raman spectroscopy, with visible laser (514 and 633 nm) and near infrared (785 and 1064 nm) excitation, has been used to obtain high quality spectra of phenanthrene, chrysene, and tetracene. Samples with dimensions from a minimum size of 10 microm have been analyzed utilizing a Raman microprobe fitted with a charge-coupled device (CCD) array detector and a FT-Raman instrument. Fluorescence is observed for samples using visible 514, 633 and near infrared 785 nm excitation but most of the samples can be measured with a near infrared 1064 nm Nd:YAG laser.
Collapse
Affiliation(s)
- A I Alajtal
- Centre for Astrobiology & Extremophiles Research, School of Life Sciences, University of Bradford, Bradford, UK.
| | | | | | | |
Collapse
|
8
|
Stockton AM, Chiesl TN, Lowenstein TK, Amashukeli X, Grunthaner F, Mathies RA. Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer. ASTROBIOLOGY 2009; 9:823-831. [PMID: 19968460 DOI: 10.1089/ast.2009.0357] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Mars Organic Analyzer (MOA) has enabled the sensitive detection of amino acid and amine biomarkers in laboratory standards and in a variety of field sample tests. However, the MOA is challenged when samples are extremely acidic and saline or contain polyvalent cations. Here, we have optimized the MOA analysis, sample labeling, and sample dilution buffers to handle such challenging samples more robustly. Higher ionic strength buffer systems with pK(a) values near pH 9 were developed to provide better buffering capacity and salt tolerance. The addition of ethylaminediaminetetraacetic acid (EDTA) ameliorates the negative effects of multivalent cations. The optimized protocol utilizes a 75 mM borate buffer (pH 9.5) for Pacific Blue labeling of amines and amino acids. After labeling, 50 mM (final concentration) EDTA is added to samples containing divalent cations to ameliorate their effects. This optimized protocol was used to successfully analyze amino acids in a saturated brine sample from Saline Valley, California, and a subcritical water extract of a highly acidic sample from the Río Tinto, Spain. This work expands the analytical capabilities of the MOA and increases its sensitivity and robustness for samples from extraterrestrial environments that may exhibit pH and salt extremes as well as metal ions.
Collapse
Affiliation(s)
- Amanda M Stockton
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
9
|
Stockton AM, Chiesl TN, Scherer JR, Mathies RA. Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system. Anal Chem 2009; 81:790-6. [PMID: 19072718 DOI: 10.1021/ac802033u] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mars Organic Analyzer (MOA), a portable microchip capillary electrophoresis (CE) instrument developed for sensitive amino acid analysis on Mars, is used to analyze laboratory standards and real-world samples for polycyclic aromatic hydrocarbons (PAHs). The microfabricated CE separation and analysis method for these hydrophobic analytes is optimized, resulting in a separation buffer consisting of 10 mM sulfobutylether-beta-cyclodextrin, 40 mM methyl-beta-cyclodextrin, 5 mM carbonate buffer at pH 10, 5 degrees C. A PAH standard consisting of seven PAHs found in extraterrestrial matter and two terrestrial PAHs is successfully baseline separated. Limits of detection for the components of the standard ranged from 2000 ppm to 6 ppb. Analysis of an environmental contamination standard from Lake Erie and of a hydrothermal vent chimney sample from the Guaymas Basin agreed with published composition. A Martian analogue sample from the Yungay Hills region of the Atacama Desert was analyzed and found to contain 9,10-diphenylanthracene, anthracene, anthanthrene, fluoranthene, perylene, and benzo[ghi]fluoranthene at ppm levels. This work establishes the viability of the MOA for detecting and analyzing PAHs in in situ planetary exploration.
