1
|
Sonin DL, Pochkaeva EI, Papayan GV, Minasian SM, Mukhametdinova DV, Zaytseva EA, Mochalov DA, Petrishchev NN, Galagudza MM. Cardio- and Vasoprotective Effects of Quinacrine in an In Vivo Rat Model of Myocardial Ischemia/Reperfusion Injury. Bull Exp Biol Med 2024; 177:190-196. [PMID: 39096448 DOI: 10.1007/s10517-024-06154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 08/05/2024]
Abstract
This study aimed to investigate the cardioprotective effect of quinacrine in an in vivo model of myocardial ischemia/reperfusion injury. A 30-min regional myocardial ischemia followed by a 2-h reperfusion was modeled in anesthetized Wistar rats. Starting at the last minute of ischemia and during the first 9 min of reperfusion the rats in the control (n=8) and experimental (n=9) groups were injected with 0.9% NaCl and quinacrine solution (5 mg/kg), respectively. The area at risk and infarct size were evaluated by "double staining" with Evans blue and triphenyltetrazolium chloride. To assess vascular permeability in the area at risk zone, indocyanine green (ICG) and thioflavin S (ThS) were injected intravenously at the 90th and 120th minutes of reperfusion, respectively, to assess the no-reflow zone. The images of ICG and ThS fluorescence in transverse sections of rat hearts were obtained using a FLUM multispectral fluorescence organoscope. HR tended to decrease by 13% after intravenous administration of quinacrine and then recovered within 50 min. Quinacrine reduced the size of the necrotic zone (p=0.01), vascular permeability in the necrosis region, and the no-reflow area (p=0.027); at the same time, the area at risk did not significantly differ between the groups. Intravenous administration of quinacrine at the beginning of reperfusion of the rat myocardium reduces no-reflow phenomenon and infarct size.
Collapse
Affiliation(s)
- D L Sonin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
- I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia.
| | - E I Pochkaeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - G V Papayan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - S M Minasian
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D V Mukhametdinova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - E A Zaytseva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - D A Mochalov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - N N Petrishchev
- I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - M M Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, Russia
- I. P. Pavlov First Saint-Petersburg State Medical University, Ministry of Health of the Russian Federation, St. Petersburg, Russia
| |
Collapse
|
2
|
Abstract
Most of the anticancer chemotherapeutic drugs that are broadly and successfully used today are DNA-damaging agents. Targeting of DNA has been proven to cause relatively potent and selective destruction of tumor cells. However, the clinical potential of DNA-damaging agents is limited by the adverse side effects and increased risk of secondary cancers that are consequences of the agents' genotoxicity. In this review, we present evidence that those agents capable of targeting DNA without inducing DNA damage would not be limited in these ways, and may be as potent as DNA-damaging agents in the killing of tumor cells. We use as an example literature data and our own research of the well-known antimalarial drug quinacrine, which binds to DNA without inducing DNA damage, yet modulates a number of cellular pathways that impact tumor cell survival.
Collapse
Affiliation(s)
- Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
3
|
Ytrehus K, Tveita T, Bugge E. Loss of heart phospholipid arachidonic acid without phospholipid peroxidation in anaesthetized rats rewarmed after prolonged deep hypothermia. Cryobiology 2009; 59:297-301. [DOI: 10.1016/j.cryobiol.2009.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 08/13/2009] [Accepted: 08/25/2009] [Indexed: 01/30/2023]
|
4
|
Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 2008; 38:78-100. [PMID: 18686046 DOI: 10.1007/s12035-008-8036-x] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/17/2008] [Indexed: 12/19/2022]
Abstract
Calpain is a ubiquitous calcium-sensitive protease that is essential for normal physiologic neuronal function. However, alterations in calcium homeostasis lead to persistent, pathologic activation of calpain in a number of neurodegenerative diseases. Pathologic activation of calpain results in the cleavage of a number of neuronal substrates that negatively affect neuronal structure and function, leading to inhibition of essential neuronal survival mechanisms. In this review, we examine the mechanistic underpinnings of calcium dysregulation resulting in calpain activation in the acute neurodegenerative diseases such as cerebral ischemia and in the chronic neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, prion-related encephalopathy, and amylotrophic lateral sclerosis. The premise of this paper is that analysis of the signaling and transcriptional consequences of calpain-mediated cleavage of its various substrates for any neurodegenerative disease can be extrapolated to all of the neurodegenerative diseases vulnerable to calcium dysregulation.
Collapse
|
5
|
The protecting effects and mechanisms of Baicalin and Octreotide on heart injury in rats with SAP. Mediators Inflamm 2008; 2007:19469. [PMID: 18274634 PMCID: PMC2220025 DOI: 10.1155/2007/19469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 10/24/2007] [Indexed: 12/13/2022] Open
Abstract
Purpose. To observe the protecting effects and mechanisms
of Baicalin and Octreotide on heart injury in rats with severe
acute pancreatitis (SAP).
