1
|
Andersson L, Sprik M, Hutter J, Zhang C. Electronic Response and Charge Inversion at Polarized Gold Electrode. Angew Chem Int Ed Engl 2025; 64:e202413614. [PMID: 39313472 DOI: 10.1002/anie.202413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
We have studied polarized Au(100) and Au(111) electrodes immersed in electrolyte solution by implementing finite-field methods in density functional theory-based molecular dynamics simulations. This allows us to directly compute the Helmholtz capacitance of electric double layer by including both electronic and ionic degrees of freedom, and the results turn out to be in excellent agreement with experiments. It is found that the electronic response of Au electrode makes a crucial contribution to the high Helmholtz capacitance and the instantaneous adsorption of Cl can lead to a charge inversion on the anodic polarized Au(100) surface. These findings point out ways to improve popular semi-classical models for simulating electrified solid-liquid interfaces and to identify the nature of surface charges therein which are difficult to access in experiments.
Collapse
Affiliation(s)
- Linnéa Andersson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, 75121, Uppsala
| | - Michiel Sprik
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, United Kingdom
| | - Jürg Hutter
- Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Chao Zhang
- Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, BOX 538, 75121, Uppsala
| |
Collapse
|
2
|
Wendorff F, Pehlke E. Density functional calculations of diffusion paths of CH 3S ad on c(2 × 2)-Cl and -Br covered Cu(100) surfaces. Phys Chem Chem Phys 2024; 26:30035-30043. [PMID: 39624983 DOI: 10.1039/d4cp03884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Identification of the atomic-scale mechanisms of surface diffusion at interfaces covered by co-adsorbates is relevant for understanding electrochemical processes at these interfaces. The surface dynamics of CH3Sad on c(2 × 2)-Cl covered Cu(100) surfaces has been studied with video-STM in electrochemical environment by Yang, Taranowski, and Magnussen [Langmuir, 2012, 28, 14143]. We present density functional calculations to predict diffusion paths and energy barriers of CH3Sad substitutionally adsorbed on c(2 × 2)-Cl or -Br covered Cu(100) surfaces and compare them to the case of Sad. Additional vacancies in the halogen adlayer enable further diffusion paths with significantly lower DFT energy barriers (i.e. energy barriers in case of uncharged surfaces vs. vacuum). We argue that at least in case of Cl-covered surfaces this preference for vacancy-assisted diffusion of CH3Sad persists when the energy for creating a Cl-vacancy is accounted for. However, we have not yet been able to include the effect of the electric field on the computed energy barriers for this system, which might affect the preferred diffusion mechanism.
Collapse
Affiliation(s)
- Falk Wendorff
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany.
| | - Eckhard Pehlke
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany.
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Germany
| |
Collapse
|
3
|
Adnan A, Behjati S, Félez-Guerrero N, Ojha K, Koper MTM. Tracking the surface structure and the influence of cations and anions on the double-layer region of a Au(111) electrode. Phys Chem Chem Phys 2024; 26:21419-21428. [PMID: 39086202 PMCID: PMC11323936 DOI: 10.1039/d4cp02133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
We examined the electric double-layer (EDL) of a Au(111) electrode in a dilute perchloric acid solution using a combination of capacitance measurements and in situ scanning tunnelling microscopy under electrochemical conditions (ECSTM). The "camel-shaped" capacitance curve of the EDL is studied with different cations and anions, including their impact on the potential of zero charge (PZC). We show that the ECSTM images of thermally reconstructed and of the potential-induced surface reconstruction of Au(111) in perchloric acid electrolyte resemble previous work in sulphuric acid, displaying a herringbone pattern for a thermally reconstructed surface. Once the reconstruction is lifted, the Au(111) forms islands with an average of 1 atomic step height. When the potential is lowered below that of the PZC, the potential-induced surface reconstruction results in a more disoriented pattern than the thermally reconstructed surface. ECSTM images at different potentials are correlated with the voltammogram to understand the time and potential dependence of the surface. This correlation has led to the development of a potential window technique that can be used to reveal the surface structure of Au(111) based on observing the changes in PZC in the voltammogram. This method provides an indirect approach to understanding the surface structure without always relying on ECSTM. From the voltammogram, we also observed that anions (SO42-, CH3SO3-, ClO4-, F-) interact more strongly with the Au(111) surface than the alkali cations. The cation capacitance peak shape does not depend strongly on the identity of the alkali metal cation (Li+, Na+, K+). However, the anion capacitance peak depends strongly on the anion identity. It suggests that some level of specific adsorption cannot be excluded, even for anions that are traditionally not considered to adsorb specifically (perchlorate, fluoride).
Collapse
Affiliation(s)
- Ariba Adnan
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| | - Saeid Behjati
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| | - Núria Félez-Guerrero
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
- Chemistry Department, Universitat Autònoma de Barcelona, Bellaterra-08193, Barcelona, Spain
| | - Kasinath Ojha
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
4
|
Sharifi E, Saviz M, Faraji-Dana R. Evaluation of the Nonlinear Response of KCl Solution to High-Amplitude Stimulation Using a Four-Point Cylindrical Gold Electrode. J Phys Chem B 2024. [PMID: 39072647 DOI: 10.1021/acs.jpcb.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A four-electrode system and high-voltage amplitude stimulation (with a voltage of more than 1 V) are always used for nonlinear spectroscopy of biological solutions like yeast suspension. Multiple studies indicate that yeast membrane activities are the primary source of the harmonics detected from yeast suspensions. However, other investigations have demonstrated that at least part of the harmonics are mainly due to the nonlinear impedance of the electrode-electrolyte interface. Here, we want to find a mathematical model to analyze the odd harmonics generated by the interface. The KCl solution is the basis of the essential medium used in yeast culture. No study models the nonlinear behavior of the KCl solution using four-electrode. We used a sinusoidal voltage with a low frequency and a high amplitude to test an ionic solution with 1, 30, and 130 mM of potassium chloride. The voltage had no direct current component. Here, we show that the relationship between the amplitude of the excitation voltage and the third harmonic of the current can be accurately represented using the Butler-Volmer equation. Additionally, we analyze the impact of potassium chloride (KCl) concentration on the behavior of the third harmonic. This paper presents a method and model that can be used for nonlinear spectroscopy studies of biological solutions using a four-electrode system with the aim of deriving information from cells without considering the interface effect.