Collapse
Affiliation(s)
- Amanda M Stockton
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
10
|
Treiman AH. Submicron magnetite grains and carbon compounds in Martian meteorite ALH84001: inorganic, abiotic formation by shock and thermal metamorphism. ASTROBIOLOGY 2003; 3:369-392. [PMID: 14577885 DOI: 10.1089/153110703769016451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purported biogenic features of the ALH84001 Martian meteorite (the carbonate globules, their submicron magnetite grains, and organic matter) have reasonable inorganic origins, and a comprehensive hypothesis is offered here. The carbonate globules were deposited from hydrothermal water, without biological mediation. Thereafter, ALH84001 was affected by an impact shock event, which raised its temperature nearly instantaneously to 500-700K, and induced iron-rich carbonate in the globules to decompose to magnetite and other minerals. The rapidity of the temperature increase caused magnetite grains to nucleate in abundance; hence individual crystals were very small. Nucleation and growth of magnetite crystals were fastest along edges and faces of the precursor carbonate grains, forcing the magnetite grains to be platy or elongated, including the "truncated hexa-octahedra" shape. ALH84001 had formed at some depth within Mars where the lithostatic pressure was significantly above that of Mars' surface. Also, because the rock was at depth, the impact heat dissipated slowly. During this interval, magnetite crystals approached chemical equilibria with surrounding minerals and gas. Their composition, nearly pure Fe(3)O(4), reflects those of equilibria; elements that substitute into magnetite are either absent from iron-rich carbonate (e.g., Ti, Al, Cr), or partitioned into other minerals during magnetite formation (Mg, Mn). Many microstructural imperfections in the magnetite grains would have annealed out as the rock cooled. In this post-shock thermal regime, carbon-bearing gas from the decomposition of iron carbonates reacted with water in the rock (or from its surroundings) to produce organic matter via Fischer-Tropschlike reactions. Formation of such organic compounds like polycyclic aromatic hydrocarbons would have been catalyzed by the magnetite (formation of graphite, the thermochemically stable phase, would be kinetically hindered).
Collapse
|
11
|
Bada JL. State-of-the-art instruments for detecting extraterrestrial life. Proc Natl Acad Sci U S A 2001; 98:797-800. [PMID: 11158548 PMCID: PMC33370 DOI: 10.1073/pnas.98.3.797] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- J L Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0212, USA.
| |
Collapse
|
12
|
Shock EL. An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorite through cooling of magmatic and impact-generated gases. METEORITICS & PLANETARY SCIENCE 2000; 35:629-638. [PMID: 11543519 DOI: 10.1111/j.1945-5100.2000.tb01443.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thermodynamic calculations of metastable equilibria were used to evaluate the potential for abiotic synthesis of aliphatic and polycyclic aromatic hydrocarbons (PAHs) in the martian meteorite Allan Hills (ALH) 84001. The calculations show that PAHs and normal alkanes could form metastably from CO, CO2, and H2 below approximately 250-300 degrees C during rapid cooling of trapped magmatic or impact-generated gases. Depending on temperature, bulk composition, and oxidation-reduction conditions, PAHs and normal alkanes can form simultaneously or separately. Moreover, PAHs can form at lower H/C ratios, higher CO/CO2 ratios, and higher temperatures than normal alkanes. Dry conditions with H/C ratios less than approximately 0.01-0.001 together with high CO/CO2 ratios also favor the formation of unalkylated PAHs. The observed abundance of PAHs, their low alkylation, and a variable but high aromatic to aliphatic ratio in ALH 84001 all correspond to low H/C and high CO/CO2 ratios in magmatic and impact gases and can be used to deduce spatial variations of these ratios. Some hydrocarbons could have been formed from trapped magmatic gases, especially if the cooling was fast enough to prevent reequilibration. We propose that subsequent impact heating(s) in ALH 84001 could have led to dissociation of ferrous carbonates to yield fine-grain magnetite, formation of a CO-rich local gas phase, reduction of water vapor to H2, reequilibration of the trapped magmatic gases, aromatization of hydrocarbons formed previously, and overprinting of the synthesis from magmatic gases, if any. Rapid cooling and high-temperature quenching of CO-, H2-rich impact gases could have led to magnetite-catalyzed hydrocarbon synthesis.
Collapse
|
13
|
Abstract
Certain chemical and mineral features of the Martian meteorite ALH84001 were reported in 1996 to be probable evidence of ancient life on Mars. In spite of new observations and interpretations, the question of ancient life on Mars remains unresolved. Putative biogenic, nanometer magnetite has now become a leading focus in the debate.
Collapse
Affiliation(s)
- R B Frankel
- Department of Physics, California Polytechnic State University, San Luis Obispo, 93407, USA.
| | | |
Collapse
|