Methods. The SAP rat models were randomly divided into
the model group, Baicalin-treated group, Octreotide treated group,
and sham operation group. The contents of some inflammatory
indexes in blood were determined. The rat mortality, pathological
changes of heart, the changes of NF-κB,
P-Selectin, Bax, Bcl-2, and Caspase-3 protein
expression levels as well as apoptotic index were observed in all
groups, respectively, at 3 hours, 6 hours, and 12 hours after
operation.
Results. The survival rate of model group was less
than treated groups at 12 hours, difference was significant. The
contents of some inflammatory indexes of the treated groups were
lower than those of the model group to various degrees at
different time points. The pathological myocardial changes under
light microscope were milder in treated groups than in model
group. The changes of
NF-κB,
P-Selectin, Bax, Bcl-2, and Caspase-3 protein expression levels in
all groups were different. There was only a case of myocardial
cell apoptosis in an Octreotide-treated group at 6 hours.
Conclusion. Baicalin and Octreotide have protecting
effects on heart injury of rats with SAP.
Collapse
|
6
|
Torregrosa G, Pérez-Asensio FJ, Burguete MC, Castelló-Ruiz M, Salom JB, Alborch E. Chronic intracerebroventricular delivery of the secretory phospholipase A2 inhibitor, 12-epi-scalaradial, does not improve outcome after focal cerebral ischemia-reperfusion in rats. Exp Brain Res 2008; 176:248-59. [PMID: 16874515 DOI: 10.1007/s00221-006-0611-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
Phospholipase A2s (PLA2s) seem to be involved in the pathophysiology of ischemic brain injury, but their specific role is far from being completely understood. The present study was carried out to ascertain how and to what extent secretory PLA2s (sPLA2s) activity influences outcome after cerebral ischemia-reperfusion, and to correlate this with the inflammatory response. To do this we used the potent and selective sPLA2 inhibitor, 12-epi-scalaradial. Male Wistar rats were separated into three groups: a control group receiving intracerebroventricular vehicle, and two groups receiving intracerebroventricular 0.005 or 0.5 microg/h 12-epi-scalaradial. Every animal was subjected to middle cerebral artery (MCA) occlusion (90 min, intraluminal thread technique) under continuous moni-torization of cerebrocortical perfusion (CP, laser-Doppler flowmetry), followed by reperfusion (3 days). Neurological status, infarct volume, and myeloperoxidase (MPO) activity were the main end points. Three days after the 90-min ischemia period, neurological examination did not reveal significant differences between the three groups of rats. Control rats showed a mean infarct volume of 145.9 +/- 24.7 mm3 (21 +/- 4.1% of the ipsilateral hemisphere volume), while mean infarct volume in rats treated with 0.005 or 0.5 microg/h 12-epi-scalaradial increased to 164.8 +/- 86.8 mm3 (22.0 +/- 10.9%) and 211.5 +/- 12.2 mm3 (28 +/- 3%, P < 0.05), respectively. Treatment with the highest dose of 12-epi-scalaradial (0.5 microg/h) increased MPO activity in the ipsilateral hemisphere by about 140% (from 0.59 +/- 0.59 to 1.42 +/- 1.03 units of activity/g of tissue in comparison with the control ischemic hemisphere, P < 0.05). Overall, our results point to a positive rather than a negative influence of sPLA2 activity during ischemia. This, along with its inability to decrease the inflammatory response, does not allow to propose the use of 12-epi-scalardial as a potential drug for stroke therapy.
Collapse
Affiliation(s)
- Germán Torregrosa
- Centro de Investigación, Hospital Universitario La Fe, Ave. Campanar 21, 46009 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Nie A, Meng Z. Sulfur dioxide derivatives modulate Na/Ca exchange currents and cytosolic [Ca2+]i in rat myocytes. Biochem Biophys Res Commun 2007; 358:879-84. [PMID: 17502109 DOI: 10.1016/j.bbrc.2007.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
We have recently shown that sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3 M/M) modulated L-type calcium, sodium, and potassium channels in rat myocytes. The aim of this study was to investigate whether SO(2) derivatives could alter Na/Ca exchanger current and the intracellular free [Ca(2+)]. The nickel-sensitive Na/Ca exchanger current was measured in rat myocytes exposed to ramp pulses in Tyrode's solution containing ouabain, nifedipine, and +/-Ni (5 mmol/l). Myocytes were loaded with the fluorescent Ca(2+) indicator Fura-2/AM to estimate intracellular Ca(2+) concentration. SO(2) derivatives significantly inhibited both outward and inward Ni-sensitive Na/Ca exchanger currents without a shift in the reversal potential. The intracellular free [Ca(2+)] was raised by SO(2) derivatives in several concentrations. SO(2) derivatives increased [Ca(2+)](i) in rat myocytes and its mechanism might involve SO(2) derivatives significantly inhibiting Na/Ca exchanger current and enhancing L-type calcium channel.