Collapse
Affiliation(s)
- Elham Sharifi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Mehrdad Saviz
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4413, Iran
| | - Reza Faraji-Dana
- Center of Excellence on Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, Tehran 14174-66191, Iran
| |
Collapse
|
5
|
Volta TT, Walters SN, Martin CR. Potentiometric Studies on Ion-Transport Selectivity in Charged Gold Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1209. [PMID: 39057885 PMCID: PMC11280230 DOI: 10.3390/nano14141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Under ideal conditions, nanotubes with a fixed negative tube-wall charge will reject anions and transport-only cations. Because many proposed nanofluidic devices are optimized in this ideally cation-permselective state, it is important to know the experimental conditions that produce ideal responses. A parameter called Ccrit, the highest salt concentration in a contacting solution that still produces ideal cation permselectivity, is of particular importance. Pioneering potentiometric studies on gold nanotubes were interpreted using an electrostatic model that states that Ccrit should occur when the Debye length in the contacting salt solution becomes equivalent to the tube radius. Since this "double-layer overlap model" (DLOM), treats all same-charge ions as identical point charges, it predicts that all same-charged cations should produce the same Ccrit. However, the effect of cation on Ccrit in gold nanotubes was never investigated. This knowledge gap has become important because recent studies with a polymeric cation-permselective nanopore membrane showed that DLOM failed for every cation studied. To resolve this issue, we conducted potentiometric studies on the effect of salt cation on Ccrit for a 10 nm diameter gold nanotube membrane. Ccrit for all cations studied were, within experimental error, the same and identical, with values predicted by DLOM. The reason DLOM prevailed for the gold nanotubes but failed for the polymeric nanopores stems from the chemical difference between the fixed negative charges of these two membranes.
Collapse
Affiliation(s)
| | | | - Charles R. Martin
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
6
|
Halford GC, McDarby SP, Hertle S, Kiely AF, Luu JT, Wang CJ, Personick ML. Troubleshooting the influence of trace chemical impurities on nanoparticle growth kinetics via electrochemical measurements. NANOSCALE 2024; 16:11038-11051. [PMID: 38691093 DOI: 10.1039/d4nr00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reproducibility issues resulting from particle growth solutions made with cetyltrimethylammonium bromide (CTAB) surfactant from different lots and product lines in a newly developed synthesis of monometallic palladium (Pd) tetrahexahedra (THH) nanoparticles are investigated via a multi-pronged approach. Time-resolved electrochemical measurements of solution potential, variation of chemical parameters in colloidal synthesis, and correlation to electrodeposition syntheses are used together to uncover the effects of the unknown contaminants on the chemical reducing environment during nanoparticle growth. Iodide-a known impurity in commercial CTAB-is identified as one of the required components for equalizing the reducing environment across multiple CTAB sources. However, an additional component-acetone-is critical to establishing the growth kinetics necessary to enable the reproducible synthesis of THH in each of the CTAB formulations. In one CTAB variety, the powdered surfactant contains too much acetone, and drying of the as-received surfactant and re-addition of solvent is necessary for successful Pd THH synthesis. The relevance of solvent impurities to the reducing environment in aqueous nanoparticle synthesis is confirmed via electrochemical measurement approaches and solvent addition experiments. This work highlights the utility of real-time electrochemical potential measurements as a tool for benchmarking of nanoparticle syntheses and troubleshooting of reproducibility issues. The results additionally emphasize the importance of considering organic solvent impurities in powdered commercial reagents as a possible shape-determining factor during shaped nanomaterials synthesis.
Collapse
Affiliation(s)
- Gabriel C Halford
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Sean P McDarby
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Sebastian Hertle
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Anne F Kiely
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jessica T Luu
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Claire J Wang
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Michelle L Personick
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| |
Collapse
|
7
|
Wittstock G, Bäumer M, Dononelli W, Klüner T, Lührs L, Mahr C, Moskaleva LV, Oezaslan M, Risse T, Rosenauer A, Staubitz A, Weissmüller J, Wittstock A. Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chem Rev 2023; 123:6716-6792. [PMID: 37133401 PMCID: PMC10214458 DOI: 10.1021/acs.chemrev.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 05/04/2023]
Abstract
Nanoporous gold (NPG) is characterized by a bicontinuous network of nanometer-sized metallic struts and interconnected pores formed spontaneously by oxidative dissolution of the less noble element from gold alloys. The resulting material exhibits decent catalytic activity for low-temperature, aerobic total as well as partial oxidation reactions, the oxidative coupling of methanol to methyl formate being the prototypical example. This review not only provides a critical discussion of ways to tune the morphology and composition of this material and its implication for catalysis and electrocatalysis, but will also exemplarily review the current mechanistic understanding of the partial oxidation of methanol using information from quantum chemical studies, model studies on single-crystal surfaces, gas phase catalysis, aerobic liquid phase oxidation, and electrocatalysis. In this respect, a particular focus will be on mechanistic aspects not well understood, yet. Apart from the mechanistic aspects of catalysis, best practice examples with respect to material preparation and characterization will be discussed. These can improve the reproducibility of the materials property such as the catalytic activity and selectivity as well as the scope of reactions being identified as the main challenges for a broader application of NPG in target-oriented organic synthesis.
