1
|
Sphingolipid control of cognitive functions in health and disease. Prog Lipid Res 2022; 86:101162. [DOI: 10.1016/j.plipres.2022.101162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
2
|
Schwarzmann G. Labeled gangliosides: their synthesis and use in biological studies. FEBS Lett 2018; 592:3992-4006. [DOI: 10.1002/1873-3468.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Günter Schwarzmann
- LIMES c/o Kekulé‐Institut f. Organische Chemie und Biochemie Rheinische Friedrich‐Wilhelms‐Universität Bonn Germany
| |
Collapse
|
3
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Noel A, Ingrand S, Barrier L. Anti-amyloidogenic effects of glycosphingolipid synthesis inhibitors occur independently of ganglioside alterations. Mol Cell Neurosci 2016; 75:63-70. [PMID: 27373967 DOI: 10.1016/j.mcn.2016.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/13/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
Evidence has suggested that ganglioside abnormalities may be linked to the proteolytic processing of amyloid precursor protein (APP) in Alzheimer's disease (AD) and that pharmacological inhibition of ganglioside synthesis may reduce amyloid β-peptide (Aβ) production. In this study, we assessed the usefulness of two well-established glycosphingolipid (GSL) synthesis inhibitors, the synthetic ceramide analog D-PDMP (1-phenyl 2-decanoylamino-3-morpholino-1-propanol) and the iminosugar N-butyldeoxynojirimycin (NB-DNJ or miglustat), as anti-amyloidogenic drugs in a human cellular model of AD. We found that both GSL inhibitors were able to markedly inhibit Aβ production, although affecting differently the APP cleavage. Surprisingly, the L-enantiomer of PDMP, which promotes ganglioside accumulation, acted similarly to D-PDMP to inhibit Aβ production. Concurrently, both D- and L-PDMP strongly and equally reduced the levels of long-chain ceramides. Altogether, our data suggested that the anti-amyloidogenic effects of PDMP agents are independent of the altered cellular ganglioside composition, but may result, at least in part, from their ability to reduce ceramide levels. Moreover, our current study established for the first time that NB-DNJ, a drug already used as a therapeutic for Gaucher disease (a lysosomal storage disorder), was also able to reduce Aβ production in our cellular model. Therefore, our study provides novel information regarding the possibilities to target amyloidogenic processing of APP through modulation of sphingolipid metabolism and emphasizes the potential of the iminosugar NB-DNJ as a disease modifying therapy for AD.
Collapse
Affiliation(s)
- Anastasia Noel
- Université Laval, Faculté de Médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre Hospitalier de l'Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Université de Poitiers, Groupe de Recherche sur le Vieillissement Cérébral GRéViC EA3808, Poitiers, France
| | - Sabrina Ingrand
- Université de Poitiers, UFR Médecine&Pharmacie, Service de Biochimie et Toxicologie, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| | - Laurence Barrier
- Université de Poitiers, UFR Médecine&Pharmacie, Service de Biochimie et Toxicologie, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France.
| |
Collapse
|
5
|
Testai FD, Xu HL, Kilkus J, Suryadevara V, Gorshkova I, Berdyshev E, Pelligrino DA, Dawson G. Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. J Neurosci Res 2015; 93:796-805. [PMID: 25597763 DOI: 10.1002/jnr.23542] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
We previously described how ceramide (Cer), a mediator of cell death, increases in the cerebrospinal fluid (CSF) of subarachnoid hemorrhage (SAH) patients. This study investigates the alterations of biochemical pathways involved in Cer homeostasis in SAH. Cer, dihydroceramide (DHC), sphingosine-1-phosphate (S1P), and the activities of acid sphingomyelinase (ASMase), neutral sphingomyelinase (NSMase), sphingomyelinase synthase (SMS), S1P-lyase, and glucosylceramide synthase (GCS) were determined in the CSF of SAH subjects and in brain homogenate of SAH rats. Compared with controls (n = 8), SAH patients (n = 26) had higher ASMase activity (10.0 ± 3.5 IF/µl· min vs. 15.0 ± 4.6 IF/µl • min; P = 0.009) and elevated levels of Cer (11.4 ± 8.8 pmol/ml vs. 33.3 ± 48.3 pmol/ml; P = 0.001) and DHC (1.3 ± 1.1 pmol/ml vs. 3.8 ± 3.4 pmol/ml; P = 0.001) in the CSF. The activities of GCS, NSMase, and SMS in the CSF were undetectable. Brain homogenates from SAH animals had increased ASMase activity (control: 9.7 ± 1.2 IF/µg • min; SAH: 16.8 ± 1.6 IF/µg • min; P < 0.05) and Cer levels (control: 3,422 ± 26 fmol/nmol of total lipid P; SAH: 7,073 ± 2,467 fmol/nmol of total lipid P; P < 0.05) compared with controls. In addition, SAH was associated with a reduction of 60% in S1P levels, a 40% increase in S1P-lyase activity, and a twofold increase in the activity of GCS. In comparison, NSMase and SMS activities were similar to controls and SMS activities similar to controls. In conclusion, our results show an activation of ASMase, S1P-lyase, and GCS resulting in a shift in the production of protective (S1P) in favor of deleterious (Cer) sphingolipids after SAH. Additional studies are needed to determine the effect of modulators of the pathways described here in SAH.
