1
|
Barge S, Wu A, Zhang L, Robson SC, Olumi A, Alper SL, Zeidel ML, Yu W. Role of ecto-5'-nucleotidase in bladder function. FASEB J 2024; 38:e23416. [PMID: 38198186 PMCID: PMC10783849 DOI: 10.1096/fj.202301393r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Purinergic signaling plays an important role in regulating bladder contractility and voiding. Abnormal purinergic signaling is associated with lower urinary tract symptoms (LUTS). Ecto-5'-nucleotidase (NT5E) catalyzes dephosphorylation of extracellular AMP to adenosine, which in turn promotes adenosine-A2b receptor signaling to relax bladder smooth muscle (BSM). The functional importance of this mechanism was investigated using Nt5e knockout (Nt5eKO) mice. Increased voiding frequency of small voids revealed by voiding spot assay was corroborated by urodynamic studies showing shortened voiding intervals and decreased bladder compliance. Myography indicated reduced contractility of Nt5eKO BSM. These data support a role for NT5E in regulating bladder function through modulation of BSM contraction and relaxation. However, the abnormal bladder phenotype of Nt5eKO mice is much milder than we previously reported in A2b receptor knockout (A2bKO) mice, suggesting compensatory response(s) in Nt5eKO mouse bladder. To better understand this compensatory mechanism, we analyzed changes in purinergic and other receptors controlling BSM contraction and relaxation in the Nt5eKO bladder. We found that the relative abundance of muscarinic CHRM3 (cholinergic receptor muscarinic 3), purinergic P2X1, and A2b receptors was unchanged, whereas P2Y12 receptor was significantly downregulated, suggesting a negative feedback response to elevated ADP signaling. Further studies of additional ecto-nucleotidases indicated significant upregulation of the nonspecific urothelial alkaline phosphatase ALPL, which might mitigate the degree of voiding dysfunction by compensating for Nt5e deletion. These data suggest a mechanistic complexity of the purinergic signaling network in bladder and imply a paracrine mechanism in which urothelium-released ATP and its rapidly produced metabolites coordinately regulate BSM contraction and relaxation.
Collapse
Affiliation(s)
- Sagar Barge
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Ali Wu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Lanlan Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Aria Olumi
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Seth L. Alper
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Mark L. Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Martínez-Sáenz A, Recio P, Orensanz LM, Fernandes VS, Martínez MP, Bustamante S, Carballido J, García-Sacristán A, Prieto D, Hernández M. Role of calcitonin gene-related peptide in inhibitory neurotransmission to the pig bladder neck. J Urol 2011; 186:728-35. [PMID: 21683385 DOI: 10.1016/j.juro.2011.03.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Indexed: 12/01/2022]
Abstract
PURPOSE We studied the role of calcitonin gene-related peptide in nonadrenergic, noncholinergic neurotransmission to the pig bladder neck. MATERIALS AND METHODS We used immunohistochemical techniques to determine the distribution of calcitonin gene-related peptide immunoreactive fibers as well as organ baths for isometric force recording. We investigated relaxation due to endogenously released or exogenously applied calcitonin gene-related peptide in urothelium denuded phenylephrine precontracted strips treated with guanethidine, atropine and NG-nitro-L-arginine to block noradrenergic neurotransmission, muscarinic receptors and nitric oxide synthase, respectively. RESULTS Rich calcitonin gene-related peptide immunoreactive innervation was found penetrating through the adventitia and distributed in the suburothelial and muscle layers. Numerous, variable size, varicose calcitonin gene-related peptide immunopositive terminals were seen close below the urothelium. In the muscle layer calcitonin gene-related peptide immunopositive nerves usually appeared as varicose terminals running along muscle fibers. Electrical field stimulation (2 to 16 Hz) and exogenous calcitonin gene-related peptide (0.1 nM to 0.3 μM) evoked frequency and concentration dependent relaxation, respectively. Nerve responses were potentiated by capsaicin, decreased by calcitonin gene-related peptide (8-37) and abolished by tetrodotoxin, capsaicin sensitive primary afferent blockers, calcitonin gene-related peptide receptors and neuronal voltage gated Na+ channels. Calcitonin gene-related peptide-induced relaxation was potentiated by the neuronal voltage gated Ca2+ channels blocker ω-conotoxin-GVIA and decreased by calcitonin gene-related peptide (8-37). Calcitonin gene-related peptide relaxation was not modified by blockade of endopeptidases, nitric oxide synthase, guanylyl cyclase and cyclooxygenase. CONCLUSIONS Results suggest that calcitonin gene-related peptide is involved in the nonadrenergic, noncholinergic inhibitory neurotransmission of the pig bladder neck, producing relaxation through neuronal and muscle calcitonin gene-related peptide receptors. Nitric oxide/cyclic guanosine monophosphate and cyclooxygenase pathways do not seem to be involved in such responses.
