1
|
Jiang S, D'Amario L, Dau H. Copper Carbonate Hydroxide as Precursor of Interfacial CO in CO 2 Electroreduction. CHEMSUSCHEM 2022; 15:e202102506. [PMID: 35289108 PMCID: PMC9314821 DOI: 10.1002/cssc.202102506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Copper electrodes are especially effective in catalysis of C2 and further multi-carbon products in the CO2 reduction reaction (CO2 RR) and therefore of major technological interest. The reasons for the unparalleled Cu performance in CO2 RR are insufficiently understood. Here, the electrode-electrolyte interface was highlighted as a dynamic physical-chemical system and determinant of catalytic events. Exploiting the intrinsic surface-enhanced Raman effect of previously characterized Cu foam electrodes, operando Raman experiments were used to interrogate structures and molecular interactions at the electrode-electrolyte interface at subcatalytic and catalytic potentials. Formation of a copper carbonate hydroxide (CuCarHyd) was detected, which resembles the mineral malachite. Its carbonate ions could be directly converted to CO at low overpotential. These and further experiments suggested a basic mode of CO2 /carbonate reduction at Cu electrodes interfaces that contrasted previous mechanistic models: the starting point in carbon reduction was not CO2 but carbonate ions bound to the metallic Cu electrode in form of CuCarHyd structures. It was hypothesized that Cu oxides residues could enhance CO2 RR indirectly by supporting formation of CuCarHyd motifs. The presence of CuCarHyd patches at catalytic potentials might result from alkalization in conjunction with local electrical potential gradients, enabling the formation of metastable CuCarHyd motifs over a large range of potentials.
Collapse
Affiliation(s)
- Shan Jiang
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Luca D'Amario
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
- Department of ChemistryÅngström LaboratoryUppsala UniversityBox 52375120UppsalaSweden
| | - Holger Dau
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| |
Collapse
|
2
|
Matusoiu F, Negrea A, Ciopec M, Duteanu N, Negrea P, Svera P, Ianasi C. Molybdate Recovery by Adsorption onto Silica Matrix and Iron Oxide Based Composites. Gels 2022; 8:gels8020125. [PMID: 35200506 PMCID: PMC8871702 DOI: 10.3390/gels8020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
Abstract
Aggressive industrial development over the last century involved different heavy metals being used, including high quantities of molybdenum, which need to be treated before discharge in industrial waters. Molybdenum’s market price and industrial applicability make its recovery a big challenge. In the present study the possibility to recover molybdenum ions from aqueous solutions by adsorption on a composite material based on silica matrix and iron oxides—SiO2FexOy—was evaluated. Tests were performed in order to determine the influence of adsorbent material dose, initial solution pH, contact time and temperature over adsorption capacity of synthesized adsorbent material. For better understanding of the adsorption process, the obtained experimental data were modelled using Langmuir, Freundlich and Sips adsorption isotherms. Based on the obtained data, it can proved that the Sips isotherm was describing with better orderliness the studied process, obtaining a maximum adsorption capacity of 10.95 mg MoO42− for each gram of material. By modelling the studied adsorption process, it was proven that the pseudo-second order model is accurately describing the adsorption process. By fitting experimental data with Weber-Morris model, it was proven that MoO42− adsorption is a complex process, occurring in two different steps, one controlled by diffusion and the second one controlled by mass transfer. Further, studies were performed in order to determine the optimum pH value needed to obtain maximum adsorption capacity, but also to determine which are the adsorbed species. From pH and desorption studies, it was proven that molybdate adsorption is a physical process. In order to establish the adsorption mechanism, the thermodynamic parameters (ΔG0, ΔH0 and ΔS0) were determined.
Collapse
Affiliation(s)
- Florin Matusoiu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, No. 2, 300006 Timişoara, Romania; (F.M.); (M.C.); (N.D.); (P.N.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, No. 2, 300006 Timişoara, Romania; (F.M.); (M.C.); (N.D.); (P.N.)
- Correspondence: (A.N.); (C.I.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, No. 2, 300006 Timişoara, Romania; (F.M.); (M.C.); (N.D.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, No. 2, 300006 Timişoara, Romania; (F.M.); (M.C.); (N.D.); (P.N.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University of Timişoara, Victoriei Square, No. 2, 300006 Timişoara, Romania; (F.M.); (M.C.); (N.D.); (P.N.)
| | - Paula Svera
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 144th Dr.A.P. Podeanu Street, 300569 Timişoara, Romania;
| | - Catalin Ianasi
- “Coriolan Drăgulescu” Institute of Chemistry, Bv. Mihai Viteazul, No. 24, 300223 Timişoara, Romania
- Correspondence: (A.N.); (C.I.)
