1
|
Michalska B, Dzięgielewski M, Godyń J, Werner T, Bajda M, Karcz T, Szczepańska K, Stark H, Więckowska A, Walczyński K, Staszewski M. 4-Oxypiperidine Ethers as Multiple Targeting Ligands at Histamine H 3 Receptors and Cholinesterases. ACS Chem Neurosci 2024; 15:1206-1218. [PMID: 38440987 PMCID: PMC10958501 DOI: 10.1021/acschemneuro.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 μM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 μM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.
Collapse
Affiliation(s)
- Beata Michalska
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Dzięgielewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tobias Werner
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Marek Bajda
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology
of Drugs, Faculty of Pharmacy, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Department
of Medicinal Chemistry, Maj Institute of
Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Holger Stark
- Institute
of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Jagiellonian
University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Krzysztof Walczyński
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Marek Staszewski
- Department of Synthesis
and Technology of Drugs, Medical University
of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Structures 4-n-propyl Piperazines as Non-Imidazole Histamine H3 Antagonists. MATERIALS 2021; 14:ma14227094. [PMID: 34832494 PMCID: PMC8621284 DOI: 10.3390/ma14227094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022]
Abstract
Seven new low-temperature structures of 4-n-propylpiperazine derivatives, potential H3 receptor antagonists, have been determined by X-ray crystallography, with the following symmetry and unit cell parameters: 2-(4-propyl-piperazin-1-yl)oxazolo[4,5-c]pyridine (compound 1), P-1, 5.9496 Å, 12.4570 Å, 12.8656 Å, 112.445°, 95.687°, 103.040°; 2-(4-propyl-piperazin-1-yl)thia-zolo[4,5-c]pyridine (compound 2), I2/a, 22.2087 Å, 7.5519 Å, 19.9225 Å, β = 92.368°; 2-(4-propyl-piperazin-1-yl)oxazolo[5,4-c]pyridine (compound 3), C2/c, 51.1351 Å, 9.36026 Å, 7.19352 Å, β = 93.882°; 2-(4-propyl-piperazin-1-yl)thiazolo[5,4-c]pyridine (compound 4), Pbcn, 19.2189 Å, 20.6172 Å, 7.4439 Å; 2-(4-propylpiperazin-1-yl)[1,3]oxazolo[4,5-b]pyridine, hydrate (structure 5), Pbca, 7.4967 Å, 12.2531 Å, 36.9527 Å; 2-(4-propylpiperazin-1-yl)[1,3]oxazolo[4,5-b]pyridine, first polymorph (structure 6), P-1, 7.2634 Å, 11.1261 Å, 18.5460 Å, 80.561°, 80.848°, 76.840°; 2-(4-propylpiperazin-1-yl)[1,3]oxazolo[4,5-b]pyridine, second polymorph (structure 7), P21, 8.10852 Å, 7.06025 Å, 12.41650 Å, β = 92.2991°. All the compounds crystallized out as hydrobromides. Oxazole structures show a much greater tendency to form twin crystals than thiazole structures. All the investigated structures display N-H···Br hydrogen bonding. (ADME) analysis, including the assessment of absorption, distribution, metabolism, and excretion, determined the physicochemical properties, pharmacokinetics, drug similarity, and bioavailability radar, and confirmed the usefulness of the compounds in question for pharmaceutical utility. This work is a continuation of the research searching for a new lead of non-imidazole histamine H3 receptor antagonists.
Collapse
|
3
|
Bastaki SMA, Amir N, Więcek M, Kieć-Kononowicz K, Sadek B. Influence of the Novel Histamine H3 Receptor Antagonist/Inverse Agonist M39 on Gastroprotection and PGE2 Production Induced by (R)-Alpha-Methylhistamine in C57BL/6 Mice. Front Pharmacol 2019; 10:966. [PMID: 31572174 PMCID: PMC6751319 DOI: 10.3389/fphar.2019.00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
The role of histamine H3 receptors (H3Rs) in the regulation of gastroprotection and production of prostaglandin E2 (PGE2) as well as somatostatin remains contradictory. Therefore, the effects of the H3R antagonist/inverse agonist M39 on in vivo acidified ethanol-induced gastric ulcers and gastric acid secretion in the C57BL/6 mice were assessed. Results showed that acute systemic administration of H3R agonist (R)-α-methylhistamine (RAMH, 100 mg/kg, i.g.) significantly reduced the severity of ulcer index, increased gastric acid output, and increased mucosal PGE2 production without any alteration of somatostatin concentration in gastric juice. However, only acute systemic administration of the H2R agonist dimaprit (DIM, 10 mg/kg, p.o.) significantly decreased the level of somatostatin measured in gastric juice. Moreover, acute systemic administration of M39 (0.3 mg/kg, i.g.) abrogated the RAMH-induced increase of acid output as well as PGE2 production, but not the DIM (10 mg/kg, i.g.)-stimulated acid secretion, indicating that RAMH as well as M39 modulate the gastroprotective effects through interactions with histamine H3Rs. The present findings indicate that agonistic interaction with H3Rs is profoundly involved in the maintenance of gastric mucosal integrity by modulating PGE2 as well as gastric acid secretion, with no apparent role in the regulation of the inhibitory influence of somatostatin.