Collapse
Affiliation(s)
- Aifang Nie
- Shanghai Clinical Center for Endocrine and Metabolic Disease, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrine and Metabolic Disease, Ruijin Hospital, China.
| | | |
Collapse
|
8
|
Nie A, Meng Z. Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives. Food Chem Toxicol 2006; 44:355-63. [PMID: 16182427 DOI: 10.1016/j.fct.2005.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 08/03/2005] [Accepted: 08/10/2005] [Indexed: 11/28/2022]
Abstract
The effects of sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3M/M) on voltage-dependent L-type calcium current (I(Ca,L)) in isolated rat ventricular myocytes were studied using the whole cell patch-clamp technique. SO(2) derivatives increased I(Ca,L) in a concentration-dependent manner. SO(2) derivatives shifted both the steady-state activation and the inactivation curves of I(Ca,L) to more positive potentials, the effect on the latter being more pronounced. SO(2) derivatives markedly accelerated the recovery of I(Ca,L) from inactivation. SO(2) derivatives also significantly shortened the fast and slow time constants of inactivation. These results suggested that SO(2) inhalation might cause cardiac myocyte injury through increasing intracellular calcium via voltage-gated calcium channels.
Collapse
Affiliation(s)
- Aifang Nie
- Institute of Environmental Medicine and Toxicology, Shanxi University, Taiyuan, China
| | | |
Collapse
|
9
|
Asemu G, Dent MR, Singal T, Dhalla NS, Tappia PS. Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemia–reperfusion of rat heart. Arch Biochem Biophys 2005; 436:136-44. [PMID: 15752718 DOI: 10.1016/j.abb.2005.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/31/2005] [Indexed: 10/25/2022]
Abstract
Phospholipase D (PLD2) produces phosphatidic acid (PA), which is converted to 1,2 diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP2). Since PA and DAG regulate Ca(2+) movements, we examined PLD2 and PAP2 in the sarcolemma (SL) and sarcoplasmic reticular (SR) membranes from hearts subjected to ischemia and reperfusion (I-R). Although SL and SR PLD2 activities were unaltered after 30 min ischemia, 5 min reperfusion resulted in a 36% increase in SL PLD2 activity, whereas 30 min reperfusion resulted in a 30% decrease in SL PLD2 activity, as compared to the control value. SR PLD2 activity was decreased (39%) after 5 min reperfusion, but returned to control levels after 30 min reperfusion. Ischemia for 60 min resulted in depressed SL and SR PLD2 activities, characterized with reduced V(max) and increased K(m) values, which were not reversed during reperfusion. Although the SL PAP2 activity was decreased (31%) during ischemia and at 30 min reperfusion (28%), the SR PAP2 activity was unchanged after 30 min ischemia, but was decreased after 5 min reperfusion (25%) and almost completely recovered after 30 min reperfusion. A 60 min period of ischemia followed by reperfusion caused an irreversible depression of SL and SR PAP2 activities. Our results indicate that I-R induced cardiac dysfunction is associated with subcellular changes in PLD2 and PAP2 activities.
Collapse
Affiliation(s)
- Girma Asemu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Canada R2H 2A6
| | | | | | | | | |
Collapse
|
10
|
Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC. Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem 2004; 279:21948-56. [PMID: 15026410 DOI: 10.1074/jbc.m400793200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies using post-mortem human brain extracts demonstrated that PrP in Creutzfeldt-Jakob disease (CJD) brains is cleaved by a cellular protease to generate a C-terminal fragment, referred to as C2, which has the same molecular weight as PrP-(27-30), the protease-resistant core of PrP(Sc) (1). The role of this endoproteolytic cleavage of PrP in prion pathogenesis and the identity of the cellular protease responsible for production of the C2 cleavage product has not been explored. To address these issues we have taken a combination of pharmacological and genetic approaches using persistently infected scrapie mouse brain (SMB) cells. We confirm that production of C2 is the predominant cleavage event of PrP(Sc) in the brains of scrapie-infected mice and that SMB cells faithfully recapitulate the diverse intracellular proteolytic processing events of PrP(Sc) and PrP(C) observed in vivo. While increases in intracellular calcium (Ca(2+)) levels in prion-infected cell cultures stimulate the production of the PrP(Sc) cleavage product, pharmacological inhibitors of calpains and overexpression of the endogenous calpain inhibitor, calpastatin, prevent the production of C2. In contrast, inhibitors of lysosomal proteases, caspases, and the proteasome have no effect on C2 production in SMB cells. Calpain inhibition also prevents the accumulation of PrP(Sc) in SMB and persistently infected ScN2A cells, whereas bioassay of inhibitor-treated cell cultures demonstrates that calpain inhibition results in reduced prion titers compared with control-treated cultures assessed in parallel. Our observations suggest that calpain-mediated endoproteolytic cleavage of PrP(Sc) may be an important event in prion propagation.