Collapse
Affiliation(s)
- Ana Martínez-Sáenz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, and Departamento de Investigación, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Protein kinase G activity prevents pathological-level nitric oxide-induced apoptosis and promotes DNA synthesis/cell proliferation in vascular smooth muscle cells. Cardiovasc Pathol 2010; 19:e221-31. [DOI: 10.1016/j.carpath.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 08/26/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
|
4
|
Ross GR, Yallampalli C. Vascular hyperresponsiveness to adrenomedullin during pregnancy is associated with increased generation of cyclic nucleotides in rat mesenteric artery. Biol Reprod 2006; 76:118-23. [PMID: 17050860 DOI: 10.1095/biolreprod.106.053777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cardiovascular adaptation is a hallmark of pregnancy. Here we report on vascular hyperresponsiveness to an endogenous vasodilator, adrenomedullin (ADM), during pregnancy. Intravenous administration of ADM dose dependently decreased the mean arterial pressure, and the decrease was significantly greater in pregnant compared with nonpregnant rats without affecting the heart rate. In endothelium-intact mesenteric artery precontracted by ED70 concentration of norepinephrine, the potency and efficacy of ADM in causing the vasodilation of mesenteric arterial rings from pregnant rats are significantly higher compared with nonpregnant females at diestrus. The magnitude of inhibition of concentration-dependent response to ADM by the inhibition of either soluble guanylate cyclase or adenylate cyclase was greater in pregnant rats. Moreover, ADM-induced cyclic nucleotide generation, both cGMP and cAMP, in the mesenteric artery was elevated during pregnancy and was sensitive to the receptor antagonist, ADM22-52. These findings suggest that during pregnancy the vasodilatory effects of ADM are greater and are associated with increased generation of cyclic nucleotides in resistance vessels, and these changes may be part of the cardiovascular adaptations that occur during pregnancy.
Collapse
Affiliation(s)
- Gracious R Ross
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | |
Collapse
|
5
|
Gangula PRR, Lanlua P, Bukoski RD, Wimalawansa SJ, Yallampalli C. Mesenteric arterial relaxation to calcitonin gene-related peptide is increased during pregnancy and by sex steroid hormones. Biol Reprod 2004; 71:1739-45. [PMID: 15286037 DOI: 10.1095/biolreprod.104.031369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study investigated whether pregnancy and circulatory ovarian hormones increase the sensitivity of the mesenteric artery to calcitonin gene-related peptide (CGRP)-induced relaxation and possible mechanisms involved in this process. Mesenteric arteries from young adult male rats or female rats (during estrous cycle, after ovariectomy, at Day 20 of gestation, or Postpartum Day 2) were isolated, and the responsiveness of the vessels to CGRP was examined with a small vessel myograph. The CGRP (10(-10) to 10(-7) M) produced a concentration-dependent relaxation of norepinephrine-induced contractions in mesenteric arteries of all groups. Arterial relaxation sensitivity to CGRP was significantly (P < 0.05) greater in female rats compared with male rats. Pregnancy increased the sensitivity to CGRP significantly (P < 0.05) compared to ovariectomized and Postpartum Day 2 rats. In pregnant rats, CGRP-receptor antagonist, CGRP(8-37), inhibited the relaxation responses produced by CGRP. The CGRP-induced relaxation was not affected by N(G)-nitro-l-arginine methyl ester (nitric oxide inhibitor, 10(-4) M) but was significantly (P < 0.05) attenuated by an inhibitor of guanylate cyclase (1H-[1 , 2 , 4 ]oxadizaolo[4 , 3 -a]quinoxalin-1-one, 10(-5) M). Relaxation responses of CGRP on mesenteric arteries were blocked (P < 0.05) by a cAMP-dependent protein kinase A inhibitor, Rp-cAMPs (10(-5) M). The CGRP-induced vasorelaxation was significantly (P < 0.05) attenuated by calcium-dependent (tetraethylammonium, 10(-3) M), but not ATP-sensitive (glybenclamide, 10(-5) M), potassium channel blocker. Therefore, the results of the present study suggest that mesenteric vascular sensitivity to CGRP is higher during pregnancy and that cAMP, cGMP, and calcium-dependent potassium channels appear to be involved. Therefore, we propose that CGRP-mediated vasodilation may be important to maintain vascular adaptations during pregnancy.