Collapse
Affiliation(s)
- Salim M. A. Bastaki
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Bassem Sadek, ; Salim M.A. Bastaki,
| | - Naheed Amir
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University-Medical College, Kraków, Poland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
- *Correspondence: Bassem Sadek, ; Salim M.A. Bastaki,
| |
Collapse
|
4
|
Masłowska-Lipowicz I, Walczyński K. Structure-activity relationships of new 1-substitutedmethyl-4-[5-(N-methyl-N-propylamino)pentyloxy]piperidines and selected 1-[(N-substituted-N-methyl)-3-propyloxy]-5-(N-methy-l-N-propyl)-pentanediamines as H3 -antagonists. Chem Biol Drug Des 2013; 83:106-18. [PMID: 23957330 DOI: 10.1111/cbdd.12206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/14/2013] [Accepted: 08/12/2013] [Indexed: 11/27/2022]
Abstract
Novel, potent non-imidazole histamine H3 receptor antagonists have been prepared and in vitro tested as H3 -receptor antagonists (the electrically evoked contraction of the guinea-pig jejunum). The present compounds contain a 4-hydroxypiperidine core, which behaves as a conformationally restricted version of the 3-amino-1-propanol moiety common to the many previously described non-imidazole H3 ligands. Detailed structure-activity studies revealed that 1-(2-benzofuranylmethyl)- 5c (pA2 = 8.47 ± 0.05) and 1-(3-benzofuranylmethyl)-4-[5-(N-methyl-N-propyl)pentyloxy]piperidine 5d (pA2 = 8.15 ± 0.07) exhibit high potency for the H3 histamine receptor. In addition, the potency of selected 1-[(N-substituted-N-methyl)-3-propyloxy]-5-(N-methyl-N-propyl)pentanediamines as antagonist of the H3 histamine receptor was also evaluated. Replacement of the 4-hydroxypiperidine of the leads 7 and 5c by a highly flexible 3-(methylamino)propyloxy chain yields compounds 6a (pA2 = 8.02) and 6b (pA2 = 6.23) with higher and lower potency than their piperidine analogues (7, pA2 = 7.79; 5c, pA2 = 8.47), respectively. The histaminergic H1 antagonism of selected compounds 5c, 5d and 6a has been established on the isolated guinea-pig ileum by conventional methods; the pA2 values have compared with the potency of pyrilamine. None of them showed any H1 -antagonistic activity (pA2 < 4; for pyrilamine pA2 = 8.5).
Collapse
Affiliation(s)
- Iwona Masłowska-Lipowicz
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-151, Łódź, Poland
| | | |
Collapse
|
5
|
Guryn R, Staszewski M, Walczyński K. Non-imidazole histamine H 3 ligands: part V. synthesis and preliminary pharmacological investigation of 1-[2-thiazol-4-yl- and 1-[2-thiazol-5-yl-(2-aminoethyl)]-4- n-propylpiperazine derivatives. Med Chem Res 2013; 22:3640-3652. [PMID: 23807824 PMCID: PMC3685697 DOI: 10.1007/s00044-012-0372-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 11/15/2012] [Indexed: 11/25/2022]
Abstract
Series of 1-[2-thiazol-4-yl-(2-aminoethyl)]- and 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine derivatives have been prepared and in vitro tested as H3-receptor antagonists (the electrically evoked contraction of the guinea-pig jejunum). It appeared that by comparison of homologous pairs, the 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazines (3a,b and 4a-d) have much higher potency than their analogous 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazines (2a-k). Based on the obtained results, we observed the 5-position of 2-methyl-2-R-aminoethyl substituents in the thiazole ring is favourable for histamine H3 receptor antagonist activity, whereas its presence in position 4 leads, almost in each case, to strong decrease of activity.