Collapse
Affiliation(s)
- Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Testai FD, Kilkus JP, Berdyshev E, Gorshkova I, Natarajan V, Dawson G. Multiple sphingolipid abnormalities following cerebral microendothelial hypoxia. J Neurochem 2014; 131:530-40. [PMID: 25060904 DOI: 10.1111/jnc.12836] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
Abstract
Hypoxia has been previously shown to inhibit the dihydroceramide (DHC) desaturase, leading to the accumulation of DHC. In this study, we used metabolic labeling with [3H]-palmitate, HPLC/MS/MS analysis, and specific inhibitors to show numerous sphingolipid changes after oxygen deprivation in cerebral microendothelial cells. The increased DHC, particularly long-chain forms, was observed in both whole cells and detergent-resistant membranes. This was reversed by reoxygenation and blocked by the de novo sphingolipid synthesis inhibitor myriocin, but not by the neutral sphingomyelinase inhibitor GW-4869. Furthermore, oxygen deprivation of microendothelial cells increased levels of dihydro-sphingosine (DH-Sph), DH-sphingosine1-phosphate (DH-S1P), DH-sphingomyelin (DH-SM), DH-glucosylceramide (DH-GlcCer), and S1P levels. In vitro assays revealed no changes in the activity of sphingomyelinases or sphingomyelin synthase, but resulted in reduced S1P lyase activity and 40% increase in glucosylceramide synthase (GCS) activity, which was reversed by reoxygenation. Inhibition of the de novo sphingolipid pathway (myriocin) or GCS (EtPoD4) induced endothelial barrier dysfunction and increased caspase 3-mediated cell death in response to hypoxia. Our findings suggest that hypoxia induces synthesis of S1P and multiple dihydro-sphingolipids, including DHC, DH-SM, DH-GlcCer, DH-Sph and DH-S1P, which may be involved in ameliorating the effects of stroke . Progressive hypoxia leads to the accumulation of several dihydrosphingolipids in cerebral microendothelial cells. Hypoxia also increases sphingosine-1-phosphate and the activity of glucosylceramide (Glc-Cer) synthase. These changes reverse by inhibiting the de novo sphingolipid synthesis, which worsens hypoxia-induced endothelial barrier dysfunction and apoptosis, suggesting that the identified sphingolipids may be vasculoprotective.
Collapse
Affiliation(s)
- Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hisaki H, Okazaki T, Kubota M, Nakane M, Fujimaki T, Nakayama H, Nakagomi T, Tamura A, Masuda H. L-PDMP improves glucosylceramide synthesis and behavior in rats with focal ischemia. Neurol Res 2013; 30:979-84. [DOI: 10.1179/016164108x339396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Tabatadze N, Savonenko A, Song H, Bandaru VVR, Chu M, Haughey NJ. Inhibition of neutral sphingomyelinase-2 perturbs brain sphingolipid balance and spatial memory in mice. J Neurosci Res 2010; 88:2940-51. [PMID: 20629193 DOI: 10.1002/jnr.22438] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sphingolipid ceramide is a bioactive signaling lipid that is thought to play important roles in modulating synaptic activity, in part by regulating the function of excitatory postsynaptic receptors. However, the molecular mechanisms by which ceramide exerts its effects on synaptic activity remain largely unknown. We recently demonstrated that a rapid generation of ceramide by neutral sphingomyelinase-2 (nSMase2; also known as "sphingomyelin phosphodiesterase-3") played a key role in modulating excitatory postsynaptic currents by controlling the insertion and clustering of NMDA receptors (Wheeler et al. [2009] J. Neurochem. 109:1237-1249). We now demonstrate that nSMase2 plays a role in memory. Inhibition of nSMase2 impaired spatial and episodic-like memory in mice. At the molecular level, inhibition of nSMase2 decreased ceramide, increased PSD-95, increased the number of AMPA receptors, and altered the subunit composition of NMDA receptors. Our study identifies nSMase2 as an important component for efficient memory formation and underscores the importance of ceramide in regulating synaptic events related to learning and memory.