Collapse
Affiliation(s)
- P R R Gangula
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
6
|
Chan GHH, Fiscus RR. Exaggerated production of nitric oxide (NO) and increases in inducible NO-synthase mRNA levels induced by the pro-inflammatory cytokine interleukin-1beta in vascular smooth muscle cells of elderly rats. Exp Gerontol 2004; 39:387-94. [PMID: 15036398 DOI: 10.1016/j.exger.2004.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/22/2003] [Accepted: 01/13/2004] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is produced at high levels by inducible nitric oxide synthase (iNOS) during inflammation and other pathological conditions, contributing to development of cardiovascular diseases. The present study determined if aging affects the ability of interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, to induce increased NO production (assessed by Griess reaction) and iNOS mRNA levels (assessed by RT-PCR/agarose gel electrophoresis) in vascular smooth muscle cells (VSMCs) from young (3-month-old) and elderly (20-22-month-old) rats. The VSMCs cells were used only in early passages (passages 0 and 1) to avoid phenotypic modulation. To uncover subtle differences in basal iNOS mRNA levels in VSMCs of young and elderly rats, RT-PCR products were also analyzed by a new ultrasensitive technique using capillary electrophoresis with laser-induced fluorescence detector (CE-LIF). IL-1beta (5 ng/ml) significantly (P < 0.05) increased NO production 3.7-fold in elderly female VSMCs and 6.7-fold in elderly male VSMCs, but had no detectable effect in young female and male VSMCs. Basal iNOS mRNA levels (assessed by RT-PCR/CE-LIF) were dramatically higher in VSMCs of elderly male rats compared to young ones. In general, VSMCs of elderly rats showed much greater sensitively to iNOS-inducing actions of IL-1beta. These data give new insight into effects of aging on iNOS expression in VSMCs, showing dramatic increases in both basal and stimulated iNOS mRNA levels, which may contribute to the development of vascular diseases in the elderly.
Collapse
Affiliation(s)
- Gabriel H H Chan
- Department of Physiology, Faculty of Medicine, Epithelial Cell Biology Research Center, and The Center for Gerontology and Geriatrics, The Chinese University of Hong Kong, Room 507, BMSB, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
7
|
Dong YL, Vegiraju S, Chauhan M, Gangula PRR, Hankins GDV, Goodrum L, Yallampalli C. Involvement of calcitonin gene-related peptide in control of human fetoplacental vascular tone. Am J Physiol Heart Circ Physiol 2004; 286:H230-9. [PMID: 14684361 DOI: 10.1152/ajpheart.00140.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcitonin gene-related peptide (CGRP), one of the most potent endogenous vasodilators known, has been implicated in vascular adaptations and placental functions during pregnancy. The present study was designed to examine the existence of CGRP-A receptor components, the calcitonin receptor-like receptor (CRLR) and receptor activity-modifying protein 1 (RAMP1), in the human placenta and the vasoactivity of CGRP in the fetoplacental circulation. Immunofluorescent staining of the human placenta in term labor using polyclonal anti-CRLR and RAMP1 antibodies revealed that labeling specifically concentrated in the vascular endothelium and the underlying smooth muscle cells in the umbilical artery/vein, chorionic artery/vein, and stem villous vessels as well as in the trophoblast layer of the placental villi. In vitro isometric force measurement showed that CGRP dose dependently relaxes the umbilical artery/vein, chorionic artery/vein, and stem villous vessels. Furthermore, CGRP-induced relaxation of placental vessels are inhibited by a CGRP receptor antagonist (CGRP8–37), ATP-sensitive potassium (KATP) channel blocker (glybenclamide), and cAMP-dependent protein kinase A inhibitor (Rp-cAMPS) and partially inhibited by a nitric oxide inhibitor ( Nω-nitro-l-arginine methyl ester). We propose that CGRP may play a role in the control of human fetoplacental vascular tone, and the vascular dilations in response to CGRP may involve activation of KATP channels, cAMP, and a nitric oxide pathway.