Collapse
Affiliation(s)
- Gunther Wittstock
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Marcus Bäumer
- University
of Bremen, Institute for Applied
and Physical Chemistry, 28359 Bremen, Germany
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
| | - Wilke Dononelli
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Bremen Center for
Computational Materials Science, Hybrid Materials Interfaces Group, Am Fallturm 1, Bremen 28359, Germany
| | - Thorsten Klüner
- Carl
von Ossietzky University of Oldenburg, School of Mathematics and Science, Institute of Chemistry, D-26111 Oldenburg, Germany
| | - Lukas Lührs
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
| | - Christoph Mahr
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Lyudmila V. Moskaleva
- University
of the Free State, Department of Chemistry, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Mehtap Oezaslan
- Technical
University of Braunschweig Institute of Technical Chemistry, Technical Electrocatalysis Laboratory, Franz-Liszt-Strasse 35a, 38106 Braunschweig, Germany
| | - Thomas Risse
- Freie
Universität Berlin, Institute of Chemistry
and Biochemistry, Arnimallee
22, 14195 Berlin, Germany
| | - Andreas Rosenauer
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute of Solid
State Physics, Otto Hahn
Allee 1, 28359 Bremen, Germany
| | - Anne Staubitz
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| | - Jörg Weissmüller
- Hamburg
University of Technology, Institute of Materials
Physics and Technology, 21703 Hamburg, Germany
- Helmholtz-Zentrum
Hereon, Institute of Materials Mechanics, 21502 Geesthacht, Germany
| | - Arne Wittstock
- University
of Bremen, MAPEX Center for
Materials and Processes, 28359 Bremen, Germany
- University
of Bremen, Institute for Organic
and Analytical Chemistry, Leobener Strasse 7, D-28359 Bremen, Germany
| |
Collapse
|
8
|
Schönig M, Schuster R. Entropic contributions to the stability of electrochemically adsorbed anion layers on Au(111): a microcalorimetric study. Phys Chem Chem Phys 2023; 25:5948-5954. [PMID: 36503904 DOI: 10.1039/d2cp04680f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We measure the entropy of formation of the interface upon anion adsorption (Cl-, Br- I- and SO42-) on Au(111) as an important indicator for the structure, order and composition of the interface. The entropy of formation of the interface exhibits a rather universal behaviour for all anions with a steep decrease upon initial adsorption followed by a shallow minimum at intermediate anion coverages and a strong increase close to the completion of the adsorbate adlayer. The strong variation of the entropy signals significant entropic contributions to the free enthalpy of the adsorption process and thus the stability of the adsorbed phase. At low anion coverages, close to the potential of zero charge, we attribute the entropy variations to the rearrangement of the interfacial water structure. At intermediate and high anion coverages, a comparison with the results of a lattice-gas model, considering pairwise repulsive interactions within the quasi-chemical approximation, shows that the entropy changes upon anion adsorption can be explained by the configurational entropy of the adsorbed phase. Thus, entropic contributions from both the solvent and the adsorbate are important for the stability of surface phases, particularly for disordered systems.
Collapse
Affiliation(s)
- Marco Schönig
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
| | - Rolf Schuster
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
| |
Collapse
|
9
|
Novak LM, Steyskal EM. Electrochemical detection of fluoride ions in water with nanoporous gold modified by a boronic acid terminated self-assembled monolayer. RSC Adv 2023; 13:6947-6953. [PMID: 36865575 PMCID: PMC9973417 DOI: 10.1039/d2ra07688h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Nanoporous gold (npAu) is a perfectly suited platform for the electrochemical detection of minor amounts of chemical species in solution due to its high surface-to-volume ratio. By surface-modification of the self-standing structure with a self-assembled monolayer (SAM) of 4-mercaptophenylboronic acid (MPBA) it was possible to create an electrode very sensitive towards fluoride ions in water, also suitable for mobile use in future sensing applications. The proposed detection strategy is based on the change in the charge state of the boronic acid functional groups of the monolayer, induced by fluoride binding. The surface potential of the modified npAu sample reacts fast and sensitively to stepwise F- addition, showing highly reproducible, well-defined potential steps with a detection limit of 0.2 mM. Deeper insight into the reaction of fluoride binding on the MPBA modified surface was gained by electrochemical impedance spectroscopy. The proposed fluoride sensitive electrode exhibits a favorable regenerability in alkaline media, which is of central importance for future applications considering environmental as well as economical aspects.