Collapse
Affiliation(s)
- Rajgopal Yadavalli
- Department of Microbiology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
11
|
Farrelly PV, Kenna BL, Laohachai KL, Bahadi R, Salmona M, Forloni G, Kourie JI. Quinacrine blocks PrP (106-126)-formed channels. J Neurosci Res 2004; 74:934-41. [PMID: 14648599 DOI: 10.1002/jnr.10849] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the action of the acridine derivative, quinacrine (QC), which has been shown to act as a noncompetitive channel inhibitor. The main effects of QC are voltage- and concentration-dependent changes in the kinetics of the prion protein fragment (PrP[106-126])-formed cation channels. The current-voltage relationships show that the maximal current (I) was not affected whereas the physiologically important mean current (I') was reduced as a result of changes in channel kinetics. These findings suggest that QC acts on the open state of the channels. The half-inhibitory concentration (IC50) for the dose-dependent effects of [QC]cis on the kinetic parameters of the PrP(106-126)-formed cation channel shows a reduction in the ratios Po(QC)/Po, Fo(QC)/Fo, and To(QC)/To, whereas Tc(QC)/Tc increases. Of these ratios, Po(QC)/Po was more sensitive than the others. The corresponding IC50 for these ratios were 51, 94, 86, and 250 microM QC, respectively. The QC-induced changes in the kinetic parameters were more apparent at positive voltages. IC50 values for Po were 95, 75, and 51 microM at +20, +80, and +140 mV, respectively. The fact that QC induced changes in the kinetics of this channel, although the conductance of the channel remained unchanged, indicates that QC may bind at the mouth of the channel via a mechanism known as fast channel block. The QC-induced changes in the kinetic parameters of this channel suggest that they are pathophysiologically significant because these channels could be the mechanisms by which amyloids induce membrane damage in vivo.
Collapse
Affiliation(s)
- Peter V Farrelly
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra City, Australian Capital Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
12
|
Hool LC. Hypoxia Alters the Sensitivity of the L-Type Ca
2+
Channel to α-Adrenergic Receptor Stimulation in the Presence of β-Adrenergic Receptor Stimulation. Circ Res 2001; 88:1036-43. [PMID: 11375273 DOI: 10.1161/hh1001.090841] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—The effects of α-adrenergic receptor (α-AR) stimulation alone and the effects in the presence of β-adrenergic receptor (β-AR) stimulation were examined on L-type Ca
2+
currents (
I
Ca-L
) in the absence and presence of hypoxia. The α-AR agonist methoxamine either had no effect or had a slight inhibitory effect on basal
I
Ca-L
in the absence and presence of hypoxia. Hypoxia significantly decreased the
K
0.5
for activation of
I
Ca-L
by norepinephrine from 79.8±6.6 to 13.3±0.7 nmol/L. To determine whether hypoxia specifically altered the sensitivity of the channel to α-AR stimulation, cells were exposed to increasing concentrations of methoxamine in the presence of 100 nmol/L isoproterenol (Iso). In the absence of hypoxia, methoxamine inhibited the Iso-activated
I
Ca-L
in a concentration-dependent manner with an EC
50
of 86.9±9.9 μmol/L. However, in the presence of hypoxia, the EC
50
for inhibition of
I
Ca-L
by methoxamine was significantly increased to 266.7±10.8 μmol/L. Methoxamine had little effect on
I
Ca-L
activated by forskolin or histamine in the absence or presence of hypoxia. In addition, inhibition of protein kinase C by bisindolylmaleimide 1 or protein kinase C β peptide inhibitor had no effect on the methoxamine-induced antagonism of
I
Ca-L
in the absence or presence of hypoxia. The tyrosine kinase inhibitor genistein attenuated the methoxamine response in nonhypoxic cells only. However, during hypoxia it was attenuated with the phospholipase A
2
inhibitors mepacrine and indomethacin. These findings represent a novel regulation of the L-type Ca
2+
channel by the phospholipase A
2
pathway and illustrate the complexity of regulation of the channel under hypoxic conditions.
Collapse
Affiliation(s)
- L C Hool
- Department of Physiology, The University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|