Collapse
Affiliation(s)
- Yuan-Lin Dong
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 Univ. Blvd., Medical Research Bldg., Rm. 11.138, Galveston, TX 77555-1062, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Gangula PRR, Thota C, Wimalawansa SJ, Bukoski RD, Yallampalli C. Mechanisms involved in calcitonin gene-related Peptide-induced relaxation in pregnant rat uterine artery. Biol Reprod 2003; 69:1635-41. [PMID: 12855600 DOI: 10.1095/biolreprod.103.016725] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Human and rodent studies have demonstrated that calcitonin gene-related peptide (CGRP), a potent vasodilator, relaxes uterine tissue during pregnancy but not during labor. The vascular sensitivity to CGRP is enhanced during pregnancy, compared to nonpregnant human uterine arteries. In the present study, we hypothesized that uterine artery relaxation effects of CGRP are enhanced in pregnant rats compared to nonpregnant diestrus rats (NP-DE) and that several secondary messenger systems are involved in this process. We also hypothesized that the expression of CGRP-A receptor components, calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP1), and CGRP-B receptors are greater in pregnant rats. For vascular relaxation studies, uterine arteries from either NP-DE or Day 18 pregnant rats were isolated, and responsiveness of the vessels to CGRP was examined with a small vessel myograph. CGRP-A and CGRP-B receptor expressions were assessed by RT-PCR and Western immunoblotting, respectively. CGRP (10(-10)--10(-7) M) produced a concentration-dependent relaxation of norepinephrine-induced contractions in both NP-DE and Day 18 pregnant rat uterine arteries. Pregnancy increased the vasodilator sensitivity to CGRP significantly (P < 0.05) compared to NP-DE rats. CGRP receptor antagonist, CGRP8-37, inhibited CGRP-induced relaxation of pregnant uterine arteries. The CGRP-induced relaxation was not affected by NG-nitro-l-arginine methyl ester (L-NAME) (nitric oxide inhibitor, 10(-4) M) but was significantly (P < 0.05) attenuated by inhibitors of guanylate cyclase (ODQ, 10(-5) M) and adenylate cyclase (SQ 22536, 10(-5) M). CGRP-induced vasorelaxation was significantly (P < 0.05) attenuated by potassium channel blockers KATP (glybenclamide, 10(-5) M) and K(CA) (tetraethylammonium, 10(-3) M). The expression of CRLR and RAMP1 was significantly (P < 0.05) elevated during pregnancy compared to nonpregnant diestrus state (NP-DE). However, CGRP-B receptor proteins in uterine arteries were not altered with pregnancy compared to those of NP-DE. These studies suggest that CGRP-induced increases in uterine artery relaxation may play a role in regulating blood flow to the uterus during pregnancy and, therefore, in fetal growth and survival.
Collapse
Affiliation(s)
- P R R Gangula
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
9
|
Fung E, Fiscus RR. Adrenomedullin induces direct (endothelium-independent) vasorelaxations and cyclic adenosine monophosphate elevations that are synergistically enhanced by brain natriuretic peptide in isolated rings of rat thoracic aorta. J Cardiovasc Pharmacol 2003; 41:849-55. [PMID: 12775961 DOI: 10.1097/00005344-200306000-00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our laboratory previously demonstrated that nitric oxide and natriuretic peptides can synergistically enhance cAMP elevations and vasorelaxations in rat aortic rings induced by calcitonin gene-related peptide, likely involving cyclic guanosine monophosphate (cGMP)-mediated inhibition of type-3 phosphodiesterase (PDE3). It was predicted that this cellular mechanism may also serve as a point of synergism between adrenomedullin (ADM) and brain natriuretic peptide (BNP) in aortic smooth muscle cells. The current study shows that ADM (100 nM)-induced vasorelaxations in isolated aortic rings of Sprague-Dawley rats are dependent on endothelium (34.1 +/- 4.2% relaxation with endothelium versus 3.0 +/- 0.6% relaxation without endothelium; P < 0.001). To determine interactions between ADM and BNP in smooth muscle cells without interference from endothelium-derived factors, further studies used aortic rings denuded of endothelium. Pretreatment with BNP (1 nM), which elevated cGMP levels 1.6 fold, uncovered direct vasorelaxant effects of ADM in endothelium-denuded rings, showing 5.6 +/- 1.8%, 20.9 +/- 6.1%, and 55 +/- 9.4% relaxations with ADM at 1, 10, and 100 nM, respectively (n = 6). ADM (100 nM) significantly (P < 0.05) increased cyclic adenosine monophosphate (cAMP) levels in denuded aortic rings pretreated with BNP (1 nM), but not in denuded rings without BNP. Quazinone (20 microM), a PDE3 inhibitor, caused similar enhancement of direct cAMP elevations to ADM (100 nM). The data indicate vasodilatory synergism between ADM and BNP in aorta, likely mediated by enhanced accumulation of cAMP in smooth muscle cells resulting from BNP/cGMP-induced inhibition of PDE3. This synergistic mechanism may be especially important in subjects with dysfunctional endothelium, in which BNP may uncover direct vasorelaxant effects of ADM in arteries that normally require healthy (nitric oxide-releasing) endothelium for ADM-induced vasorelaxations to occur.
