1
|
Wehn AC, Khalin I, Hu S, Harapan BN, Mao X, Cheng S, Plesnila N, Terpolilli NA. Bradykinin 2 Receptors Mediate Long-Term Neurocognitive Deficits After Experimental Traumatic Brain Injury. J Neurotrauma 2024; 41:2442-2454. [PMID: 38818807 DOI: 10.1089/neu.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The kallikrein-kinin system is one of the first inflammatory pathways to be activated following traumatic brain injury (TBI) and has been shown to exacerbate brain edema formation in the acute phase through activation of bradykinin 2 receptors (B2R). However, the influence of B2R on chronic post-traumatic damage and outcome is unclear. In the current study, we assessed long-term effects of B2R-knockout (KO) after experimental TBI. B2R KO mice (heterozygous, homozygous) and wild-type (WT) littermates (n = 10/group) were subjected to controlled cortical impact (CCI) TBI. Lesion size was evaluated by magnetic resonance imaging up to 90 days after CCI. Motor and memory function were regularly assessed by Neurological Severity Score, Beam Walk, and Barnes maze test. Ninety days after TBI, brains were harvested for immunohistochemical analysis. There was no difference in cortical lesion size between B2R-deficient and WT animals 3 months after injury; however, hippocampal damage was reduced in B2R KO mice (p = 0.03). Protection of hippocampal tissue was accompanied by a significant improvement of learning and memory function 3 months after TBI (p = 0.02 WT vs. KO), whereas motor function was not influenced. Scar formation and astrogliosis were unaffected, but B2R deficiency led to a gene-dose-dependent attenuation of microglial activation and a reduction of CD45+ cells 3 months after TBI in cortex (p = 0.0003) and hippocampus (p < 0.0001). These results suggest that chronic hippocampal neurodegeneration and subsequent cognitive impairment are mediated by prolonged neuroinflammation and B2R. Inhibition of B2R may therefore represent a novel strategy to reduce long-term neurocognitive deficits after TBI.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute Blood and Brain @ Caen-Normandie (BB@C), Normandie University, Rouen, France
| | - Senbin Hu
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Neurotrauma Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shiqi Cheng
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, The Second affiliated Hospital of Nanchang University, Nanchang, China
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Șerban RE, Boldeanu MV, Florescu DN, Ionescu M, Șerbănescu MS, Boldeanu L, Florescu MM, Stepan MD, Obleagă VC, Constantin C, Popescu DM, Streba CT, Vere CC. Comparison between Substance P and Calcitonin Gene-Related Peptide and Their Receptors in Colorectal Adenocarcinoma. J Clin Med 2024; 13:5616. [PMID: 39337103 PMCID: PMC11432560 DOI: 10.3390/jcm13185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Colorectal cancer is a major health problem that still causes many deaths worldwide. Neuropeptides, such as substance P and calcitonin gene-related peptide, play the neurotransmitter and neurohormone roles that increase tumor invasiveness and metastasis potential. This study aimed to see whether these neuropeptides and their receptors-neurokinin 1 receptor and calcitonin receptor-like receptor-correlate with the diagnosis stage, tumor differentiation grade, and different patient characteristics in colorectal cancer and also to compare them. Methods: We performed serum analyses of substance P and CGRP levels in patients with colorectal cancer and also the immunohistochemical analysis of their receptors in colorectal tumors and then correlated them with the disease stage and with different tumor characteristics. Results: We demonstrated that both substance P and calcitonin gene-related peptide had increased levels in colorectal cancer and that their levels correlated with the stage of the disease and with the tumor differentiation grade. We also demonstrated the correlation of NK-1R and CRLR higher immunohistochemical scores with advanced and poorly differentiated tumors. Conclusions: This study demonstrates that the neuropeptides SP and CGRP and their receptors NK-1R and CRLR could play a role in the pathogenesis of colorectal cancer, and they could be used as diagnostic and prognostic markers and could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Robert-Emmanuel Șerban
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mirela-Marinela Florescu
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mioara-Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vasile-Cosmin Obleagă
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristian Constantin
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoş-Marian Popescu
- Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Costin Teodor Streba
- Department of Scientific Research Methodology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
3
|
Bright HR, Singh A, Joel A, Georgy JT, John AO, Rajkumar P, Jiji H, Stehno-Bittel L, Samuel P, Chandy SJ. Randomized Placebo-Controlled Trial of Topical Capsaicin for Delayed Chemotherapy-Induced Nausea and Vomiting. JCO Glob Oncol 2024; 10:e2400130. [PMID: 38905580 DOI: 10.1200/go.24.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 06/23/2024] Open
Abstract
PURPOSE We examined the efficacy of topical capsaicin in reducing delayed chemotherapy-induced nausea and vomiting (CINV). METHODS Adults on highly emetogenic chemotherapy regimens applied 2 g of capsaicin ointment (0.075%) or matching placebo four times a day to the abdomen for 5 days in addition to standard antiemetic regimen in this blinded randomized controlled trial. Patients were monitored for nausea and vomiting in the immediate (day 1), delayed (days 2-5), and extended phases (days 2-15). Self-reported incidence and daily episodes of CINV were compared between the groups. Onset, severity, need for rescue antiemetics, cumulative vomiting episodes, and safety were also compared. RESULTS In total, 160 patients were enrolled. The final modified intention-to-treat population included 75 patients each in the capsaicin and placebo groups. Fewer patients experienced nausea (36.0% [n = 27] v 53.3% [n = 40]; P = .033) and vomiting (28.0% [n = 21] v 42.7% [n = 32]; P = .060) in the capsaicin arm during the delayed phase. During the extended phase, there was a significantly lower incidence of nausea (44% v 64.0%; P = .014) in the capsaicin arm. No difference in nausea (26.7% v 25.3%) or vomiting (22.7% v 18.7%) was evident in the immediate phase. The average daily episodes of nausea and vomiting were significantly fewer in the capsaicin arm during the delayed and extended phases. With capsaicin, no grade 3 nausea (9.3% v 0.0%; P = .007) was observed, and the time to first nausea and vomiting was significantly prolonged. There were no differences between the groups with respect to rescue antiemetics, unscheduled hospital visits, and adverse events. CONCLUSION Topical capsaicin reduced the incidence of nausea and the average number of vomiting episodes during delayed and extended phases without increasing adverse effects.
Collapse
Affiliation(s)
- Heber Rew Bright
- Department of Pharmacy, Christian Medical College, Vellore, India
| | - Ashish Singh
- Department of Medical Oncology, Christian Medical College, Vellore, India
| | - Anjana Joel
- Department of Medical Oncology, Christian Medical College, Vellore, India
| | - Josh Thomas Georgy
- Department of Medical Oncology, Christian Medical College, Vellore, India
| | - Ajoy Oommen John
- Department of Medical Oncology, Christian Medical College, Vellore, India
| | - Pradeep Rajkumar
- Department of Pharmacy, Christian Medical College, Vellore, India
| | - Hema Jiji
- Department of Pharmacy, Christian Medical College, Vellore, India
| | - Lisa Stehno-Bittel
- Likarda, Inc, Kansas City, MO
- University of Kansas Medical Center, Rehabilitation Science, Kansas City, KS
| | - Prasanna Samuel
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Sujith J Chandy
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
4
|
Humes C, Sic A, Knezevic NN. Substance P's Impact on Chronic Pain and Psychiatric Conditions-A Narrative Review. Int J Mol Sci 2024; 25:5905. [PMID: 38892091 PMCID: PMC11172719 DOI: 10.3390/ijms25115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Substance P (SP) plays a crucial role in pain modulation, with significant implications for major depressive disorder (MDD), anxiety disorders, and post-traumatic stress disorder (PTSD). Elevated SP levels are linked to heightened pain sensitivity and various psychiatric conditions, spurring interest in potential therapeutic interventions. In chronic pain, commonly associated with MDD and anxiety disorders, SP emerges as a key mediator in pain and emotional regulation. This review examines SP's impact on pain perception and its contributions to MDD, anxiety disorders, and PTSD. The association of SP with increased pain sensitivity and chronic pain conditions underscores its importance in pain modulation. Additionally, SP influences the pathophysiology of MDD, anxiety disorders, and PTSD, highlighting its potential as a therapeutic target. Understanding SP's diverse effects provides valuable insights into the mechanisms underlying these psychiatric disorders and their treatment. Further research is essential to explore SP modulation in psychiatric disorders and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Charles Humes
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Aleksandar Sic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (C.H.); (A.S.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
6
|
Villar-Martinez MD, Goadsby PJ. Pathophysiology and Therapy of Associated Features of Migraine. Cells 2022; 11:cells11172767. [PMID: 36078174 PMCID: PMC9455236 DOI: 10.3390/cells11172767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Migraine is a complex and debilitating disorder that is broadly recognised by its characteristic headache. However, given the wide array of clinical presentations in migraineurs, the headache might not represent the main troublesome symptom and it can even go unnoticed. Understanding migraines exclusively as a pain process is simplistic and certainly hinders management. We describe the mechanisms behind some of the most disabling associated symptoms of migraine, including the relationship between the central and peripheral processes that take part in nausea, osmophobia, phonophobia, vertigo and allodynia. The rationale for the efficacy of the current therapeutic arsenal is also depicted in this article. The associated symptoms to migraine, apart from the painful component, are frequent, under-recognised and can be more deleterious than the headache itself. The clinical anamnesis of a headache patient should enquire about the associated symptoms, and treatment should be considered and individualised. Acknowledging the associated symptoms as a fundamental part of migraine has permitted a deeper and more coherent comprehension of the pathophysiology of migraine.