Collapse
Affiliation(s)
- Nino Tabatadze
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|
9
|
Inokuchi JI. Neurotrophic and neuroprotective actions of an enhancer of ganglioside biosynthesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:319-36. [PMID: 19607978 DOI: 10.1016/s0074-7742(09)85022-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To address the role of brain gangliosides in synaptic plasticity, the synthetic ceramide analog, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) was used to manipulate the biosynthesis of gangliosides in cultured cortical neurons. Spontaneous synchronized oscillatory activity of intracellular Ca(2+) between the neurons, which represents synapse formation, was suppressed by the depletion of endogenous gangliosides by d-threo-PDMP, an inhibitor of glucosylceramide synthase. On the other hand, the enantiomer of inhibitor, l-threo-PDMP, could elevate cellular levels of gangliosides by upregulating several glycosyltransferases responsible for ganglioside biosynthesis. This review presents our findings on the neurotrophic actions of l-threo-PDMP in vitro and in vivo. We found that l-PDMP could upregulate neurite outgrowth, and functional synapse formation through activating GM3, GD3, and GQ1b synthases. Simultaneously, the activity of p42 mitogen-activated protein kinase was also facilitated by l-PDMP. To evaluate the efficacy of this drug on long term memory, rats were trained for 2 weeks using an 8-arm radial maze task, and then forebrain ischemia was induced by four-vessel occlusion. Repeated treatment of l-PDMP starting 24h after the ischemia, improved the deficit of the well-learned spatial memory and prevented the ischemia-induced apoptosis in hippocampus, demonstrating the potential therapeutic use of the ceramide analog for treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, 4-4-1, komatsushima, Aoba-ku, Sendai 981-8558, Miyagi, Japan
| |
Collapse
|
10
|
Zhao J, Wu HW, Chen YJ, Tian HP, Li LX, Han X, Guo J. Protein phosphatase 2A-negative regulation of the protective signaling pathway of Ca2+/CaM-dependent ERK activation in cerebral ischemia. J Neurosci Res 2008; 86:2733-45. [DOI: 10.1002/jnr.21712] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Schneider JS, Bradbury KA, Anada Y, Inokuchi JI, Anderson DW. The synthetic ceramide analog L-PDMP partially protects striatal dopamine levels but does not promote dopamine neuron survival in murine models of parkinsonism. Brain Res 2006; 1099:199-205. [PMID: 16764837 DOI: 10.1016/j.brainres.2006.04.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/27/2006] [Accepted: 04/29/2006] [Indexed: 01/28/2023]
Abstract
A number of previous studies have demonstrated a positive effect of exogenously administered monosialoganglioside GM1 on striatal dopamine (DA) levels and DA neuron survival in animal models of parkinsonism. However, due to low bioavailability of peripherally administered GM1, the present study investigated the neuroprotective/neurorestorative potential of enhancing endogenous GM1 biosynthesis by administration of the synthetic ceramide analog L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (L-PDMP) in two mouse models of Parkinsonism produced by acute or subacute 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration. L-PDMP treatment caused an increase in brain GM1 levels in both Parkinson models and resulted in a partial sparing of striatal DA levels in the subacute MPTP model but not in the acute MPTP model. L-PDMP treatment had no effect on DA neuron survival in either model. These data suggest that the administration of L-PDMP as a means to enhance endogenous brain GM1 levels may hold limited promise as a potential neuroprotective or neurorestorative therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
12
|
Lee S, Ahn SH, Baek SH, Song JH, Choo YK, Kwon OD, Choi BK, Jung KY. Modulation of cell proliferation and hypertrophy by gangliosides in cultured human glomerular mesangial cells. Arch Pharm Res 2005; 28:948-55. [PMID: 16178422 DOI: 10.1007/bf02973882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glomerular mesangial cells (GMCs) in diverse renal diseases undergo cell proliferation and/or hypertrophy, and gangliosides have been reported to play an important role in modulating cell structure and function. This study compared the effects of transforming growth factor-beta1 (TGF-beta1) and the effects of the application of exogenous gangliosides on GMCs and investigated whether the application of exogenous gangliosides regulated cellular proliferation and hypertrophy. Human GMCs were cultured with exogenous gangliosides and TGF-beta1 in a media containing 10% fetal bovine serum and in a media without the fetal bovine serum. Exogenous gangliosides biphasically changed the proliferation of human GMCs (0.1-1.0 mg/mL). A low concentration (0.1 mg/mL) of gangliosides mainly increased the number of human GMCs, whereas cellular proliferation was significantly reduced by raising the concentration of exogenous gangliosides. TGF-beta1 greatly reduced the number of human GMCs in a concentration-dependent manner (1-10 ng/mL). Serum deprivation accelerated the gangliosides- and TGF-beta1-induced inhibition of mesangial cell proliferation to a greater extent. Gangliosides (1.0 mg/ mL) and TGF-beta1 (10 ng/mL) both caused a significant increase in the incorporation of [3H]leucine per cell in the serum-deprived condition, whereas it was completely reversed in serum-supplemented condition. Similar results to the [3H]leucine incorporation were also observed in the changes in cell size measured by flow cytometric analysis. These results show that exogenous gangliosides modulate cell proliferation and hypertrophy in cultured human GMCs, and these cellular responses were regulated differently based on whether the media contained serum or not. Results from the present study raise new possibilities about the potential involvement of gangliosides in the development of mesangial cell proliferation and hypertrophy.
Collapse
Affiliation(s)
- Seoul Lee
- Department of Pharmacology, Wonkwang University School of Medicine, 334-2 Shinyongdong, Iksan, Jeonbuk 570-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|