Collapse
Affiliation(s)
- Lara Marie Novak
- Institute of Material Physics, Graz University of Technology, NAWI Graz Petersgasse 16 8010 Graz Austria
| | - Eva-Maria Steyskal
- Institute of Material Physics, Graz University of Technology, NAWI Graz Petersgasse 16 8010 Graz Austria
| |
Collapse
|
10
|
Comparison between polycrystalline Au and single-crystalline Au(1 1 1) electrodes as the substrate of a cationic organic monolayer based on their anion dependent redox activities. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Zeller SJ, Geng T, Ceblin MU, Uhl M, Kuehne AJC, Kibler LA, Jacob T. An Interfacial Study of Au(111) Electrodes in Deep Eutectic Solvents. ChemElectroChem 2022. [DOI: 10.1002/celc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sven J. Zeller
- Helmholtz Institute Ulm Electrochemical Energy Storage Helmholtzstr. 11 89081 Ulm GERMANY
| | - Tanja Geng
- Ulm University: Universitat Ulm Institute of Electrochemistry Albert-Einstein-Allee 47 89081 Ulm GERMANY
| | - Maximilian U. Ceblin
- Ulm University: Universitat Ulm Institute of Electrochemistry Albert-Einstein-Allee 47 89081 Ulm GERMANY
| | - Matthias Uhl
- Ulm University: Universitat Ulm Institute of Electrochemistry Albert-Einstein-Allee 47 89081 Ulm GERMANY
| | - Alexander J. C. Kuehne
- Ulm University: Universitat Ulm Institute of Organic and Macromolecular Chemistry Albert-Einstein-Allee 11 89081 Ulm GERMANY
| | - Ludwig A. Kibler
- Ulm University: Universitat Ulm Institute of Electrochemistry Albert-Einstein-Allee 47 89081 Ulm GERMANY
| | - Timo Jacob
- Ulm University Institute of Electrochemistry Albert-Einstein-Allee 47 89081 Ulm GERMANY
| |
Collapse
|
12
|
Ding Y, Zhang Y, Shi X, Liao L, Li Q, Duan T, Jiang H, Ding Z, Wang H, Liu H. Iodide etching for one-step quantitative assay of the number of DNA molecules capped on gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1232-1238. [PMID: 35254355 DOI: 10.1039/d1ay02212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing a direct method to easily quantify the number of DNA capped on gold nanoparticles (GNPs) is of great significance. Herein, we found that the high concentration of iodine ion (I-) can not only replace the ligands on the surface of GNPs but can also completely etch the particles by virtue of its strong reducibility. According to this finding, a mild, cost-effective, environment-friendly, and non-toxic strategy was constructed to directly and accurately estimate the amount of DNA coupled on GNPs. Due to nanometal surface energy transfer (NSET) that happened between the DNA-FAM donor and the GNPs receptor, the fluorescence was quenched; after incubating with the etching reagent 6 M I-, the recuperative fluorescence was detected directly. This method can easily estimate the number of DNA attached on the GNPs surface by one step. In a nutshell, it is a smart strategy to apply iodide etching for DNA quantification on the surface of GNPs, which breaks through the drawbacks of traditional DNA quantification strategies such as pollution, being expensive and even dangerous. This strategy takes a solid step forward for the refinement and optimization of DNA quantification and can also be more effective in detecting the number of other molecules capped on the GNPs surface, indicating that the iodide etching method is greatly helpful in bio-detection assays and nanoparticle-based therapeutics.
Collapse
Affiliation(s)
- Yan Ding
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yu Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiaoqi Shi
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| | - Lingling Liao
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| | - Qinghe Li
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| | - Tingmei Duan
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| | - Hao Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - ZhongXiang Ding
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Hongyan Wang
- First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| | - Honglin Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
13
|
Meena SK, Meena C. The implication of adsorption preferences of ions and surfactants on the shape control of gold nanoparticles: a microscopic, atomistic perspective. NANOSCALE 2021; 13:19549-19560. [PMID: 34806728 DOI: 10.1039/d1nr05244f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shape modulation of nanoparticles is crucial for their tailored applications; however, it depends on surfactants, ions, reactants, and other additives present in the growth solution. Here we dissect the role of surfactants, their counterions (halide ions), silver ions, and gold reactant in gold nanoparticle anisotropic growth using polarizable surfaces and nanoseed molecular dynamics simulation models. Our planar surface models predict a 14%-16% increment in cetyltrimethylammonium bromide (CTAB) coverage on Au(111) and Au(100) due to the surface polarization effect. The CTAB micelle adsorbs compactly similar to that observed on non-polarizable surfaces. The cetyltrimethylammonium chloride (CTAC) micelle remains in solution leaving the polarizable gold surfaces unprotected, similar to that observed with the non-polarizable surfaces, which favors isotropic growth. The cetyltrimethylammonium iodide (CTAI) micelle adsorbs with higher surface densities than CTAB on all the surfaces. The surface polarizable penta-twinned nanoseed model predicts the total surface coverage of the cetyltrimethylammonium cation (CTA+), Br- and Ag+ to be around two times higher on the side as compared to the tip of the nanoseed, leading to a 2.6 times higher initial rate of adsorption of AuCl2- on the tip than on the side. Predicted CTA+ surface densities on the tip and the side of the nanoseed are consistent with experimental results. Our simulations explain the growth mechanism of anisotropic nanoparticles and the microscopic origin of their controlled shapes.
Collapse
Affiliation(s)
- Santosh Kumar Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (NCL), Dr. HomiBhabha Road, Pune-411008, India.
| | - Chandrakala Meena
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory (NCL), Dr. HomiBhabha Road, Pune-411008, India.
| |
Collapse
|
14
|
Prieto Dapena F, Su Z, Alvarez Malmagro J, Rueda M, Lipkowski J. Mixed monolayer of a nucleolipid and a phospholipid has improved properties for spectroelectrochemical sensing of complementary nucleobases. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Wu J, Zhou R, Radjenovic PM, Liu S, Wu D, Li J, Mao B, Yan J. Electrochemical impedance spectroscopy and Raman spectroscopy studies on electrochemical interface between Au(111) electrode and ethaline deep eutectic solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Shatla AS, Landstorfer M, Baltruschat H. On the Differential Capacitance and Potential of Zero Charge of Au(111) in Some Aprotic Solvents. ChemElectroChem 2021. [DOI: 10.1002/celc.202100316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmed S. Shatla
- Institute of Physical and Theoretical Chemistry University of Bonn 53117 Bonn Germany
- Permanent address: Menoufia University Faculty of Science, Chemistry Dept. Shebin Elkoom 32511 Egypt
| | - Manuel Landstorfer
- Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Mohrenstraße 39 Berlin 10117 Germany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical Chemistry University of Bonn 53117 Bonn Germany
| |
Collapse
|
17
|
Granda-Marulanda LP, McCrum IT, Koper MTM. A simple method to calculate solution-phase free energies of charged species in computational electrocatalysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:204001. [PMID: 33761487 DOI: 10.1088/1361-648x/abf19d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Determining the adsorption potential of adsorbed ions in the field of computational electrocatalysis is of great interest to study their interaction with the electrode material and the solvent, and to map out surface phase diagrams and reaction pathways. Calculating the adsorption potentials of ions with density functional theory and comparing across various ions requires an accurate reference energy of the ion in solution and electrons at the same electrochemical scale. Here we highlight a previously used method for determining the reference free energy of solution phase ions using a simple electrochemical thermodynamic cycle, which allows this free energy to be calculated from that of a neutral gas-phase or solid species and an experimentally measured equilibrium potential, avoiding the need to model solvent around the solution phase ion in the electronic structure calculations. While this method is not new, we describe its use and utility in detail and show that this same method can be used to find the free energy of any ion from any reaction, as long as the half-cell equilibrium potential is known, even for reactions that do not transfer the same number of protons and electrons. To illustrate its usability, we compare the adsorption potentials obtained with DFT of I*, Br*, Cl*, and SO4*on Pt(111) and Au(111) and OH*and Ag*on Pt(111) with those measured experimentally and find that this simple and computationally affordable method reproduces the experimental trends.