Collapse
Affiliation(s)
- Maria Dolores Villar-Martinez
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
- NIHR King’s Clinical Research Facility, SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
| | - Peter J. Goadsby
- Headache Group, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
- NIHR King’s Clinical Research Facility, SLaM Biomedical Research Centre, King’s College Hospital, London SE5 9RS, UK
- Department of Neurology, University of California, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
7
|
Okladnikov I, Boyko Y, Nelyubina Y, Ioffe S, Sukhorukov A. Asymmetric Synthesis of a Pyrrolizidinone‐Based hNK1 Antagonist through Reductive Ring Contraction of a Six‐Membered Cyclic Nitronate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ilya Okladnikov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of organic and metal-organic nitrogen-oxygen systems RUSSIAN FEDERATION
| | - Yaroslav Boyko
- University of Illinois Urbana-Champaign Roger Adams Laboratory, Department of Chemistry UNITED STATES
| | - Yulia Nelyubina
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Center for molecular composition studies RUSSIAN FEDERATION
| | - Sema Ioffe
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of organic and metal-organic nitrogen-oxygen systems RUSSIAN FEDERATION
| | - Alexey Sukhorukov
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Laboratory of Organic and Metal-organic Nitrogen-oxygen Systems Leninsky prospect, 47 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
8
|
King DR, Sedovy MW, Eaton X, Dunaway LS, Good ME, Isakson BE, Johnstone SR. Cell-To-Cell Communication in the Resistance Vasculature. Compr Physiol 2022; 12:3833-3867. [PMID: 35959755 DOI: 10.1002/cphy.c210040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arterial vasculature can be divided into large conduit arteries, intermediate contractile arteries, resistance arteries, arterioles, and capillaries. Resistance arteries and arterioles primarily function to control systemic blood pressure. The resistance arteries are composed of a layer of endothelial cells oriented parallel to the direction of blood flow, which are separated by a matrix layer termed the internal elastic lamina from several layers of smooth muscle cells oriented perpendicular to the direction of blood flow. Cells within the vessel walls communicate in a homocellular and heterocellular fashion to govern luminal diameter, arterial resistance, and blood pressure. At rest, potassium currents govern the basal state of endothelial and smooth muscle cells. Multiple stimuli can elicit rises in intracellular calcium levels in either endothelial cells or smooth muscle cells, sourced from intracellular stores such as the endoplasmic reticulum or the extracellular space. In general, activation of endothelial cells results in the production of a vasodilatory signal, usually in the form of nitric oxide or endothelial-derived hyperpolarization. Conversely, activation of smooth muscle cells results in a vasoconstriction response through smooth muscle cell contraction. © 2022 American Physiological Society. Compr Physiol 12: 1-35, 2022.
Collapse
Affiliation(s)
- D Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Meghan W Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, Virginia, USA
| | - Xinyan Eaton
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA
| | - Luke S Dunaway
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott R Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, Virginia Tech, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
9
|
Thompson C, Williams ML. Review of the physiological effects of Phyllomedusa bicolor skin secretion peptides on humans receiving Kambô. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473221085746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Kambô is an Amazonian ritual which includes the application of the defensive secretion of the Phyllomedusa bicolor frog to superficial burns made on the skin of human participants. The secretion, which contains a range of biologically active linear peptides, induces a short purgative experience that is extensively reported by participants to leave them with positive physical, emotional and spiritual after-effects. Various peptides identified in the secretion exert analgesic, vascular, and gastric effects in vivo, and antimicrobial and anti-cancer effects, among others, in vitro. While there has been some investigation into the physiological effects of various individual peptides isolated from the P. bicolor secretion, very little is known about the putative synergistic effects of concurrent administration of the complete substance through the transdermal methods used traditionally in the Kambô ritual. In this review and commentary, the authors summarize the existing biological information from animal research on peptides from the P. bicolor secretion, then consider the evidence in the context of Kambô administration to humans. The presented information suggests that specific peptides are likely to contribute to analogous physiological effects of Kambô in humans. The possibility that beyond their physiological action, the experiential or phenomenological component of these effects may have therapeutic applications is discussed, concluding with a consideration of the feasibility of human clinical research.
Collapse
Affiliation(s)
| | - Martin L Williams
- Turner Institute of Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Suthiram J, Ebenhan T, Marjanovic-Painter B, Sathekge MM, Zeevaart JR. Towards Facile Radiolabeling and Preparation of Gallium-68-/Bismuth-213-DOTA-[Thi 8, Met(O 2) 11]-Substance P for Future Clinical Application: First Experiences. Pharmaceutics 2021; 13:pharmaceutics13091326. [PMID: 34575402 PMCID: PMC8472077 DOI: 10.3390/pharmaceutics13091326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Substance P (SP) is a small peptide commonly known as a preferential endogenous ligand for the transmembrane neurokinin-1 receptor. Nuclear Medicine procedures currently involve radiolabeled SP derivatives in peptide radioligand endotherapy of inoperable glioblastoma. Promising clinical results sparked the demand for facile production strategies for a functionalized 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[Thi8, Met(O2)11]-SP to allow for rapid Gallium-68 or Bismuth-213 complexation. Therefore, we provide a simple kit-like radiotracer preparation method that caters for the gallium-68 activity eluted from a SnO2 generator matrix as well as preliminary results on the adaptability to produce [213Bi]Bi-DOTA-[Thi8, Met(O2)11]SP from the same vials containing the same starting material. Following a phase of radioanalysis for complexation of gallium-68 to DOTA-[Thi8, Met(O2)11]SP and assessing the radiolabeling parameters, the vials containing appropriate kit-prototype material were produced in freeze-dried batches. The facile radiolabeling performance was tested and parameters for future human application were calculated to meet the criteria for theranostic loco-regional co-administration of activity doses comprising [68Ga]Ga-DOTA-[Thi8, Met(O2)11]SP mixed with [213Bi]Bi-DOTA-[Thi8, Met(O2)11]SP. [68Ga]Ga-DOTA-[Thi8, Met(O2)11]SP was prepared quantitatively from lyophilized starting material within 25 min providing the required molar activity (18 ± 4 GBq/µmol) and activity concentration (98 ± 24 MBq/mL), radiochemical purity (>95%) and sustained radiolabeling performance (4 months at >95% LE) as well as acceptable product quality (>95% for 120 min). Additionally, vials of the same starting materials were successfully adapted to a labeling strategy available for preparation of [213Bi]Bi-DOTA-[Thi8, Met(O2)11]SP providing sufficient activity for 1-2 human doses. The resultant formulation of [68Ga]Ga-/[213Bi]Bi-DOTA-[Thi8, Met(O2)11]SP activity doses was considered of adequate radiochemical quality for administration. This investigation proposes a simple kit-like formulation of DOTA-[Thi8, Met(O2)11]SP-a first-line investigation into a user friendly, straightforward tracer preparation that would warrant efficient clinical investigations in the future. Quantitative radiolabeling was accomplished for [68Ga]Ga-DOTA-[Thi8, Met(O2)11]SP and [213Bi]Bi-DOTA-[Thi8, Met(O2)11]SP preparations; a key requirement when addressing the specific route of catheter-assisted co-injection directly into the intratumoral cavities.
Collapse
Key Words
- 68Ge/68Ga generator
- DOTA
- DOTA-Substance P
- [213Bi]Bi-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[Thi8, Met(O2)11]-Substance-P
- [68Ga]Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[Thi8, Met(O2)11]-Substance-P
- gallium-68
- kit preparation
Collapse
Affiliation(s)
- Janine Suthiram
- Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Brits 0240, South Africa; (J.S.); (T.E.); (B.M.-P.)
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Brits 0240, South Africa; (J.S.); (T.E.); (B.M.-P.)
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa;
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Biljana Marjanovic-Painter
- Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Brits 0240, South Africa; (J.S.); (T.E.); (B.M.-P.)