| |
Collapse
|
3
|
Development of uncoated near-spherical gold nanoparticles for the label-free quantification of Lactobacillus rhamnosus GG by surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2019; 411:5563-5576. [PMID: 31209547 DOI: 10.1007/s00216-019-01938-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
The Surface-enhanced Raman spectroscopy (SERS) method based on gold nanoparticles as SERS substrate was investigated for the label-free detection and quantification of probiotic bacteria that are widely used in various pharmaceutical formulations. Indeed, the development of a simple and fast SERS method dedicated to the quantification of bacteria should be very useful for the characterization of such formulations in a more convenient way than the usually performed tedious and time-consuming conventional counting method. For this purpose, uncoated near-spherical gold nanoparticles were developed at room temperature by acidic treatment of star-like gold nanoparticle precursors. In this study, we first investigated the influence of acidic treatment conditions on both the nanoparticle physicochemical properties and SERS efficiency using Rhodamine 6G (R6G) as "model" analyte. Results highlighted that an effective R6G Raman signal enhancement was obtained by promoting chemical effect through R6G-anion interactions and by obtaining a suitable aggregation state of the nanoparticles. Depending on the nanoparticle synthesis conditions, R6G SERS signals were up to 102-103-fold greater than those obtained with star-like gold nanoparticles. The synthesized spherical gold nanoparticles were then successfully applied for the detection and quantification of Lactobacillus rhamnosus GG (LGG). In that case, the signal enhancement was especially due to the combination of anion-induced chemical enhancement and nanoparticle aggregation on LGG cell wall consecutive to non-specific interactions. Both the simplicity and speed of the procedure, achieved under 30 min, including nanoparticle synthesis, sample preparation, and acquisition of SERS spectra, appeared as very relevant for the characterization of pharmaceutical formulations incorporating probiotics. Graphical abstract.
Collapse
|
4
|
Weidner E, Ciesielczyk F. Removal of Hazardous Oxyanions from the Environment Using Metal-Oxide-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E927. [PMID: 30897767 PMCID: PMC6470676 DOI: 10.3390/ma12060927] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
Abstract
Scientific development has increased the awareness of water pollutant forms and has reawakened the need for its effective purification. Oxyanions are created by a variety of redox-sensitive metals and metalloids. These species are harmful to living matter due to their toxicity, nondegradibility, and mobility in aquatic environments. Among a variety of water treatment techniques, adsorption is one of the simplest, cheapest, and most effective. Since metal-oxide-based adsorbents poses a variety of functional groups onto their surface, they were widely applied in ions sorption. In this paper adsorption of harmful oxyanions by metal oxide-based materials according to literature survey was studied. Characteristic of oxyanions originating from As, V, B, W and Mo, their probable adsorption mechanisms and comparison of their sorption affinity for metal-oxide-based materials such as iron oxides, aluminum oxides, titanium dioxide, manganium dioxide, and various oxide minerals and their combinations are presented in this paper.
Collapse
Affiliation(s)
- Ewelina Weidner
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Filip Ciesielczyk
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
5
|
Zhang M, Hao J, Neyman A, Wang Y, Weinstock IA. Influence of Polyoxometalate Protecting Ligands on Catalytic Aerobic Oxidation at the Surfaces of Gold Nanoparticles in Water. Inorg Chem 2016; 56:2400-2408. [DOI: 10.1021/acs.inorgchem.6b02167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingfu Zhang
- Key Laboratory of
Colloid and Interface Science of the Education Ministry, Department
of Chemistry and Chemical Engineering, Shandong University, Ji’Nan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of
Colloid and Interface Science of the Education Ministry, Department
of Chemistry and Chemical Engineering, Shandong University, Ji’Nan 250100, P. R. China
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yifeng Wang
- Key Laboratory of
Colloid and Interface Science of the Education Ministry, Department
of Chemistry and Chemical Engineering, Shandong University, Ji’Nan 250100, P. R. China
| | - Ira A. Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
6
|
Tivony R, Iuster N, Klein J. Probing the Surface Properties of Gold at Low Electrolyte Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7346-7355. [PMID: 27357375 DOI: 10.1021/acs.langmuir.6b01697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using the surface force balance (SFB), we studied the surface properties of gold in aqueous solution with low electrolyte concentration (∼10(-5) M and pH = 5.8), i.e., water with no added salt, by directly measuring the interaction between an ultrasmooth gold surface (ca. 0.2 nm rms roughness) and a mica surface. Under these conditions, specific adsorption of ions is minimized and its influence on the surface charge and surface potential of gold is markedly reduced. At open circuit potential, the electrostatic interaction between gold and mica was purely attractive and gold was found to be positively charged. This was further confirmed by force measurements against a positively charged surface, poly-l-lysine coated mica. Successive force measurements unambiguously showed that once gold and mica reach contact all counterions are expelled from the gap, confirming that at contact the surface charge of gold is equal and opposite in charge to that of mica. Further analysis of adhesion energy between the surfaces indicated that adhesion is mostly governed by vdW dispersion force and to a lesser extent by electrostatic interaction. Force measurements under external applied potentials showed that the gold-mica interaction can be regulated as a function of applied potential even at low electrolyte concentration. The gold-mica interaction was described very precisely by the nonlinearized Poisson-Boltzmann (PB) equation, where one of the surfaces is at constant charge, i.e., mica, and the other, i.e., gold, is at constant potential. Consequently, the gold surface potential could be determined accurately both at open circuit potential (OCP) and under different applied potentials. Using the obtained surface potentials, we were able to derive fundamental characteristics of the gold surface, e.g., its surface charge density and potential of zero charge (PZC), at very low electrolyte concentration.