Collapse
MESH Headings
- Adrenomedullin
- Animals
- Aorta, Thoracic/physiology
- Calcitonin Gene-Related Peptide/metabolism
- Cyclic AMP/metabolism
- Drug Synergism
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Natriuretic Peptide, Brain/pharmacology
- Natriuretic Peptide, Brain/physiology
- Nitric Oxide/metabolism
- Peptides/pharmacology
- Peptides/physiology
- Rats
- Rats, Sprague-Dawley
- Vasodilation/physiology
Collapse
Affiliation(s)
- Erik Fung
- Department of Physiology, Faculty of Medicine, The Epithelial Cell Biology Research Center, and The Center for Gerontology & Geriatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | |
Collapse
|
10
|
Abstract
Organic nitrates, including nitroglycerin, produce vascular relaxation by releasing nitric oxide in vascular tissues near the plasma member of smooth muscle cells of veins and arteries. Calcitonin gene-related peptide (CGRP), a major transmitter in capsaicin-sensitive sensory nerves, is widely distributed in cardiovascular tissues and the release of CGRP is regulated by multiple autacoids including nitric oxide (NO). CGRP exerts complex cardiovascular effects including potent vasorelaxation and protective effects on myocytes and endothelial cells. Nitroglycerin activates sensory nerves fibres to release CGRP by generating NO and increasing cGMP level, and that the cardiovascular effects of nitroglycerin are partly mediated by endogenous CGRP.
Collapse
Affiliation(s)
- Yuan Jian Li
- Department of Pharmacology, School of Pharmaceutic Sciences, Central South University, Changsha, People's Republic of China.
| | | |
Collapse
|
11
|
Klede M, Clough G, Lischetzki G, Schmelz M. The effect of the nitric oxide synthase inhibitor N-nitro-L-arginine-methyl ester on neuropeptide-induced vasodilation and protein extravasation in human skin. J Vasc Res 2003; 40:105-14. [PMID: 12808346 DOI: 10.1159/000070707] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 02/18/2003] [Indexed: 11/19/2022] Open
Abstract
Endogenous neuropeptides released from nociceptors can induce vasodilation and enhanced protein extravasation (neurogenic inflammation). The role of nitric oxide (NO) in the induction of neurogenic inflammation is controversial. In this study, dermal microdialysis was used in awake humans (n = 39) to deliver substance P (SP; 10(-7) and 10(-6)M) or calcitonin gene-related peptide (CGRP; 5 x 10(-7)M and 2 x 10(-6)M). Neuropeptide-induced local and axon reflex erythema was assessed by laser Doppler imaging. Total protein concentration in the dialysate was measured to quantify local protein extravasation. The responses were assessed in the absence and the presence of the nitric oxide synthase inhibitor, N-nitro-L-arginine-methyl ester (L-NAME) added to the perfusate at concentrations of 5, 10 or 20 mM. L-NAME (5 mM) applied via the dialysis catheters reduced local blood flow by approximately 30%. In addition, L-NAME inhibited SP-induced vasodilation by about 40% for 10(-7)M SP and 30% for 10(-6)M SP (n = 11, p < 0.01). In contrast, CGRP-induced vasodilation was only marginally inhibited by L-NAME. SP, but not CGRP, provoked a dose-dependent increase in protein extravasation. L-NAME (5 mM) inhibited this increase by up to 40% for both SP concentrations used (n = 11, p < 0.01). Higher concentrations of L-NAME did not further reduce SP- or CGRP-induced vasodilation or SP-induced protein extravasation. Exogenously applied SP induces vasodilation and protein extravasation, which is partly NO mediated, whereas CGRP-induced vasodilation appears to be NO independent.