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa;
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa
| | - Jan Rijn Zeevaart
- Radiochemistry, The South African Nuclear Energy Corporation (Necsa), Brits 0240, South Africa; (J.S.); (T.E.); (B.M.-P.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
- Correspondence: ; Tel.: +27-12-305-5786
| |
Collapse
|
11
|
Jin Z, Daksla N, Gan TJ. Neurokinin-1 Antagonists for Postoperative Nausea and Vomiting. Drugs 2021; 81:1171-1179. [PMID: 34106456 DOI: 10.1007/s40265-021-01532-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Postoperative nausea and vomiting (PONV) are the second most frequent adverse events after surgery second only to postoperative pain. Despite the advances in antiemetics and implementation of multimodal prophylactic interventions, the clinical management of PONV remains problematic. Neurokinin-1 (NK-1) receptor is a tachykinin receptor found throughout the central and peripheral nervous systems, with a particular affinity towards substance P. NK-1 receptors interact with several parts of the neuronal pathway for nausea and vomiting. This includes the chemoreceptor trigger zone, the gastrointestinal tract, and dorsal motor nucleus of the vagus. NK-1 antagonists are thought to prevent nausea and vomiting by downregulating the emetogenic signals at those points. As more head-to-head trials are conducted between the various anti-emetics, there is emerging evidence that NK-1 antagonists may be more effective in preventing PONV than several other antiemetics currently in use. In this review, we will discuss the pharmacology of NK-1 antagonists, their efficacy in clinical practice, and how they could fit into the framework of PONV management.
Collapse
Affiliation(s)
- Zhaosheng Jin
- Department of Anesthesiology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8480, USA
| | - Neil Daksla
- Department of Anesthesiology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8480, USA
| | - Tong J Gan
- Department of Anesthesiology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, 11794-8480, USA.
| |
Collapse
|
12
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
13
|
Experimental Hypomagnesemia Induces Neurogenic Inflammation and Cardiac Dysfunction. HEARTS 2020. [DOI: 10.3390/hearts1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypomagnesemia occurs clinically as a result of restricted dietary intake, Mg-wasting drug therapies, chronic disease status and may be a risk factor in patients with cardiovascular disorders. Dietary restriction of magnesium (Mg deficiency) in animal models produced a pro-inflammatory/pro-oxidant condition, involving hematopoietic, neuronal, cardiovascular, renal and other systems. In Mg-deficient rodents, early elevations in circulating levels of the neuropeptide, substance P (SP) may trigger subsequent deleterious inflammatory/oxidative/nitrosative stress events. Evidence also suggests that activity of neutral endopeptidase (NEP, neprilysin), the major SP-degrading enzyme, may be impaired during later stages of Mg deficiency, and this may sustain the neurogenic inflammatory response. In this article, experimental findings using substance P receptor blockade, NEP inhibition, and N-methyl-D-aspartate (NMDA) receptor blockade demonstrated the connection between hypomagnesemia, neurogenic inflammation, oxidative stress and enhanced cardiac dysfunction. Proof of concept concerning neurogenic inflammation is provided using an isolated perfused rat heart model exposed to acute reductions in perfusate magnesium concentrations.
Collapse
|
14
|
Kanduluru AK, Srinivasarao M, Wayua C, Low PS. Evaluation of a Neurokinin-1 Receptor-Targeted Technetium-99m Conjugate for Neuroendocrine Cancer Imaging. Mol Imaging Biol 2019; 22:377-383. [PMID: 31292915 DOI: 10.1007/s11307-019-01391-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Neuroendocrine tumors (NETs) have reasonably high 5-year survival rates when diagnosed at an early stage but are significantly more lethal when discovered only after metastasis. Although several imaging modalities such as computed tomography (CT), positron emission tomography, and magnetic resonance imaging can detect neuroendocrine tumors, their high false positive rates suggest that more specific diagnostic tests are required. Targeted imaging agents such as Octreoscan® have met some of this need for improved specificity, but their inability to image poorly differentiated NETs suggests that improved NET imaging agents are still needed. Because neurokinin 1 receptors (NK1Rs) are widely over-expressed in neuroendocrine tumors, but show limited expression in healthy tissues, we have undertaken to develop an NK1R-targeted imaging agent for improved diagnosis and staging of neuroendocrine tumors. PROCEDURE A small molecule NK1R antagonist was conjugated via a flexible spacer to a Tc-99m chelating peptide. After complexation with Tc-99m, binding of the conjugate to human embryonic kidney (HEK293) cells transfected with the human NK1R was evaluated as a function of radioimaging agent concentration. In vivo imaging of HEK293-NK1R tumor xenografts in mice was also performed by single-photon emission computed tomography/computed tomography (γ-SPECT/CT), and the distribution of the conjugate in various tissues was quantified by tissue resection and γ-counting. RESULTS NK1R-targeted Tc-99m-based radioimaging agent displayed excellent affinity (Kd = 16.8 nM) and specificity for HEK293-NK1R tumor xenograft. SPECT/CT analysis of tumor-bearing mice demonstrated significant tumor uptake and high tumor to background ratio as early as 2 h post injection. CONCLUSION The excellent tumor contrast afforded by our NK1R-targeted radioimaging agent exhibits properties that could improve early diagnosis and staging of many neuroendocrine tumors.
Collapse
Affiliation(s)
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Charity Wayua
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Philip S Low
- On Target Laboratories Inc., West Lafayette, IN, 47906, USA. .,Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
15
|
Sanger GJ, Andrews PLR. A History of Drug Discovery for Treatment of Nausea and Vomiting and the Implications for Future Research. Front Pharmacol 2018; 9:913. [PMID: 30233361 PMCID: PMC6131675 DOI: 10.3389/fphar.2018.00913] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022] Open
Abstract
The origins of the major classes of current anti-emetics are examined. Serendipity is a recurrent theme in discovery of their anti-emetic properties and repurposing from one indication to another is a continuing trend. Notably, the discoveries have occurred against a background of company mergers and changing anti-emetic requirements. Major drug classes include: (i) Muscarinic receptor antagonists-originated from historical accounts of plant extracts containing atropine and hyoscine with development stimulated by the need to prevent sea-sickness among soldiers during beach landings; (ii) Histamine receptor antagonists-searching for replacements for the anti-malaria drug quinine, in short supply because of wartime shipping blockade, facilitated the discovery of histamine (H1) antagonists (e.g., dimenhydrinate), followed by serendipitous discovery of anti-emetic activity against motion sickness in a patient undergoing treatment for urticaria; (iii) Phenothiazines and dopamine receptor antagonists-investigations of their pharmacology as "sedatives" (e.g., chlorpromazine) implicated dopamine receptors in emesis, leading to development of selective dopamine (D2) receptor antagonists (e.g., domperidone with poor ability to penetrate the blood-brain barrier) as anti-emetics in chemotherapy and surgery; (iv) Metoclopramide and selective 5-hydroxytryptamine3(5-HT3) receptor antagonists-metoclopramide was initially assumed to act only via D2 receptor antagonism but subsequently its gastric motility stimulant effect (proposed to contribute to the anti-emetic action) was shown to be due to 5-hydroxytryptamine4 receptor agonism. Pre-clinical studies showed that anti-emetic efficacy against the newly-introduced, highly emetic, chemotherapeutic agent cisplatin was due to antagonism at 5-HT3 receptors. The latter led to identification of selective 5-HT3 receptor antagonists (e.g., granisetron), a major breakthrough in treatment of chemotherapy-induced emesis; (v) Neurokinin1receptor antagonists-antagonists of the actions of substance P were developed as analgesics but pre-clinical studies identified broad-spectrum anti-emetic effects; clinical studies showed particular efficacy in the delayed phase of chemotherapy-induced emesis. Finally, the repurposing of different drugs for treatment of nausea and vomiting is examined, particularly during palliative care, and also the challenges in identifying novel anti-emetic drugs, particularly for treatment of nausea as compared to vomiting. We consider the lessons from the past for the future and ask why there has not been a major breakthrough in the last 20 years.
Collapse
Affiliation(s)
- Gareth J. Sanger
- Blizard Institute and the National Centre for Bowel Research, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul L. R. Andrews
- Division of Biomedical Sciences, St George's University of London, London, United Kingdom
| |
Collapse
|
16
|
General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci 2018; 19:ijms19082164. [PMID: 30042373 PMCID: PMC6121522 DOI: 10.3390/ijms19082164] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Pain has been considered as a concept of sensation that we feel as a reaction to the stimulus of our surrounding, putting us in harm's way and acting as a form of defense mechanism that our body has permanently installed into its system. However, pain leads to a huge chunk of finances within the healthcare system with continuous rehabilitation of patients with adverse pain sensations, which might reduce not only their quality of life but also their productivity at work setting back the pace of our economy. It may not look like a huge deal but factor in pain as an issue for majority of us, it becomes an economical burden. Although pain has been researched into and understood by numerous researches, from its definition, mechanism of action to its inhibition in hopes of finding an absolute solution for victims of pain, the pathways of pain sensation, neurotransmitters involved in producing such a sensation are not comprehensively reviewed. Therefore, this review article aims to put in place a thorough understanding of major pain conditions that we experience-nociceptive, inflammatory and physiologically dysfunction, such as neuropathic pain and its modulation and feedback systems. Moreover, the complete mechanism of conduction is compiled within this article, elucidating understandings from various researches and breakthroughs.