Collapse
Affiliation(s)
- Ran Tivony
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot, 76100, Israel
| | - Noa Iuster
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science , Rehovot, 76100, Israel
| |
Collapse
|
7
|
Lepková K, van Bronswijk W, Pandarinathan V, Gubner R. Synchrotron far-infrared spectroscopy of corroded steel surfaces using a variable angle of incidence. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:580-585. [PMID: 24763648 DOI: 10.1107/s1600577514004159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Far-infrared spectroscopy, using a synchrotron source, has been used to study carbon steel corroded in CO2-saturated brine in the presence and absence of the corrosion inhibitor 2-mercaptopyrimidine (MPY), which allowed the steel surface roughness to be modified. The effect of the angle of incidence (θi, 30-80°) on the band intensity and observed bands of the spectra from these surfaces has been determined. For the MPY-treated steel (low surface roughness) the highest band intensity is observed at high θi (80°) and different bands were observed at different θi. In contrast, for the MPY-free steel (high surface roughness) the highest band intensity is observed at low θi (30°) and spectral content changes were not observed. The results are explained in terms of the roughness of the MPY-treated and MPY-free steels, and their effect on the level of diffusely reflected light of the incident infrared beam.
Collapse
Affiliation(s)
- Kateřina Lepková
- Corrosion Centre for Education, Research and Technology, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Wilhelm van Bronswijk
- Corrosion Centre for Education, Research and Technology, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Vedapriya Pandarinathan
- Corrosion Centre for Education, Research and Technology, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rolf Gubner
- Corrosion Centre for Education, Research and Technology, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
8
|
Sabzi RE, Hassanzadeh A, Heravi P, Ghasemlu K. Al Electrode Modified by Au Atoms as a Novel Electrode for Electrocatalytic Oxidation of Thiosulfate. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200700140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Rosendahl SM, Borondics F, May TE, Pedersen TM, Burgess IJ. Synchrotron Infrared Radiation for Electrochemical External Reflection Spectroscopy: A Case Study Using Ferrocyanide. Anal Chem 2011; 83:3632-9. [DOI: 10.1021/ac200250s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott M. Rosendahl
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9 Canada
| | | | - Tim E. May
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 0X4 Canada
| | - Tor M. Pedersen
- Canadian Light Source, Saskatoon, Saskatchewan, S7N 0X4 Canada
| | - Ian J. Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9 Canada
| |
Collapse
|
10
|
Allam NK, Nazeer AA, Ashour EA. Electrochemical characterization and stress corrosion cracking behavior of α-brass in molybdate-containing electrolytes. J Solid State Electrochem 2011. [DOI: 10.1007/s10008-011-1339-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Sulyma CM, Pettit CM, Surisetty CVVS, Babu SV, Roy D. Electrochemical investigation of the roles of oxyanions in chemical–mechanical planarization of tantalum and tantalum nitride. J APPL ELECTROCHEM 2011. [DOI: 10.1007/s10800-011-0262-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Hahn F, Melendres CA. Synchrotron infrared reflectance microspectroscopy study of film formation and breakdown on copper. JOURNAL OF SYNCHROTRON RADIATION 2010; 17:81-85. [PMID: 20029115 DOI: 10.1107/s0909049509040680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/06/2009] [Indexed: 05/28/2023]
Abstract
This work demonstrates the utility of synchrotron infrared reflectance microspectroscopy in the far- and mid-IR for the determination of the composition of electrogenerated surface films formed during the general and localized corrosion of copper in alkaline and bicarbonate solutions. Back-reflection geometry has been employed to identify the anodic film formed on copper in 0.1 M NaOH solution at 0.3 V (versus a Ag/AgCl reference) to be mainly CuO. In 0.01 M NaHCO(3) solution general corrosion occurs with passive film formation below 0.2 V. The surface film at 0.2 V consisted mainly of bicarbonate, copper carbonate dihydroxide or malachite [CuCO(3).Cu(OH)(2)], Cu(OH)(2) and possibly some CuO. At higher potentials the passive film breaks down and localized corrosion occurs leading to the formation of pits. The composition of the surface films inside the pits formed at 0.6 V was found to be essentially the same as that outside but the relative amount of Cu(OH)(2) appears to be higher.
Collapse
Affiliation(s)
- F Hahn
- UMR-CNRS 6503, University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | |
Collapse
|
13
|
A multi-technique study of gold oxidation and semiconducting properties of the compact α-oxide layer. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Spectroscopy at Electrochemical Interfaces. SURF INTERFACE ANAL 2009. [DOI: 10.1007/978-3-540-49829-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Lana-Villarreal T, Gómez R. Interfacial electron transfer at TiO2 nanostructured electrodes modified with capped gold nanoparticles: The photoelectrochemistry of water oxidation. Electrochem commun 2005. [DOI: 10.1016/j.elecom.2005.08.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|