Collapse
Affiliation(s)
| | - Ian T McCrum
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
- Department of Chemical & Biomolecular Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, United States of America
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
18
|
Xianyu Y, Lin Y, Chen Q, Belessiotis‐Richards A, Stevens MM, Thomas MR. Iodide‐Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yunlei Xianyu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou Zhejiang 310058 China
- Fuli Institute of Food Science Zhejiang University Hangzhou Zhejiang 310058 China
- Ningbo Research Institute Zhejiang University Ningbo Zhejiang 315100 China
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 China
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Qu Chen
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Alexis Belessiotis‐Richards
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Molly M. Stevens
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
| | - Michael R. Thomas
- Department of Materials Department of Bioengineering and Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK
- London Centre for Nanotechnology University College London London WC1H 0AH UK
| |
Collapse
|
19
|
Xianyu Y, Lin Y, Chen Q, Belessiotis-Richards A, Stevens MM, Thomas MR. Iodide-Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. Angew Chem Int Ed Engl 2021; 60:9891-9896. [PMID: 33590604 PMCID: PMC8251757 DOI: 10.1002/anie.202017317] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Indexed: 11/05/2022]
Abstract
Iodide-mediated surface etching can tailor the surface plasmon resonance of gold nanostars through etching of the high-energy facets of the nanoparticle protrusions in a rapid and sensitive way. By exploring the underlying mechanisms of this etching and the key parameters influencing it (such as iodide, oxygen, pH, and temperature), we show its potential in a sensitive biosensing system. Horseradish peroxidase-catalyzed oxidation of iodide enables control of the etching of gold nanostars to spherical gold nanoparticles, where the resulting spectral shift in the surface plasmon resonance yields a distinct color change of the solution. We further develop this enzyme-modulated surface etching of gold nanostars into a versatile platform for plasmonic immunoassays, where a high sensitivity is possible by signal amplification via magnetic beads and click chemistry.
Collapse
Affiliation(s)
- Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.,Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qu Chen
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alexis Belessiotis-Richards
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Michael R Thomas
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.,London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| |
Collapse
|
20
|
Rogozhnikov NA. Quantum-Chemical Simulation of the Adsorption of OH– Ions on Au(111). RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rogozhnikov NA. Quantum-Chemical Investigation of Pb2+ Ion Adsorption at Au(111) from Alkaline Medium. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Shatla AS, Bawol PP, Baltruschat H. Adsorption of Iodide and Bromide on Au(111) Electrodes from Aprotic Electrolytes: Role of the Solvent. ChemElectroChem 2020. [DOI: 10.1002/celc.202001296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmed S. Shatla
- Institute of Physical and Theoretical Chemistry University of Bonn 53117 Bonn Germany
- Permanent address: Menoufia University Faculty of Science, Chemistry Dept. Shebin Elkoom Egypt
| | - Pawel P. Bawol
- Institute of Physical and Theoretical Chemistry University of Bonn 53117 Bonn Germany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical Chemistry University of Bonn 53117 Bonn Germany
| |
Collapse
|
23
|
Kong Q, Obliger A, Lai M, Gao M, Limmer DT, Yang P. Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. NANO LETTERS 2020; 20:8151-8156. [PMID: 33052693 DOI: 10.1021/acs.nanolett.0c03204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Halide perovskites have attracted increasing research attention with regard to their potential for optoelectronic applications. Because of its low activation energy, ion migration is implicated in the long-term stability and many unusual transport behaviors of halide perovskite devices. However, direct observation and precise control of the ionic transport in halide perovskite crystals remain challenging. Here, we have designed an axial CsPbBr3-CsPbCl3 nanowire heterostructure, in which electric-field-induced halide ion migration was clearly visualized and quantified. We demonstrated that halide ion migration is dependent on the applied electric field and exhibits ionic rectification in this solid-state system, which is due to the nonuniform distribution of the ionic vacancies in the nanowire that results from a competition between electrical screening and their creation/destruction at the electrodes' interfaces. The asymmetric heterostructure characteristics add an additional knob to control the ion movement in the design of advanced ionic circuits with halide perovskites as building blocks.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amael Obliger
- Laboratoire des Fluides complexes et leurs Réservoirs, UMR 5150, Université de Pau et des Pays de l'Adour, E2S-UPPA/CNRS/TOTAL, Pau, France
| | - Minliang Lai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Huang J. Mixed quantum-classical treatment of electron transfer at electrocatalytic interfaces: Theoretical framework and conceptual analysis. J Chem Phys 2020; 153:164707. [DOI: 10.1063/5.0009582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China and School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Ávila M, Juárez MF, Santos E. Role of the Partial Charge Transfer on the Chloride Adlayers on Au(100). ChemElectroChem 2020. [DOI: 10.1002/celc.202001228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Milagros Ávila
- Instituto de Física Enrique Gaviola (IFEG-CONICET) Universidad Nacional de Córdoba Argentina
| | - María F. Juárez
- Institute of Theoretical Chemistry Ulm University Albert-Einstein-Allée 11 89081 Ulm Germany
| | - Elizabeth Santos
- Instituto de Física Enrique Gaviola (IFEG-CONICET) Universidad Nacional de Córdoba Argentina
- Institute of Theoretical Chemistry Ulm University Albert-Einstein-Allée 11 89081 Ulm Germany
| |
Collapse
|
26
|
Gisbert-González JM, Cheuquepán W, Ferre-Vilaplana A, Herrero E, Feliu JM. Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Some Questionable Approaches in Interfacial Electrochemistry—The Charged State of Adsorbed Species and Their Involvement in Redox Processes. ELECTROCHEM 2020. [DOI: 10.3390/electrochem1020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