Collapse
|
17
|
The process of drug discovery and the Yin/Yang of small-molecule/biotech option. Microchem J 2018. [DOI: 10.1016/j.microc.2016.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Carletti R, Tacconi S, Mugnaini M, Gerrard P. Receptor distribution studies. Curr Opin Pharmacol 2017; 35:94-100. [PMID: 28803835 DOI: 10.1016/j.coph.2017.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Receptor distribution studies have played a key role in the characterization of receptor systems (e.g. GABAB, NMDA (GluNRs), and Neurokinin 1) and in generating hypotheses to exploit these systems as potential therapeutic targets. Distribution studies can provide important information on the potential role of candidate receptors in normal physiology/disease and alert for possible adverse effects of targeting the receptors. Moreover, they can provide valuable information relating to quantitative target engagement (e.g. % receptor occupancy) to drive mechanistic pharmacokinetic/pharmacodynamic (PK/PD) hypotheses for compounds in the Drug Discovery process. Finally, receptor distribution and quantitative target engagement studies can be used to validate truly translational technologies such as PET ligands and pharmacoEEG paradigms to facilitate bridging of the preclinical/clinical interface and thus increase probability of success.
Collapse
Affiliation(s)
- Renzo Carletti
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy.
| | - Stefano Tacconi
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| | - Manolo Mugnaini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Philip Gerrard
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
19
|
Barbaresi P, Mensà E, Bastioli G, Amoroso S. Substance P NK1 receptor in the rat corpus callosum during postnatal development. Brain Behav 2017; 7:e00713. [PMID: 28638718 PMCID: PMC5474716 DOI: 10.1002/brb3.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION The expression of substance P (SP) receptor (neurokinin 1, NK1) was studied in the rat corpus callosum (cc) from postnatal day 0 (the first 24 hr from birth, P0) to P30. METHODS We used immunocytochemistry to study the presence of intracallosal NK1-immunopositive neurons (NK1IP-n) during cc development. RESULTS NK1IP-n first appeared on P5. Their number increased significantly between P5 and P10, it remained almost constant between P10 and P15, then declined slightly until P30. The size of intracallosal NK1IP-n increased constantly from P5 (102.3 μm2) to P30 (262.07 μm2). From P5 onward, their distribution pattern was adult-like, that is, they were more numerous in the lateral and intermediate parts of the cc, and declined to few or none approaching the midline. At P5, intracallosal NK1IP-n had a predominantly round cell bodies with primary dendrites of different thickness from which originated thinner secondary branches. Between P10 and P15, dendrites were longer and more thickly branched, and displayed several varicosities as well as short, thin appendages. Between P20 and P30, NK1IP-n were qualitatively indistinguishable from those of adult animals and could be classified as bipolar (fusiform and rectangular), round-polygonal, and pyramidal (triangular-pyriform). CONCLUSIONS Number of NK1IP-n increase between P5 and P10, then declines, but unlike other intracallosal neurons, NK1IP-n make up a significant population in the adult cc. These findings suggest that NK1IP-n may be involved in the myelination of callosal axons, could play an important role in their pathfinding. Since they are also found in adult rat cc, it is likely that their role changes during lifetime.
Collapse
Affiliation(s)
- Paolo Barbaresi
- Section of Neuroscience and Cell Biology Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Emanuela Mensà
- Section of Neuroscience and Cell Biology Department of Experimental and Clinical Medicine Marche Polytechnic University Ancona Italy
| | - Guendalina Bastioli
- Department of Biomedical Sciences and Public Health Marche Polytechnic University Ancona Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health Marche Polytechnic University Ancona Italy
| |
Collapse
|
20
|
Bandelow B, Baldwin D, Abelli M, Bolea-Alamanac B, Bourin M, Chamberlain SR, Cinosi E, Davies S, Domschke K, Fineberg N, Grünblatt E, Jarema M, Kim YK, Maron E, Masdrakis V, Mikova O, Nutt D, Pallanti S, Pini S, Ströhle A, Thibaut F, Vaghix MM, Won E, Wedekind D, Wichniak A, Woolley J, Zwanzger P, Riederer P. Biological markers for anxiety disorders, OCD and PTSD: A consensus statement. Part II: Neurochemistry, neurophysiology and neurocognition. World J Biol Psychiatry 2017; 18:162-214. [PMID: 27419272 PMCID: PMC5341771 DOI: 10.1080/15622975.2016.1190867] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Biomarkers are defined as anatomical, biochemical or physiological traits that are specific to certain disorders or syndromes. The objective of this paper is to summarise the current knowledge of biomarkers for anxiety disorders, obsessive-compulsive disorder (OCD) and posttraumatic stress disorder (PTSD). METHODS Findings in biomarker research were reviewed by a task force of international experts in the field, consisting of members of the World Federation of Societies for Biological Psychiatry Task Force on Biological Markers and of the European College of Neuropsychopharmacology Anxiety Disorders Research Network. RESULTS The present article (Part II) summarises findings on potential biomarkers in neurochemistry (neurotransmitters such as serotonin, norepinephrine, dopamine or GABA, neuropeptides such as cholecystokinin, neurokinins, atrial natriuretic peptide, or oxytocin, the HPA axis, neurotrophic factors such as NGF and BDNF, immunology and CO2 hypersensitivity), neurophysiology (EEG, heart rate variability) and neurocognition. The accompanying paper (Part I) focuses on neuroimaging and genetics. CONCLUSIONS Although at present, none of the putative biomarkers is sufficient and specific as a diagnostic tool, an abundance of high quality research has accumulated that should improve our understanding of the neurobiological causes of anxiety disorders, OCD and PTSD.
Collapse
Affiliation(s)
- Borwin Bandelow
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany
| | - David Baldwin
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marianna Abelli
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Blanca Bolea-Alamanac
- School of Social and Community Medicine, Academic Unit of Psychiatry, University of Bristol, Bristol, UK
| | - Michel Bourin
- Neurobiology of Anxiety and Mood Disorders, University of Nantes, Nantes, France
| | - Samuel R. Chamberlain
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Parkway, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eduardo Cinosi
- Department of Neuroscience Imaging and Clinical Sciences, Gabriele D’Annunzio University, Chieti, Italy
| | - Simon Davies
- Centre for Addiction and Mental Health, Geriatric Psychiatry Division, University of Toronto, Toronto, Canada
- School of Social and Community Medicine, Academic Unit of Psychiatry, University of Bristol, Bristol, UK
| | - Katharina Domschke
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Naomi Fineberg
- Hertfordshire Partnership University NHS Foundation Trust and University of Hertfordshire, Parkway, UK
| | - Edna Grünblatt
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marek Jarema
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Yong-Ku Kim
- Department of Psychiatry College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eduard Maron
- Department of Psychiatry, North Estonia Medical Centre, Tallinn, Estonia
- Department of Psychiatry, University of Tartu, Estonia
- Faculty of Medicine Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, UK
| | - Vasileios Masdrakis
- Athens University Medical School, First Department of Psychiatry, Eginition Hospital, Athens, Greece
| | - Olya Mikova
- Foundation Biological Psychiatry, Sofia, Bulgaria
| | - David Nutt
- Faculty of Medicine Department of Medicine, Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, UK
| | - Stefano Pallanti
- UC Davis Department of Psychiatry and Behavioural Sciences, Sacramento, CA, USA
| | - Stefano Pini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité – University Medica Center Berlin, Berlin, Germany
| | - Florence Thibaut
- Faculty of Medicine Paris Descartes, University Hospital Cochin, Paris, France
| | - Matilde M. Vaghix
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Eunsoo Won
- Department of Psychiatry College of Medicine, Korea University, Seoul, Republic of Korea
| | - Dirk Wedekind
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany
| | - Adam Wichniak
- Third Department of Psychiatry, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Jade Woolley
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Peter Zwanzger
- kbo-Inn-Salzach-Klinikum Wasserburg am Inn, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Peter Riederer
- Department of Psychiatry Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
21
|
Mannangatti P, Sundaramurthy S, Ramamoorthy S, Jayanthi LD. Differential effects of aprepitant, a clinically used neurokinin-1 receptor antagonist on the expression of conditioned psychostimulant versus opioid reward. Psychopharmacology (Berl) 2017; 234:695-705. [PMID: 28013351 PMCID: PMC5266628 DOI: 10.1007/s00213-016-4504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023]
Abstract
RATIONALE Neurokinin-1 receptor (NK1R) signaling modulates behaviors associated with psychostimulants and opioids. Psychostimulants, such as amphetamine (AMPH) and cocaine, bind to monoamine transporters and alter their functions. Both dopamine and norepinephrine transporters are regulated by NK1R activation suggesting a role for NK1R mediated catecholamine transporter regulation in psychostimulant-mediated behaviors. OBJECTIVES The effect of in vivo administration of aprepitant (10 mg/kg) on the expression of AMPH (0.5 and 2 mg/kg) and cocaine (5 and 20 mg/kg)-induced conditioned place preference (CPP) as well as locomotor activation was examined in C57BL/6J mice. The effect of aprepitant on morphine (1 and 5 mg/kg)-induced CPP was also examined to identify the specific actions of aprepitant on psychostimulant versus opioid-induced behaviors. RESULTS Aprepitant administration significantly attenuated the CPP expression and locomotor activation produced by AMPH and cocaine. In contrast, aprepitant significantly enhanced the expression of CPP produced by morphine while significantly suppressing the locomotor activity of the mice conditioned with morphine. Aprepitant by itself did not induce significant CPP or conditioned place aversion or locomotor activation or suppression. CONCLUSIONS Attenuation of AMPH or cocaine-induced CPP and locomotor activation by aprepitant suggests a role for NK1R signaling in psychostimulant-mediated behaviors. Stimulation of morphine-induced CPP expression and suppression of locomotor activity of morphine-conditioned mice suggest differential effects of NK1R antagonism on conditioned psychostimulant versus opioid reward. Collectively, these findings indicate that clinically used NK1R antagonist, aprepitant may serve as a potential therapeutic agent in the treatment of psychostimulant abuse.
