1
|
Tan Q, Huang Q, Ma YL, Mao K, Yang G, Luo P, Ma G, Mei P, Jin Y. Potential roles of IL-1 subfamily members in glycolysis in disease. Cytokine Growth Factor Rev 2018; 44:18-27. [PMID: 30470512 DOI: 10.1016/j.cytogfr.2018.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
The interleukin-(IL)-1 subfamily consists of IL-1α, IL-1β, IL-1 receptor antagonist IL-1Ra and IL-33. These cytokines are the main members of the IL-1 family and have been widely recognized as having significant roles in pro-inflammatory and immunomodulatory actions. Mounting evidence has revealed that these cytokines also play key roles in the regulation of glycolysis, which is an important metabolic pathway in most organisms that provides energy. Dysregulation of glycolysis is associated with various diseases, including type 2 diabetes, rheumatoid arthritis (RA) and cancer. We reviewed studies addressing the important roles of IL-1 subfamily cytokines, with particular focus on their ability to regulate glycolysis in disease states. In this review, we summarize the potential roles of IL-1 subfamily members in glycolysis in disease states and address the underlying mechanisms. Furthermore, we discuss the potential of these cytokines as therapeutic targets in clinical applications to provide insight into possible therapeutic strategies for treatment, especially for cancers.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yan Ling Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - KaiMin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - GuangHai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - GuanZhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - PeiYuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Chenevier-Gobeaux C, Morin-Robinet S, Lemarechal H, Poiraudeau S, Ekindjian JCOG, Borderie D. Effects of pro- and anti-inflammatory cytokines and nitric oxide donors on hyaluronic acid synthesis by synovial cells from patients with rheumatoid arthritis. Clin Sci (Lond) 2004; 107:291-6. [PMID: 15149282 DOI: 10.1042/cs20040104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 05/11/2004] [Accepted: 05/18/2004] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the effects of (i) the pro-inflammatory cytokines IL (interleukin)-1β, TNF-α (tumour necrosis factor-α), IFN-γ (interferon-γ) and anti-inflammatory cytokines IL-4 and IL-13, and (ii) NO (nitric oxide) donors on HA (hyaluronic acid) production by synovial cells from patients with rheumatoid arthritis. Synovial cells obtained from five patients with rheumatoid arthritis were incubated for 24 h without or with IL-1β, TNF-α, IFN-γ, or with this mixture for 24 h plus IL-4 or IL-13 for the last 6 h. The same cells were also incubated for 3–24 h without or with SNP (sodium nitroprusside) or SNAP (S-nitroso-N-acetyl-DL-penicillamine). HA secretion was determined by an immunoenzymic assay based on HA-specific binding by proteoglycan isolated from bovine cartilage. IL-1β, TNF-α and IFN-γ alone or in combination stimulated HA synthesis, whereas IL-4 and IL-13 dose-dependently inhibited HA production induced by Th1 cytokines. HA production was significantly increased by the presence of 1 mM SNP after 6 and 12 h (maximal effect). HA production was significantly increased by the presence of 0.01 and 0.1 mM SNAP after 12 h of incubation, and cells treated with 1 mM SNAP showed a maximal HA production after 24 h of incubation. In conclusion, the present study provides data concerning the regulatory role of pro- and anti-inflammatory cytokines and NO donors on HA metabolism in rheumatoid synovial cells and may help in understanding the pathophysiology of rheumatoid arthritis.
Collapse
Affiliation(s)
- Camille Chenevier-Gobeaux
- Department of Biochemistry, Hôpital Cochin, Assistance Publique--Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75679 cedex 14, France.
| | | | | | | | | | | |
Collapse
|
3
|
Taneja N, Coy PE, Lee I, Bryson JM, Robey RB. Proinflammatory interleukin-1 cytokines increase mesangial cell hexokinase activity and hexokinase II isoform abundance. Am J Physiol Cell Physiol 2004; 287:C548-57. [PMID: 15070811 DOI: 10.1152/ajpcell.00126.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mesangial cell hexokinase (HK) activity is increased by a diverse array of factors that share both an association with pathological conditions and a common requirement for classic MAPK pathway activation. To better understand the relationship between glucose (Glc) metabolism and injury and to indirectly test the hypothesis that these changes constitute a general adaptive response to insult, we have sought to identify and characterize injury-associated factors that couple to mesangial cell HK regulation. Proinflammatory interleukin-1 (IL-1) cytokines activate the MAPK pathway and have known salutary effects in this cell type. We therefore examined their ability to influence mesangial cell HK activity, Glc utilization, MAPK pathway activation, and individual HK isoform abundance. IL-1β increased HK activity in both a time- and concentration-dependent manner: activity increased maximally by ∼50% between 12 and 24 h with an apparent EC50of 3 pM. IL-1α mimicked, but did not augment, the effects of IL-1β. Specific IL-1 receptor antagonism and selective MAPK/ERK kinase or upstream Ras inhibition prevented these increases, whereas PKC inhibition did not. Changes in HK activity were associated with both increased Glc metabolism and selective increases in HKII isoform abundance. We conclude that IL-1 cytokines can regulate cellular Glc phosphorylating capacity via an IL-1 receptor-, Ras-, and classic MAPK pathway-mediated increase in HKII abundance. These findings suggest a novel, previously undescribed mechanism whereby metabolism may be coupled to inflammation and injury.
Collapse
Affiliation(s)
- Navin Taneja
- Dept. of Medicine, Section of Nephrology, University of Illinois at Chicago College of Medicine, 820 South Wood Street, Rm. 418W CSN (M/C 793), Chicago, IL 60612-7315, USA
| | | | | | | | | |
Collapse
|