On the basis of a survey on the relevant literature it can be stated that some views and approaches concerning the charged state of adsorbed species and the charge transfer processes occurring with them are far from being unambiguous even in some respect they contradict fundamental physical and physicochemical principles. The meaning of the electrosorption valency, the misleading formulation of the Gibbs adsorption equation, and the interpretation of redox processes occurring with adsorbed species, is discussed in detail. It has been concluded that although the electrosorption valency of an adsorbed species as usually defined is an extra-thermodynamic and self-contradictory concept, experimental determined formal partial charge numbers can be a useful tool for scientists investigating adsorption phenomena, since the observed deviation between its value and the charge number of the same species in the solution phase unequivocally indicates a non-simple mechanism of the adsorption process, which should be taken into account in theoretical interpretation of the experimental data. It has been emphasized that the evaluation of voltammetric curves obtained in the presence of adsorbed redox partners requires a cautious analysis of the accompanying chemical transformations. In the framework of a critical analysis it is demonstrated that probably one of the most important sources of the misinterpretations and misunderstandings is the inadequate approach to the concept of electrode charge. The possibility of a general and straightforward presentation of the Gibbs adsorption equation has also been discussed.
Collapse
|
28
|
Iodide adsorption at Au(111) electrode in non-aqueous electrolyte: AC-voltammetry and EIS studies. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Rogozhnikov NA. Quantum-Chemical Study of Adsorption of Tl+ Ions on Au(111). RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s102319351909012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Dávila López AC, Pehlke E. DFT study of Au self-diffusion on Au(001) in the presence of a Cl adlayer. J Chem Phys 2019. [DOI: 10.1063/1.5113965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Eckhard Pehlke
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
31
|
Juarez F, Quaino P, Colombo E, Santos E, Jackson MN, Schmickler W. Why are trace amounts of chloride so highly surface-active? J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Alvarez-Malmagro J, Su Z, Leitch JJ, Prieto F, Rueda M, Lipkowski J. Electric-Field-Driven Molecular Recognition Reactions of Guanine with 1,2-Dipalmitoyl- sn- glycero-3-cytidine Monolayers Deposited on Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9297-9307. [PMID: 31274320 DOI: 10.1021/acs.langmuir.9b01238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Monolayers of 1,2-dipalmitoyl-sn-glycero-3-cytidine were incubated with guanine in a 0.1 M NaF electrolyte at the surface of a Langmuir trough and transferred to gold (111) electrodes using the Langmuir-Schaefer technique. Chronocoulometry and photon polarization modulation infrared reflection absorption spectroscopy were employed to investigate the influence of the static electric field on the orientation and conformation of the cytidine nucleolipid molecules on the metal surface in the presence of guanine and to monitor the molecular recognition of guanine with the cytosine moiety. When the monolayer is exposed to guanine solutions, the cytosine moiety binds to the guanine residue in either a Watson-Crick complex at positively charged electrode surfaces or a noncomplexed state at negative surface charges. The positive electrostatic field causes the cytosine moiety and the cytosine-guanine complex to adopt a nearly parallel orientation with respect to the plane of the monolayer with a measured tilt angle of ∼10°. The parallel orientation is stabilized by the interactions between the permanent dipole of the cytosine moiety or the Watson-Crick complex and the static electric field. At negative charge densities, the tilt of the cytosine moiety increases by ∼15-20°, destabilizing the complex. Our results demonstrate that the static electric field has an influence on the molecular recognition reactions between nucleoside base pairs at the metal-solution interface and can be controlled by altering the surface charge at the metal.
Collapse
Affiliation(s)
- Julia Alvarez-Malmagro
- Department of Physical Chemistry , University of Seville , C/Profesor García González no. 2 , 41012 Seville , Spain
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Francisco Prieto
- Department of Physical Chemistry , University of Seville , C/Profesor García González no. 2 , 41012 Seville , Spain
| | - Manuela Rueda
- Department of Physical Chemistry , University of Seville , C/Profesor García González no. 2 , 41012 Seville , Spain
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| |
Collapse
|
33
|
Liu S, Peng J, Chen L, Sebastián P, Feliu JM, Yan J, Mao B. In-situ STM and AFM Studies on Electrochemical Interfaces in imidazolium-based ionic liquids. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Alvarez-Malmagro J, Su Z, Jay Leitch J, Prieto F, Rueda M, Lipkowski J. Spectroelectrochemical Characterization of 1,2-Dipalmitoyl- sn-glycero-3-cytidine Diphosphate Nucleolipid Monolayer Supported on Gold (111) Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:901-910. [PMID: 30605613 DOI: 10.1021/acs.langmuir.8b03674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effect of the electrode potential on the orientation and conformation of the 1,2-dipalmitoyl- sn-glycero-3-cytidine monolayer deposited on a gold (111) electrode surface was described. The potential of zero free charge ( Epzc) for the monolayer-covered electrode was determined to be -0.2 V vs SCE. The differential capacitance and charge density data indicated that the monolayer is stable at the electrode surface when ( E - Epzc) > 0.0 V. At negative rational potentials, a progressive detachment (electrodewetting) of the monolayer occurs. The monolayer is fully detached from the electrode surface at ( E - Epzc) < -0.6 V. The conformation and orientation of the acyl chains and the orientation of the cytosine moiety were determined with the help of photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). The IR measurements demonstrate that the acyl chains are predominantly in the gel phase in the adsorbed state and tilted at an angle of ∼30° with respect to the electrode surface normal. The tilt angle of the acyl chains increases when the film is detached from the gold surface, indicating that the monolayer becomes more disordered. At ( E - Epzc) > 0.0 V, the plane of the cytosine moiety assumes a small angle of ∼20° with respect to the surface. At negative potentials, the tilt angle of the cytosine fragment increases and rotates. With the help of DFT calculations, these changes were explained by the repulsion of the positive pole of the cytosine permanent dipole moment by the positively charged gold surface and its attraction to the metal surface at negative electrode potentials. This work provides unique information for the future development of sensors based on the molecular recognition of nucleoside targets.