Collapse
Affiliation(s)
| | | | | | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
22
|
Chou DE, Tso AR, Goadsby PJ. Aprepitant for the management of nausea with inpatient IV dihydroergotamine. Neurology 2016; 87:1613-1616. [PMID: 27629088 PMCID: PMC5067541 DOI: 10.1212/wnl.0000000000003206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
Objective: To assess the efficacy and tolerability of oral aprepitant, a substance P/neurokinin A receptor antagonist, in controlling nausea associated with IV dihydroergotamine (DHE) administered for medically refractory migrainous headache in patients not responding to standard antiemetics or with a history of uncontrolled nausea with DHE. Methods: This was a retrospective chart review of prospectively collected hourly diary data and clinical notes of patients hospitalized between 2011 and 2015 for inpatient treatment with DHE. Patients were classified using the International Classification of Headache Disorders, 3rd edition (beta version). Peak and average daily nausea scores from hourly diaries, or daily entries of notes, and concurrent antiemetic use were collected and tabulated. Results: Seventy-four patients, of whom 24 had daily diaries, with chronic migraine with or without aura, with or without medication overuse, or new daily persistent headache of a migrainous type, were identified. In 36 of 57 cases in which aprepitant was administered during hospitalization, there was a 50% reduction in the average daily number of as-needed antinausea medications. Of 57 patients, 52 reported that the addition of aprepitant improved nausea. Among 21 of 24 patients with hourly diary data, nausea scores were reduced and in all 12 with vomiting there was cessation of emesis after aprepitant was added. Aprepitant was well tolerated with no treatment emergent adverse events. Conclusions: Aprepitant can be effective in the treatment of refractory DHE-induced nausea and emesis. Given the broader issue of troublesome nausea and vomiting in acute presentations of migraine, general neurologists may consider what place aprepitant has in the management of such patients. Classification of evidence: This study provides Class IV evidence that for patients with medically refractory migraine receiving IV DHE, oral aprepitant reduces nausea.
Collapse
Affiliation(s)
- Denise E Chou
- From the Headache Center (D.E.C.), Department of Neurology, Columbia University Medical Center, New York, NY; Headache Group (D.E.C., P.J.G.), Department of Neurology, University of California, San Francisco; and Headache Group (A.R.T., P.J.G.), Basic & Clinical Neuroscience, and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, UK
| | - Amy R Tso
- From the Headache Center (D.E.C.), Department of Neurology, Columbia University Medical Center, New York, NY; Headache Group (D.E.C., P.J.G.), Department of Neurology, University of California, San Francisco; and Headache Group (A.R.T., P.J.G.), Basic & Clinical Neuroscience, and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, UK
| | - Peter J Goadsby
- From the Headache Center (D.E.C.), Department of Neurology, Columbia University Medical Center, New York, NY; Headache Group (D.E.C., P.J.G.), Department of Neurology, University of California, San Francisco; and Headache Group (A.R.T., P.J.G.), Basic & Clinical Neuroscience, and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, UK.
| |
Collapse
|
23
|
Palea S, Guilloteau V, Rekik M, Lovati E, Guerard M, Guardia MA, Lluel P, Pietra C, Yoshiyama M. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs. Front Pharmacol 2016; 7:234. [PMID: 27540361 PMCID: PMC4972833 DOI: 10.3389/fphar.2016.00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v.) or L-733,060 (3-10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex circuit and therefore may be useful clinically in treating bladder overactivity symptoms.
Collapse
Affiliation(s)
- Stefano Palea
- UROsphereToulouse, France; Palea Pharma and Biotech ConsultingToulouse, France
| | | | | | - Emanuela Lovati
- Research and Preclinical Development, Helsinn Healthcare S.A. Lugano, Switzerland
| | | | | | | | - Claudio Pietra
- Research and Preclinical Development, Helsinn Healthcare S.A. Lugano, Switzerland
| | - Mitsuharu Yoshiyama
- Department of Urology, University of Yamanashi Graduate School of Medical Science Chuo, Japan
| |
Collapse
|
24
|
Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. ACTA ACUST UNITED AC 2016; 1:29-36. [PMID: 27430034 DOI: 10.29245/2572.942x/2016/2.1020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review addresses the role that substance P (SP) and its preferred receptor neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, viral, parasitic, and neurodegenerative diseases of the central nervous system. The SP/NK1R complex is a key player in the interaction between the immune and nervous systems. A common effect of this interaction is inflammation. For this reason and because of the predominance in the human brain of the NK1R, its antagonists are attractive potential therapeutic agents. Preventing the deleterious effects of SP through the use of NK1R antagonists has been shown to be a promising therapeutic strategy, as these antagonists are selective, potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to clinical management of CNS inflammation.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA
| |
Collapse
|
25
|
Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever. J Neuroimmunol 2016; 293:1-7. [DOI: 10.1016/j.jneuroim.2016.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 11/23/2022]
|
26
|
Li W, Fotinos A, Wu Q, Chen Y, Zhu Y, Baranov S, Tu Y, Zhou EW, Sinha B, Kristal BS, Wang X. N-acetyl-l-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model. Neurobiol Dis 2015; 80:93-103. [DOI: 10.1016/j.nbd.2015.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
|
27
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
28
|
Trower MK, Fisher A, Upton N, Ratti E. Neurokinin-1 receptor antagonist orvepitant is an effective inhibitor of itch-associated response in a Mongolian gerbil model of scratching behaviour. Exp Dermatol 2015; 23:858-60. [PMID: 25078633 DOI: 10.1111/exd.12528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/13/2022]
Abstract
Data suggest that substance P could play an important role in pruritus, and therefore, blockade of the neurokinin (NK)-1 receptor might be antipruritic. Thus, we explored in the Mongolian gerbil the effect on scratching behaviour, induced by intra-dermal injection of the NK-1 receptor-specific agonist GR73632, of oral administration of the NK-1 receptor antagonist orvepitant. Orvepitant at all doses tested (0.1-10 mg/kg p.o.) produced a profound inhibition of GR73632 (30 nmol i.d.) induced hindlimb scratching; the minimum effective dose of orvepitant in this model was identified as ≤0.1 mg/kg. The data generated supported the proposition that the antipruritic potential of orvepitant should be evaluated in clinical trials.
Collapse
Affiliation(s)
- Michael K Trower
- NeRRe Therapeutics Ltd, Stevenage Bioscience Catalyst, Stevenage, UK
| | | | | | | |
Collapse
|
29
|
Sirianni AC, Jiang J, Zeng J, Mao LL, Zhou S, Sugarbaker P, Zhang X, Li W, Friedlander RM, Wang X. N-acetyl-l
-tryptophan, but not N-acetyl-d
-tryptophan, rescues neuronal cell death in models of amyotrophic lateral sclerosis. J Neurochem 2015; 134:956-68. [DOI: 10.1111/jnc.13190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Ana C. Sirianni
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Jiying Jiang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
- Department of Anatomy; Weifang Medical University; Weifang Shandong China
| | - Jiang Zeng
- Institute of Analytical Chemistry for Life Science; School of Public Health; Nantong University; Nantong Jiangsu China
| | - Lilly L. Mao
- Aimcan Pharma Research & Technologies; Guelph Canada
| | - Shuanhu Zhou
- Department of Orthopedic Surgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Peter Sugarbaker
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Xinmu Zhang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Wei Li
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| | - Robert M. Friedlander
- Department of Neurosurgery; University of Pittsburgh Medical Center; Pittsburgh PA USA
| | - Xin Wang
- Department of Neurosurgery; Brigham and Women's Hospital; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
30
|
Cossette C, Gravel S, Reddy CN, Gore V, Chourey S, Ye Q, Snyder NW, Mesaros CA, Blair IA, Lavoie JP, Reinero CR, Rokach J, Powell WS. Biosynthesis and actions of 5-oxoeicosatetraenoic acid (5-oxo-ETE) on feline granulocytes. Biochem Pharmacol 2015; 96:247-55. [PMID: 26032638 DOI: 10.1016/j.bcp.2015.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
Abstract
The 5-lipoxygenase product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most powerful human eosinophil chemoattractant among lipid mediators and could play a major pathophysiological role in eosinophilic diseases such as asthma. Its actions are mediated by the OXE receptor, orthologs of which are found in many species from humans to fish, but not rodents. The unavailability of rodent models to examine the pathophysiological roles of 5-oxo-ETE and the OXE receptor has substantially hampered progress in this area. As an alternative, we have explored the possibility that the cat could serve as an appropriate animal model to investigate the role of 5-oxo-ETE. We found that feline peripheral blood leukocytes synthesize 5-oxo-ETE and that physiologically relevant levels of 5-oxo-ETE are present in bronchoalveolar lavage fluid from cats with experimentally induced asthma. 5-Oxo-ETE (EC50, 0.7nM) is a much more potent activator of actin polymerization in feline eosinophils than various other eicosanoids, including leukotriene (LT) B4 and prostaglandin D2. 5-Oxo-ETE and LTB4 induce feline leukocyte migration to similar extents at low concentrations (1nM), but at higher concentrations the response to 5-oxo-ETE is much greater. Although high concentrations of selective human OXE receptor antagonists blocked 5-oxo-ETE-induced actin polymerization in feline granulocytes, their potencies were about 200 times lower than for human granulocytes. We conclude that feline leukocytes synthesize and respond to 5-oxo-ETE, which could potentially play an important role in feline asthma, a common condition in this species. The cat could serve as a useful animal model to investigate the pathophysiological role of 5-oxo-ETE.