Collapse
Affiliation(s)
- Roman Guryn
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Marek Staszewski
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| | - Krzysztof Walczyński
- Department of Synthesis and Technology of Drugs, Medical University, Muszyńskiego Street 1, 90-145 Łódź, Poland
| |
Collapse
|
6
|
Ishikawa M, Furuuchi T, Yamauchi M, Yokoyama F, Kakui N, Sato Y. Synthesis and structure–activity relationships of N-aryl-piperidine derivatives as potent (partial) agonists for human histamine H3 receptor. Bioorg Med Chem 2010; 18:5441-8. [DOI: 10.1016/j.bmc.2010.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 11/30/2022]
|
7
|
Parsons ME, Keeling DJ. Novel approaches to the pharmacological blockade of gastric acid secretion. Expert Opin Investig Drugs 2006; 14:411-21. [PMID: 15882117 DOI: 10.1517/13543784.14.4.411] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research into new methods of controlling acid secretion is driven by existing medical needs in gastro-oesophageal reflux disease treatment. Histamine receptor subtype 3 agonists offer one approach for acid inhibition but no agent is yet undergoing clinical testing. Other, as yet unrealized strategies include preventing the fusion of the tubulovesicular elements that contain H+/K+-ATPase with the parietal cell membrane, or blocking channels that recycle K+ in the parietal cell. Of more promise are gastrin (cholecystokinin) receptor antagonists and potassium-competitive acid blockers; examples of both are in clinical development. It is probable that gastrin receptor antagonists would be used adjunctively with proton pump inhibitors, possibly for meal-induced reflux. The potassium-competitive acid blockers have attributes that may facilitate use as monotherapy for the treatment of gastro-oesophageal reflux disease. The early promise of gastrin receptor antagonists and potassium-competitive acid blockers remains to be defined in large-scale trials.
Collapse
Affiliation(s)
- Michael E Parsons
- Department of Biosciences, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, UK.
| | | |
Collapse
|
8
|
Govoni M, Lim HD, El-Atmioui D, Menge WMPB, Timmerman H, Bakker RA, Leurs R, De Esch IJP. A Chemical Switch for the Modulation of the Functional Activity of Higher Homologues of Histamine on the Human Histamine H3 Receptor: Effect of Various Substitutions at the Primary Amino Function. J Med Chem 2006; 49:2549-57. [PMID: 16610798 DOI: 10.1021/jm0504353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In an effort to establish the structural requirements for agonism, neutral antagonism, and inverse agonism at the human histamine H(3) receptor (H(3)R) we have prepared a series of higher homologues of histamine in which the terminal nitrogen of the side chain has been either mono- or disubstituted with several aliphatic, alicyclic, and aromatic moieties or incorporated in cyclic systems. The novel ligands have been pharmacologically investigated in vitro for their affinities on the human H(3)R and H(4)R subtypes by radioligand displacement experiments and for their intrinsic H(3)R activities via a CRE-mediated beta-galactosidase reporter gene assay. Subtle changes of the substitution pattern at the side chain nitrogen alter enormously the pharmacological activity of the ligands, resulting in a series of compounds with a wide spectrum of pharmacological activities. Among the several neutral H(3)R antagonists identified within this series, compounds 2b and 2h display an H(3)R affinity in the low nanomolar concentration range (pK(i) values of 8.1 and 8.4, respectively). A very potent and selective H(3)R agonist (1l, pEC(50) = 8.9, alpha = 0.94) and a very potent, though not highly selective, H(3)R inverse agonist (2k, pIC(50) = 8.9, alpha = -0.97) have been identified as well.
Collapse
Affiliation(s)
- Marinella Govoni
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kitbunnadaj R, Zuiderveld OP, De Esch IJP, Vollinga RC, Bakker R, Lutz M, Spek AL, Cavoy E, Deltent MF, Menge WMPB, Timmerman H, Leurs R. Synthesis and structure-activity relationships of conformationally constrained histamine H(3) receptor agonists. J Med Chem 2004; 46:5445-57. [PMID: 14640553 DOI: 10.1021/jm030905y] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immepip, a conformationally constrained analogue of the histamine congener imbutamine, shows high affinity and functional activity on the human H(3) receptor. Using histamine and its homologues as prototypes, other rigid analogues containing either a piperidine or pyrrolidine ring in the side chain were synthesized and tested for their activities at the human H(3) receptor and the closely related H(4) receptor. In the series of piperidine containing analogues, immepip was found to be the most potent H(3) receptor agonist, whereas its propylene analogue 13a was identified as a high-affinity neutral antagonist for the human H(3) receptor. Moreover, replacement of the piperidine ring of immepip by a pyrrolidine ring led to a pair of enantiomers that show a distinct stereoselectivity at the human H(3) and H(4) receptor.