Collapse
Affiliation(s)
- Julia Alvarez-Malmagro
- Department of Physical Chemistry , University of Seville , C/Professor García González no. 2, 41012 Seville , Spain
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| | - Francisco Prieto
- Department of Physical Chemistry , University of Seville , C/Professor García González no. 2, 41012 Seville , Spain
| | - Manuela Rueda
- Department of Physical Chemistry , University of Seville , C/Professor García González no. 2, 41012 Seville , Spain
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario , Canada N1G 2W1
| |
Collapse
|
35
|
Liu X, Li X, Xu W, Zhang X, Huang Z, Wang F, Liu J. Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6628-6635. [PMID: 29741377 DOI: 10.1021/acs.langmuir.8b01138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A hallmark of nanoscience is size-dependent and distance-dependent physical properties. Although most previous studies focused on optical properties, which are often tuned at nanometer scale, we herein report on the interaction between halide-capped gold nanoparticles (AuNPs) and phosphocholine (PC) liposomes at the sub-Angstrom level. Halide-capped AuNPs are adsorbed by PC liposomes attributable to van der Waals force. Iodide-capped AuNPs interact much more weakly with the liposomes compared with bromide- and chloride-capped AuNPs, as indicated by a liposome leakage assay and differential scanning calorimetry. This is explained by the slightly larger size of iodide separating the AuNP core more from the liposome surface. Cryo-transmission electron microscopy indicates that the liposomes remain intact when mixed with these halide-capped AuNPs of 13 or 70 nm in diameter. Other even larger ligands, including small thiol compounds, DNA oligonucleotides, proteins, and polymers, fully blocked the interaction, whereas AuNPs dispersed in noninteracting ions, including fluoride, phosphate, perchlorate, nitrate, sulfate, and bicarbonate, are still adsorbed strongly by 1,2-dioleoyl- sn-glycero-3-phosphocholine liposomes. Taken together, halides can be used to control interparticle distances at an extremely small scale with remarkable effects on materials properties, allowing surface probing, biosensor development, and fundamental surface science studies.
Collapse
Affiliation(s)
- Xiuru Liu
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaoqiu Li
- Center of Intervention Radiology, Center of Precise Medicine , Zhuhai People's Hospital , No. 79 Kangning Road , Zhuhai , Guangdong Province 519000 , China
| | - Wu Xu
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
| | - Xiaohan Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Feng Wang
- School of Biological and Medical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
36
|
Electrocatalytic properties of adsorbed halides: The reduction of hexaaquairon(III) on polycrystalline gold in aqueous electrolytes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Morooka T, Tahara H, Sagara T. Effect of bromide adsorption on electrowetting of Au electrode with hexadecane. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Hong S, Lee S, Kim S, Lee JK, Lee J. Anion dependent CO/H 2 production ratio from CO 2 reduction on Au electro-catalyst. Catal Today 2017. [DOI: 10.1016/j.cattod.2017.05.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Jusys Z, Behm R. Electrooxidation of formic acid on a polycrystalline Au film electrode–A comparison with mass transport limited bulk CO oxidation and kinetically limited oxalic acid oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Laurinavichyute VK, Nizamov S, Mirsky VM. The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response. Chemphyschem 2017; 18:1552-1560. [PMID: 28294502 DOI: 10.1002/cphc.201601288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 11/06/2022]
Abstract
Surface plasmon resonance, being widely used in bioanalytics and biotechnology, is influenced by the electrical potential of the resonant gold layer. To evaluate the mechanism of this effect, we have studied it in solutions of various inorganic electrolytes. The magnitude of the effect decreases according to the series: KBr>KCl>KF>NaClO4 . The data were treated by using different models of the interface. A quantitative description was obtained for the model, which takes into account the local dielectric function of gold being affected by the free electron charge, diffuse ionic layer near the gold/water interface, and specific adsorption of halides to the gold surface with partial charge transfer. Taking into account that most biological experiments are performed in chloride-containing solutions, detailed analysis of the model at these conditions was performed. The results indicate that the chloride adsorption is the main mechanism for the influence of potential on the surface plasmon resonance. The dependencies of surface concentration and residual charge of chloride on the applied potential were determined.
Collapse
Affiliation(s)
| | - Shavkat Nizamov
- Institute of Biotechnology, Department of Nanobiotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Vladimir M Mirsky
- Institute of Biotechnology, Department of Nanobiotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| |
Collapse
|
41
|
Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent: New insights. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Lu J, Zhang B. Electrostatic Ion Enrichment in an Ultrathin-Layer Cell with a Critical Dimension between 5 and 20 nm. Anal Chem 2017; 89:2739-2746. [PMID: 28194951 DOI: 10.1021/acs.analchem.6b02916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic interactions play an essential role in many analytical applications including molecular sensing and transport studies using nanopores and separation of charged species. Here, we report the voltammetric quantification of electrostatic ion enrichment in a 5-20 nm thin electrochemical cell. A simple lithographic micro/nanofabrication process was used to create ultrathin-layer cells (UTLCs) with a critical dimension (i.e., cell thickness) as small as 5 nm. The voltammetric response of a UTLC was found to be largely dominated by the electrostatic interaction between charges on the cell walls and the redox species. We show that the ultrasmall cell dimension yielded a 100-300-fold enrichment for cationic redox species. An interesting surface adsorption effect was also demonstrated.