Collapse
Affiliation(s)
- Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Sylvie Gravel
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Vivek Gore
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - Nathaniel W Snyder
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Clementina A Mesaros
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Ian A Blair
- Center for Cancer Pharmacology, University of Pennsylvania, 854 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | - Jean-Pierre Lavoie
- Dept. of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe J2S 6C7, QC, Canada.
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri, 900 E Campus Drive, Columbia, MO 65211, USA.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, FL 32901-6982, USA.
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
31
|
Sugino S, Janicki PK. Pharmacogenetics of chemotherapy-induced nausea and vomiting. Pharmacogenomics 2015; 16:149-60. [DOI: 10.2217/pgs.14.168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is associated with distressing adverse effects observed in patients during cytotoxic chemotherapy. One of the potential factors explaining suboptimal response to currently used antiemetics is variability in genes encoding enzymes and proteins that play a role in the action of antiemetic drugs. Pharmacogenomics studies of CINV are sparse and focus mainly on polymorphisms associated with serotonin receptor, drug metabolism and drug transport. Currently, the role of pharmacogenetics in mechanisms of CINV has not been fully unraveled, and it is premature to implement results of pharmacogenetic association studies of antiemetic drugs in clinical practice. More uniform studies, with genetic profiles and biomarkers relevant for the proposed target and transporter mechanisms, are needed.
Collapse
Affiliation(s)
- Shigekazu Sugino
- Department of Anesthesiology, Laboratory of Perioperative Genomics, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Piotr K Janicki
- Department of Anesthesiology, Laboratory of Perioperative Genomics, Penn State Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Trigeminal Medullary Dorsal Horn Neurons Activated by Nasal Stimulation Coexpress AMPA, NMDA, and NK1 Receptors. ISRN NEUROSCIENCE 2013; 2013:152567. [PMID: 24967301 PMCID: PMC4045565 DOI: 10.1155/2013/152567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/07/2013] [Indexed: 11/25/2022]
Abstract
Afferent information initiating the cardiorespiratory responses during nasal stimulation projects from the nasal passages to neurons within the trigeminal medullary dorsal horn (MDH) via the anterior ethmoidal nerve (AEN). Central AEN terminals are thought to release glutamate to activate the MDH neurons. This study was designed to determine which neurotransmitter receptors (AMPA, kainate, or NMDA glutamate receptor subtypes or the Substance P receptor NK1) are expressed by these activated MDH neurons. Fos was used as a neuronal marker of activated neurons, and immunohistochemistry combined with epifluorescent microscopy was used to determine which neurotransmitter receptor subunits were coexpressed by activated MDH neurons. Results indicate that, during nasal stimulation with ammonia vapors in urethane-anesthetized Sprague-Dawley rats, activated neurons within the superficial MDH coexpress the AMPA glutamate receptor subunits GluA1 (95.8%) and GluA2/3 (88.2%), the NMDA glutamate receptor subunits GluN1 (89.1%) and GluN2A (41.4%), and NK1 receptors (64.0%). It is therefore likely that during nasal stimulation the central terminals of the AEN release glutamate and substance P that then produces activation of these MDH neurons. The involvement of AMPA and NMDA receptors may mediate fast and slow neurotransmission, respectively, while NK1 receptor involvement may indicate activation of a nociceptive pathway.
Collapse
|
33
|
Ang D, Pauwels A, Akyuz F, Vos R, Tack J. Influence of a neurokinin-1 receptor antagonist (aprepitant) on gastric sensorimotor function in healthy volunteers. Neurogastroenterol Motil 2013; 25:e830-8. [PMID: 23991829 DOI: 10.1111/nmo.12210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/20/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Substance P (SP) is a member of the neurokinin (NK) family and is one of the established neurotransmitters in the mammalian central and enteric nervous system. It is unclear whether NK1 receptors are involved in the control of gastric sensorimotor function in man. METHODS We studied the effects of aprepitant, an NK1 receptor antagonist used in the treatment of chemotherapy-induced emesis, on gastric sensorimotor function in healthy volunteers. Sixteen healthy volunteers (six males, 32.4 ± 2.7 years) were studied on three separate occasions after placebo, aprepitant 80 or 125 mg in randomized double-blind study to assess gastric compliance, perception to isobaric distensions, and gastric accommodation with a gastric barostat. KEY RESULTS Compared to placebo, both doses of aprepitant did not influence gastric compliance or sensitivity to gastric distension. Aprepitant 80 and 125 mg did not have any significant effects on gastric accommodation compared with placebo (mean postprandial gastric volume increase, respectively, 83.4 ± 28.4 vs 35.3 ± 16.2 vs 83.9 ± 30.4 mL, NS). Postprandial gastric compliance and sensitivity to distention were also not altered. CONCLUSIONS & INFERENCES In health, NK1 receptors do not appear to be involved in the control of gastric compliance, accommodation or sensitivity to distention in man.
Collapse
Affiliation(s)
- D Ang
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
34
|
Yang LM, Yu L, Jin HJ, Zhao H. Substance P receptor antagonist in lateral habenula improves rat depression-like behavior. Brain Res Bull 2013; 100:22-8. [PMID: 24157953 DOI: 10.1016/j.brainresbull.2013.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022]
Abstract
Substance P (SP) levels are closely related with the pathogenesis of depression. Recent work has focused on antidepressive effect of substance P receptor antagonist (SPA), however, its action site and mechanism remain largely unresolved. Our previous results showed that the lateral habenula (LHb) plays a key role in the pathogenesis of depression. The current study investigated the effects of SPA microinjected into LHb on the behavioral responses of two rat models that exhibit depression-like behavior. To produce adult rats that exhibit depression-like behavior, rats were either exposed to chronic mild stress (CMS), or chronically administered clomipramine (CLI), a tricyclic antidepressant, during the neonatal state of life. The forced-swimming test (FST) was used to evaluate behavioral responses. Furthermore, we measured serotonin (5-HT) levels in dorsal raphe nucleus (DRN) using microdialysis. The FST showed a decreased immobility time and an increased climbing time after SPA injection into the LHb of depression-like behavior rats. In addition, 5-HT levels in DRN increased after SPA was microinjected into LHb of the rats that exhibited depression-like behavior. This study demonstrates that LHb mediates antidepressive effect of SPA by increasing 5-HT levels in the DRN, suggesting that the LHb may be a potential target of antidepressant.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Lei Yu
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Hui-Juan Jin
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China; Neuroscience Research Center, First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
35
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|
36
|
The role of substance p in ischaemic brain injury. Brain Sci 2013; 3:123-42. [PMID: 24961310 PMCID: PMC4061838 DOI: 10.3390/brainsci3010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP) plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.