Collapse
Affiliation(s)
- Ruengwit Kitbunnadaj
- Leiden/Amsterdam Center of Drug Research (LACDR), Department of Pharmacochemistry, Faculty of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Charles J, Angus JA, Wright CE. Central endogenous histamine modulates sympathetic outflow through H3 receptors in the conscious rabbit. Br J Pharmacol 2003; 139:1023-31. [PMID: 12839877 PMCID: PMC1573916 DOI: 10.1038/sj.bjp.0705322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. This study examined the role of histamine H(3) receptors in vagal and sympathetic autonomic reflexes in the conscious rabbit, and in rabbit and guinea-pig isolated right atria. 2. The baroreceptor-heart rate reflex (baroreflex), Bezold-Jarisch-like and nasopharyngeal reflexes were assessed after these treatments (i.v.; with H(1) and H(2) receptor block): (i) vehicle (saline; n=11); (ii) H(3) receptor agonist, (R)-alpha-methylhistamine (R-alpha-MH) 100 micro g kg(-1)+100 micro g kg(-1) h(-1) (n=9); (iii) H(3) receptor antagonist, thioperamide 1 mg kg(-1)+1 mg kg(-1) h(-1) (n=11); (iv) R-alpha-MH and thioperamide (n=6); and (v) H(2) and H(3) antagonist, burimamide 6.3 mg kg(-1)+6.3 mg kg(-1) h(-1) (n=4). 3. R-alpha-MH caused a thioperamide-sensitive fall in mean arterial pressure (MAP) of 8+/-1 mmHg and tachycardia of 18+/-2 bpm (P<0.0005). Burimamide was without effect, however thioperamide elicited an increase in MAP of 4+/-1 mmHg (P<0.01), but no change in heart rate (HR). 4. R-alpha-MH caused a 44% decrease in the average gain of the baroreflex (P=0.0001); this effect was antagonised by thioperamide. Thioperamide caused a parallel rightward shift in the barocurve with an increase in MAP of 5 mmHg (P<0.05). Burimamide had no effect on the baroreflex. The vagally mediated bradycardia elicited by the Bezold-Jarisch and nasopharyngeal reflexes was unaffected by H(3) receptor ligand administration. 5. R-alpha-MH (<or=10 micro M) caused a thioperamide-sensitive depression of both sympathetic and vagal responses in guinea-pig atria, but had no effect in rabbit atria. 6. As H(3) receptor activation caused a significant decrease in baroreflex gain without affecting HR range, the former is unlikely to be simply due to peripheral sympatholysis (supported by the lack of effect in isolated atria). Central H(3) receptors may have a tonic role in the baroreflex as thioperamide caused a rightward resetting of the barocurve. In contrast, the peripherally acting H(3) antagonist burimamide was without effect. These findings suggest a role for central histamine H(3) receptors in cardiovascular homeostasis in the rabbit.
Collapse
Affiliation(s)
- Julian Charles
- Department of Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | - James A Angus
- Department of Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | - Christine E Wright
- Department of Pharmacology, The University of Melbourne, Victoria 3010, Australia
- Author for correspondence:
| |
Collapse
|
11
|
Poli E, Pozzoli C, Coruzzi G. Role of histamine H(3) receptors in the control of gastrointestinal motility. An overview. JOURNAL OF PHYSIOLOGY, PARIS 2001; 95:67-74. [PMID: 11595420 DOI: 10.1016/s0928-4257(01)00010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the last few years, the biochemical and functional characterization of H(3) receptors has been a matter for extensive investigation, culminating in the cloning of the human, guinea pig and rat receptor protein from brain tissues. This discovery contributed to determine the distribution of receptors in the body and to define the molecular mechanisms which follow activation. The major breakthrough in the histamine H(3) receptor field came with the synthesis of selective and potent agonists and antagonists, which unravelled the function of this receptor subtype in the different tissues. As expected from the ubiquitous location of histamine in the body, histamine H(3) receptors have also been identified in virtually every tissue, although they are quantitatively less abundant than H(1) and H(2) receptors. Concerning the gastrointestinal tract, this new receptor subtype seems to have multiple cellular locations, which include neurons, enteric ganglia, paracrine and immune cells and, in some tissues, also smooth muscle cells. Therefore it might be regarded as a general regulatory system of different digestive functions, including motility. The effects mediated by histamine H(3)-receptors mainly reflect the presynaptic inhibition of the release of either excitatory or inhibitory neurotransmitters from the myenteric plexus. The molecular mechanism of presynaptic inhibition seems to involve a restriction of calcium entry into the nerve endings, but other mechanisms (reduction of cAMP), possibly associated to different H(3) receptor subtypes, may be involved. Despite the widespread distribution and the well defined inhibitory effects evoked in the majority of in vitro models of intestinal motility, no clear cut evidence of its involvement in the control of peristalsis could be provided. In vivo models of gastrointestinal transit, indeed, did not reveal a defined effect of histamine H(3) receptor ligands, even though the possibility of a central inhibition was pointed out in several studies. Therefore, it is not clear at the present what is the physiological meaning of the histamine H(3) receptor in the control of gastrointestinal motility and whether it could represent a potential target for novel therapeutic interventions in deranged motility, taking into account that human gastrointestinal tissues are apparently devoid of this receptor.
Collapse
Affiliation(s)
- E Poli
- Institute of Pharmacology, University of Parma, School of Medicine, Via Volturno 39, I-43100 Parma, Italy
| | | | | |
Collapse
|