Collapse
Affiliation(s)
- Jin Lu
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| |
Collapse
|
43
|
Ishida R, Arii S, Kurashige W, Yamazoe S, Koyasu K, Negishi Y, Tsukuda T. Halogen adsorbates on polymer-stabilized gold clusters: Mass spectrometric detection and effects on catalysis. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62501-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Gossenberger F, Roman T, Groß A. Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: a computational perspective. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.117] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Electrodeposition of copper on an Au(111) electrode modified with mercaptoacetic acid in sulfuric acid. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Meena SK, Celiksoy S, Schäfer P, Henkel A, Sönnichsen C, Sulpizi M. The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys Chem Chem Phys 2016; 18:13246-54. [PMID: 27118188 PMCID: PMC5159743 DOI: 10.1039/c6cp01076h] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022]
Abstract
We provide a microscopic view of the role of halides in controlling the anisotropic growth of gold nanorods through a combined computational and experimental study. Atomistic molecular dynamics simulations unveil that Br(-) adsorption is not only responsible for surface passivation, but also acts as the driving force for CTAB micelle adsorption and stabilization on the gold surface in a facet-dependent way. The partial replacement of Br(-) by Cl(-) decreases the difference between facets and the surfactant density. Finally, in the CTAC solution, no halides or micellar structures protect the gold surface and further gold reduction should be uniformly possible. Experimentally observed nanoparticle's growth in different CTAB/CTAC mixtures is more uniform and faster as the amount of Cl(-) increases, confirming the picture from the simulations. In addition, the surfactant layer thickness measured on nanorods exposed to CTAB and CTAC quantitatively agrees with the simulation results.
Collapse
Affiliation(s)
- Santosh Kumar Meena
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , 55099 Mainz , Germany . ; Fax: +49 6131 39 25441 ; Tel: +49 6131 39 23641
| | - Sirin Celiksoy
- Institute of Physical Chemistry , University of Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Philipp Schäfer
- Institute of Physical Chemistry , University of Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Andreas Henkel
- Institute of Physical Chemistry , University of Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Carsten Sönnichsen
- Institute of Physical Chemistry , University of Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Marialore Sulpizi
- Institute of Physics , Johannes Gutenberg University Mainz , Staudingerweg 7 , 55099 Mainz , Germany . ; Fax: +49 6131 39 25441 ; Tel: +49 6131 39 23641
| |
Collapse
|
47
|
Byers CP, Hoener BS, Chang WS, Link S, Landes CF. Single-Particle Plasmon Voltammetry (spPV) for Detecting Anion Adsorption. NANO LETTERS 2016; 16:2314-2321. [PMID: 27006995 DOI: 10.1021/acs.nanolett.5b04990] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoparticle and thin film surface plasmons are highly sensitive to electrochemically induced dielectric changes. We exploited this sensitivity to detect reversible electrochemical potential-driven anion adsorption by developing single-particle plasmon voltammetry (spPV) using plasmonic nanoparticles. spPV was used to detect sulfate electroadsorption to individual Au nanoparticles. By comparing both semiconducting and metallic thin film substrates with Au nanoparticle monomers and dimers, we demonstrated that using Au film substrates improved the signal in detecting sulfate electroadsorption and desorption through adsorbate modulated thin film conductance. Using single-particle surface plasmon spectroscopic techniques, we constructed spPV to sense sulfate, acetate, and perchlorate adsorption on coupled Au nanoparticles. spPV extends dynamic spectroelectrochemical sensing to the single-nanoparticle level using both individual plasmon resonance modes and total scattering intensity fluctuations.
Collapse
Affiliation(s)
- Chad P Byers
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Benjamin S Hoener
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Stephan Link
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| | - Christy F Landes
- Smalley-Curl Institute Applied Physics Program, ‡Department of Chemistry, and §Department of Electrical and Computer Engineering, Rice University , Houston, Texas 77005, United States
| |
Collapse
|
48
|
Frittmann S, Halka V, Schuster R. Identification of Non‐Faradaic Processes by Measurement of the Electrochemical Peltier Heat during the Silver Underpotential Deposition on Au(111). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Stefan Frittmann
- Institut für Physikalische Chemie Karlsruhe Institute of Technology Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Vadym Halka
- Institut für Physikalische Chemie Karlsruhe Institute of Technology Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Rolf Schuster
- Institut für Physikalische Chemie Karlsruhe Institute of Technology Kaiserstrasse 12 76131 Karlsruhe Germany
| |
Collapse
|
49
|
Frittmann S, Halka V, Schuster R. Identification of Non-Faradaic Processes by Measurement of the Electrochemical Peltier Heat during the Silver Underpotential Deposition on Au(111). Angew Chem Int Ed Engl 2016; 55:4688-91. [DOI: 10.1002/anie.201600337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Stefan Frittmann
- Institut für Physikalische Chemie; Karlsruhe Institute of Technology; Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Vadym Halka
- Institut für Physikalische Chemie; Karlsruhe Institute of Technology; Kaiserstrasse 12 76131 Karlsruhe Germany
| | - Rolf Schuster
- Institut für Physikalische Chemie; Karlsruhe Institute of Technology; Kaiserstrasse 12 76131 Karlsruhe Germany
| |
Collapse
|
50
|
|