Collapse
|
37
|
Darmani NA, Dey D, Chebolu S, Amos B, Kandpal R, Alkam T. Cisplatin causes over-expression of tachykinin NK(1) receptors and increases ERK1/2- and PKA- phosphorylation during peak immediate- and delayed-phase emesis in the least shrew (Cryptotis parva) brainstem. Eur J Pharmacol 2012; 698:161-9. [PMID: 23001014 DOI: 10.1016/j.ejphar.2012.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/24/2012] [Accepted: 09/06/2012] [Indexed: 10/27/2022]
Abstract
Scant information is available regarding the effects of cisplatin on the expression profile of tachykinin NK(1) receptors and downstream signaling during cisplatin-induced emesis. Cisplatin causes peak early- and delayed-phase emesis in the least shrew at 1-2 and 33 h post-injection. To investigate the expression profile of NK(1) receptor during both emetic phases, we cloned the cDNA corresponding to a ~700 base pairs of mRNA flanked by two stretches of nucleotides conserved among different species and demonstrated that the shrew NK(1) receptor nucleotide sequence shares ~90% sequence identity with the human NK(1) receptor. Of the 12 time-points tested, significant increases in expression levels of NK(1) receptor mRNA in the shrew brainstem occurred at 2 and 28 h post-cisplatin injection, whereas intestinal NK(1) receptor mRNA was increased at 28 h. Shrew brainstem and intestinal substance P mRNA levels also tended to increase during the two phases. Furthermore, expression levels of NK(1) receptor protein were significantly increased in the brainstem at 2, 8, and 33 h post-cisplatin. No change in brainstem 5-HT(3) receptor protein expression was observed. The temporal enhancements in NK(1) receptor protein expression were mirrored by significant increases in the phosphorylation status of the brainstem ERK1/2 at 2, 8, and 33 h post-cisplatin. Phosphorylation of PKA significantly increased at 33rd and 40th hour. Our results indicate associations between cisplatin's peak immediate- and delayed-phase vomiting frequency with increased: (1) expression levels of NK(1) receptor mRNA and its protein level, and (2) downstream NK(1) receptor-mediated phosphorylation of ERK1/2 and PKA signaling.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Rizzi A, Campi B, Camarda V, Molinari S, Cantoreggi S, Regoli D, Pietra C, Calo' G. In vitro and in vivo pharmacological characterization of the novel NK₁ receptor selective antagonist Netupitant. Peptides 2012; 37:86-97. [PMID: 22732666 DOI: 10.1016/j.peptides.2012.06.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/24/2022]
Abstract
The novel NK(1) receptor ligand Netupitant has been characterized in vitro and in vivo. In calcium mobilization studies CHO cells expressing the human NK receptors responded to a panel of agonists with the expected order of potency. In CHO NK(1) cells Netupitant concentration-dependently antagonized the stimulatory effects of substance P (SP) showing insurmountable antagonism (pK(B) 8.87). In cells expressing NK(2) or NK(3) receptors Netupitant was inactive. In the guinea pig ileum Netupitant concentration-dependently depressed the maximal response to SP (pK(B) 7.85) and, in functional washout experiments, displayed persistent (up to 5h) antagonist effects. In mice the intrathecal injection of SP elicited the typical scratching, biting and licking response that was dose-dependently inhibited by Netupitant given intraperitoneally in the 1-10mg/kg dose range. In gerbils, foot tapping behavior evoked by the intracerebroventricular injection of a NK(1) agonist was dose-dependently counteracted by Netupitant given intraperitoneally (ID(50) 1.5mg/kg) or orally (ID(50) 0.5mg/kg). In time course experiments in gerbils Netupitant displayed long lasting effects. In all the assays Aprepitant elicited similar effects as Netupitant. These results suggest that Netupitant behaves as a brain penetrant, orally active, potent and selective NK(1) antagonist. Thus this molecule can be useful for investigating the NK(1) receptor role in the control of central and peripheral functions. Netupitant has clinical potential in conditions such as chemotherapy induced nausea and vomiting, in which the blockade of NK(1) receptors has been demonstrated valuable for patients.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Duffy RA, Morgan C, Naylor R, Higgins GA, Varty GB, Lachowicz JE, Parker EM. Rolapitant (SCH 619734): A potent, selective and orally active neurokinin NK1 receptor antagonist with centrally-mediated antiemetic effects in ferrets. Pharmacol Biochem Behav 2012; 102:95-100. [DOI: 10.1016/j.pbb.2012.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/24/2012] [Accepted: 03/24/2012] [Indexed: 10/28/2022]
|
40
|
Zhang X, Pietra C, Lovati E, de Groat WC. Activation of neurokinin-1 receptors increases the excitability of guinea pig dorsal root ganglion cells. J Pharmacol Exp Ther 2012; 343:44-52. [PMID: 22736506 DOI: 10.1124/jpet.112.196113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The suppression of overactive bladder symptoms in patients and overactive bladder reflexes in animal models by neurokinin (NK)-1 receptor antagonists raises the possibility that these drugs target sensory neurons. This mechanism was evaluated by examining the interactions between a specific NK-1 agonist, [Sar(9),Met(O(2))(11)]-substance P (Sar-Met-SP), and a potent NK-1 antagonist, netupitant (NTP), on small size (20-30 μm) dissociated L6 and S1 dorsal root ganglion (DRG) neurons from female guinea pigs. Current-clamp recording revealed that Sar-Met-SP (1 μM) elicited membrane depolarization (average 8.05 ± 1.38 mV) in 27% (18 of 65) of DRG neurons. In 74% of the remaining neurons (35 of 47) Sar-Met-SP decreased the rheobase for action potential (AP) generation and increased the response to a suprathreshold stimulus (3 times rheobase) without changing the membrane potential. Sar-Met-SP also induced changes in the action potential (AP) wave form, including 1) an increase in overshoot (average 5 mV, n = 35 neurons), 2) a prolongation of AP duration (from 4.64 to 5.29 ms, n = 34), and 3) a reduction in the maximal rate of AP repolarization. NTP (200 nM) reversed the Sar-Met-SP-induced changes. Ca(2+) imaging showed that application of Sar-Met-SP (1 μM) decreased the tachyphylaxis induced by repeated application of capsaicin (0.5 μM), an effect blocked by pretreatment with NTP (200 nM). These results raise the possibility that activation of NK-1 receptors in primary sensory neurons plays a role in the generation of overactive bladder and that block of NK-1 receptors in these neurons may contribute to efficacy of NK-1 antagonists in the treatment of overactive bladder symptoms.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
41
|
Parenti C, Aricò G, Ronsisvalle G, Scoto GM. Supraspinal injection of Substance P attenuates allodynia and hyperalgesia in a rat model of inflammatory pain. Peptides 2012; 34:412-8. [PMID: 22306475 DOI: 10.1016/j.peptides.2012.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/03/2023]
Abstract
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.
Collapse
Affiliation(s)
- Carmela Parenti
- Department of Drug Sciences-Pharmacology and Toxicology Section, University of Catania, v.le A. Doria 6, 95125 Catania, Italy.
| | | | | | | |
Collapse
|
42
|
Jin Q, Lu L, Yang Y, Dong S. Effects of endokinin A/B, endokinin C/D, and endomorphin-1 on the regulation of mean arterial blood pressure in rats. Peptides 2011; 32:2428-35. [PMID: 22037058 DOI: 10.1016/j.peptides.2011.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/16/2011] [Accepted: 10/16/2011] [Indexed: 11/18/2022]
Abstract
Endokinins are four novel human tachykinins, including endokinins A (EKA), B (EKB), C (EKC), and D (EKD). Endokinin A/B (EKA/B) is the common C-terminal decapeptide in EKA and EKB, while endokinin C/D (EKC/D) is the common C-terminal duodecapeptide in EKC and EKD. In this study, we attempted to investigate the interactions between EKA/B, EKC/D, and endomorphin-1 (EM-1) on the depressor effect at peripheral level. The effects of EKA/B produced a U-shaped curve. The maximal effect was caused by 10 nmol/kg. EKC/D and EM-1 showed a dose-dependent relationship. Co-administration of EKA/B (0.1, 1, 10 nmol/kg) with EM-1 produced effects similar to those of EKA/B alone but slightly lower. Co-injection of EKA/B (100 nmol/kg) with EM-1 caused an effect stronger than any separate injection. Co-administration of EKC/D (10 nmol/kg) with EM-1 (30 nmol/kg) caused a depressor effect, which was one of the tradeoffs of EM-1 and EKC/D. Mechanism studies showed that SR140333B could block the depressor effects of EKA/B, EKC/D, EM-1, EKA/B+EM-1, and EKC/D+EM-1; SR48968C could block EM-1, EKA/B, EKC/D, and EKC/D+EM-1 and partially block EKA/B+EM-1; SR142801 could block EM-1, EKC/D, and EKC/D+EM-1 and partially block EKA/B and EKA/B+EM-1; naloxone could block EM-1, EKC/D, and EKC/D+EM-1 and partially block EKA/B and EKA/B+EM-1. Pretreatment with NG-nitro-l-arginine methyl ester partially decreased depressor intensity and half-recovery time of EKA/B and EKC/D.
Collapse
Affiliation(s)
- Qiaoying Jin
- Institute of Biochemistry and Molecular Biology, School of Life Sciences
| | | | | | | |
Collapse
|
43
|
Caioli S, Curcio L, Pieri M, Antonini A, Marolda R, Severini C, Zona C. Substance P receptor activation induces downregulation of the AMPA receptor functionality in cortical neurons from a genetic model of Amyotrophic Lateral Sclerosis. Neurobiol Dis 2011; 44:92-101. [DOI: 10.1016/j.nbd.2011.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/01/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022] Open
|
44
|
Effect of subchronic administration of tachykinin antagonists on response of guinea-pigs to mild and severe stress. ACTA ACUST UNITED AC 2011; 168:59-68. [DOI: 10.1016/j.regpep.2011.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 02/19/2011] [Accepted: 03/30/2011] [Indexed: 12/23/2022]
|
45
|
Anxiolytic-like effects of the neurokinin 1 receptor antagonist GR-205171 in the elevated plus maze and contextual fear-potentiated startle model of anxiety in gerbils. Behav Pharmacol 2011; 20:584-95. [PMID: 19675456 DOI: 10.1097/fbp.0b013e32832ec594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gerbils show a neurokinin (NK)1 receptor pharmacological profile, which is similar to that observed in humans, and thus have become a commonly used species to test efficacy of NK1 receptor antagonists. The aim of this study was to determine whether systemic administration of the NK1 receptor antagonist GR-205171 produced anxiolytic-like effects in the elevated plus maze and in a novel contextual conditioned fear test using fear-potentiated startle (FPS). On the elevated plus maze, treatment with GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing produced anxiolytic-like effects in an increasing dose-response manner as measured by the percentage of open arm time and percentage of open arm entries. For contextual fear conditioning, gerbils were given 10 unsignaled footshocks (0.6 mA) at a 2-min variable interstimulus interval in a distinctive training context. Twenty-four hours after training, gerbils received treatment of GR-205171 at 0, 0.3, 1.0, and 5.0 mg/kg doses, 30 min before testing in which startle was elicited in the same context in which they were trained. Contextual FPS was defined as an increase in startle over pretraining baseline values. All drug dose levels (0.3, 1.0, and 5.0 mg/kg) significantly attenuated contextual FPS when compared with the vehicle control group. A control group, which received testing in a different context, showed little FPS. These findings support other evidence for anxiolytic activity of NK1 receptor antagonists and provide a novel conditioned fear test that may be an appropriate procedure to test other NK1 antagonists for preclinical anxiolytic activity in gerbils.
Collapse
|
46
|
Fornelli L, Schmid AW, Grasso L, Vogel H, Tsybin YO. Deamidation and transamidation of substance P by tissue transglutaminase revealed by electron-capture dissociation fourier transform mass spectrometry. Chemistry 2010; 17:486-97. [PMID: 21207565 DOI: 10.1002/chem.201002483] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Indexed: 11/07/2022]
Abstract
Tissue transglutaminase (tTGase) catalyzes both deamidation and transamidation of peptides and proteins by using a peptidyl glutamine as primary substrate. A precise consensus sequence for the enzyme is unknown and the ratio between deamidated and transamidated (or cross-linked) reaction products is highly substrate-dependent. Due to its overlapping body distribution with tTGase and ease of manipulation with tandem mass spectrometry, we used the neuropeptide substance P as a model to investigate the associated enzymatic kinetics and reaction products. Online liquid-chromatography Fourier-transform ion-cyclotron-resonance mass spectrometry (FT-ICR MS) combined with electron-capture dissociation (ECD) was employed to study the tTGase-induced modifications of substance P. A particular strength of ECD for peptide-enzyme reaction product monitoring is its ability to distinguish isomeric amino acids, for example, Glu and iso-Glu, by signature product ions. Our studies show that the primary reaction observed is deamidation, with the two consecutive glutamine residues converted sequentially into glutamate: first Gln(5) , and subsequently Gln(6) . We then applied ECD FT-ICR MS to identify the transamidation site on an enzymatically cross-linked peptide, which turned out to correspond to Gln(5) . Three populations of substance-P dimers were detected that differed by the number of deamidated Gln residues. The higher reactivity of Gln(5) over Gln(6) was further confirmed by cross-linking SP with monodansylcadaverine (MDC). Overall, our approach described herein is of a general importance for mapping both enzymatically induced post-translational protein modifications and cross-linking. Finally, in vitro Ca-signaling assays revealed that the main tTGase reaction product, the singly deamidated SP (RPKPEQFFGLM-NH(2) ), has increased agonist potency towards its natural receptor, thus confirming the biologically relevant role of deamidation.
Collapse
Affiliation(s)
- Luca Fornelli
- Biomolecular Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Kinin receptor antagonists as potential neuroprotective agents in central nervous system injury. Molecules 2010; 15:6598-618. [PMID: 20877247 PMCID: PMC6257767 DOI: 10.3390/molecules15096598] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/10/2010] [Accepted: 09/14/2010] [Indexed: 11/17/2022] Open
Abstract
Injury to the central nervous system initiates complex physiological, cellular and molecular processes that can result in neuronal cell death. Of interest to this review is the activation of the kinin family of neuropeptides, in particular bradykinin and substance P. These neuropeptides are known to have a potent pro-inflammatory role and can initiate neurogenic inflammation resulting in vasodilation, plasma extravasation and the subsequent development of edema. As inflammation and edema play an integral role in the progressive secondary injury that causes neurological deficits, this review critically examines kinin receptor antagonists as a potential neuroprotective intervention for acute brain injury, and more specifically, traumatic brain and spinal cord injury and stroke.
Collapse
|
48
|
Menard F, Perez D, Sustac Roman D, Chapman TM, Lautens M. Ligand-controlled selectivity in the desymmetrization of meso cyclopenten-1,4-diols via rhodium(I)-catalyzed addition of arylboronic acids. J Org Chem 2010; 75:4056-68. [PMID: 20469847 DOI: 10.1021/jo100391e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly enantioselective desymmetrization of meso cyclopent-2-ene-1,4-diethyl dicarbonates has been developed using a Rh-catalyzed asymmetric allylic substitution. Depending on the type of ligand used, each of two regioisomeric products can be obtained in good yield and excellent enantioselectivity. Under rhodium(I) catalysis, bisphosphine P-Phos ligands form trans-1,2-arylcyclopentenols as the major product, whereas Segphos ligands lead predominantly to trans-1,4-arylcyclopentenols.
Collapse
Affiliation(s)
- Frederic Menard
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | | | | | | | |
Collapse
|
49
|
Millan MJ, Dekeyne A, Gobert A, Mannoury la Cour C, Brocco M, Rivet JM, Di Cara B, Lejeune F, Cremers TI, Flik G, de Jong TR, Olivier B, de Nanteuil G. S41744, a dual neurokinin (NK)1 receptor antagonist and serotonin (5-HT) reuptake inhibitor with potential antidepressant properties: a comparison to aprepitant (MK869) and paroxetine. Eur Neuropsychopharmacol 2010; 20:599-621. [PMID: 20483567 DOI: 10.1016/j.euroneuro.2010.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/23/2010] [Accepted: 04/09/2010] [Indexed: 12/19/2022]
Abstract
Though neurokinin(1) (NK(1)) receptors are implicated in depressed states and their treatment, selective antagonists have disappointed in clinical trials. Accordingly, we designed a novel ligand, S41744 (2-piperazin-1-yl-indan-2-carboxylic-acid-(3-chloro-5-fluoro-benzyl)-methyl-amide), which both blocks NK(1) receptors and interferes with serotonin (5-HT) reuptake. S41744 mimicked the selective antagonist aprepitant in binding human (h)NK(1) receptors and in antagonising Substance-P-mediated Extracellular-Regulated-Kinase phosphorylation (pK(B), 7.7). Further, it dose-dependently (0.63-40.0 mg/kg, i.p.) displaced ex vivo [(3)H]-[Sar(9),Met(O(2))(11)]-Substance P binding to gerbil striatum, attenuated formalin-induced hind-paw licking in gerbils, and antagonised locomotion induced by i.c.v. administration of the NK(1) agonist GR73632 to guinea pigs. Like paroxetine, S41744 recognised h5-HT transporters, reduced synaptosomal uptake of 5-HT (pK(B), 7.9), and dose-dependently (0.63-10.0 mg/kg) elevated dialysis levels of 5-HT in the hippocampus and frontal cortex of freely-moving guinea pigs. Further, S41744 increased extracellular levels of 5-HT in frontal cortex and hippocampus of rats to a greater extent than paroxetine, and its inhibitory influence upon serotonergic perikarya was blunted relative to its affinity for 5-HT transporters. S41744 more potently blocked stress-induced vocalizations in guinea pigs than aprepitant and paroxetine, and it was active in forced-swim and marble-burying procedures of putative antidepressant properties in mice. While aprepitant displayed anxiolytic actions in stress-induced foot-tapping and social interaction tests in gerbils, paroxetine was anxiogenic and S41744 "neutral", reflecting balanced NK(1) antagonism and suppression of 5-HT reuptake. Moreover, S41744 shared anxiolytic actions of aprepitant in the rat Vogel Conflict Test. In conclusion, S41744 is an innovative NK(1) antagonist/5-HT reuptake inhibitor justifying further evaluation for treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Institut de Recherches Servier, Centre de Recherches de Croissy, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
A substance P mediated pathway contributes to 6-hydroxydopamine induced cell death. Neurosci Lett 2010; 481:64-7. [DOI: 10.1016/j.neulet.2010.06.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/10/2010] [Accepted: 06/21/2010] [Indexed: 11/17/2022]
|