Collapse
Affiliation(s)
- Monika Klede
- Department of Physiology and Experimental Pathophysiology, University of Erlangen/Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
12
|
|
13
|
Lee WI, Xu Y, Fung SM, Fung HL. eNOS-dependent vascular interaction between nitric oxide and calcitonin gene-related peptide in mice: gender selectivity and effects on blood aggregation. REGULATORY PEPTIDES 2003; 110:115-22. [PMID: 12527144 DOI: 10.1016/s0167-0115(02)00210-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study was performed to explore a possible vascular interplay between nitric oxide (NO) and calcitonin gene-related peptide (CGRP). We examined factors affecting CGRP release by the NO donor, nitroglycerin (NTG) and the potential involvement of endothelial NO synthase (eNOS) using eNOS knockout (-/-) vs. wild-type (+/+) mice. In the female eNOS (+/+) mice, but not in males, in vitro NTG (0.73 mM) induced significant increases in the release of CGRP-like immunoreactivity (CGRP-LI) from the aorta and the heart but not from the small intestine. In eNOS (-/-) mice, NTG incubation did not induce any CGRP-LI changes in either gender. These results suggest that NTG-induced CGRP release is eNOS-dependent and tissue- and gender-selective. The functional implication of this NO-CGRP interaction was further examined by testing the anti-aggregatory action of acetylcholine (Ach). Ach-induced platelet inhibition was significantly enhanced by the addition of aorta segments of either gender. However, the female aorta segments exhibited a greater platelet inhibitory effect, which could be reversed by the blockade of either CGRP or eNOS. Our study revealed a novel eNOS-dependent interaction between NO and CGRP, and the possible participation of regulatory peptides in affecting platelet function and possibly cardiovascular protection in females.
Collapse
Affiliation(s)
- Woo-In Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University at Buffalo, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
14
|
Chan GHH, Fiscus RR. Severe impairment of CGRP-induced hypotension in vivo and vasorelaxation in vitro in elderly rats. Eur J Pharmacol 2002; 434:133-9. [PMID: 11779576 DOI: 10.1016/s0014-2999(01)01545-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to investigate the effects of aging on hypotension in vivo and vasorelaxation in vitro induced by calcitonin gene-related peptide (CGRP), using young (3 months old) and elderly (20 and 28 months old) Sprague-Dawley rats. Vasorelaxant responses were measured in isolated rings of rat thoracic aorta and rat caudal artery, which show endothelium-dependent and endothelium-independent responses to CGRP, respectively. The CGRP-induced vasorelaxations were significantly diminished in 28-month-old male rats in both aorta (39.3% of responses in young controls at 10 nM CGRP) and caudal artery (28.5% of responses in young controls at 10 nM CGRP). Acetylcholine caused vasorelaxations in aortic rings of young male rats, but vasocontractions in aortic rings of 28-month-old male rats. Hypotension induced by CGRP was significantly diminished in both 20-month-old male rats (47.7% of young controls) and 20-month-old female rats (34.4% of young controls). Moreover, ovariectomy, known to decrease CGRP-induced hypotension in young female rats, did not further decrease hypotension to CGRP in elderly female rats. In conclusion, vasorelaxant responses in vitro and hypotensive responses in vivo induced by the neuropeptide CGRP are severely impaired in elderly rats as compared to young rats. The data suggest that the vasodilatory responses to CGRP in both large arteries and the small resistance-sized arteries regulating arterial blood pressure are damaged or down-regulated by the aging process.
Collapse
Affiliation(s)
- Gabriel H H Chan
- Department of Physiology, Faculty of Medicine, Epithelial Cell Biology Research Center, BMSB room 507, and The Center for Gerontology and Geriatrics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | |
Collapse
|
15
|
Vedernikov YP, Fulep EE, Saade GR, Garfield RE. Calcitonin gene-related peptide dilates the pregnant rat uterine vascular bed via guanylate cyclase, ATP- and Ca-sensitive potassium channels and gap junctions. Curr Med Res Opin 2002; 18:465-70. [PMID: 12564657 DOI: 10.1185/030079902125001001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the mechanism of calcitonin gene-related peptide (CGRP)-induced vasorelaxation in isolated uterine vascular beds of pregnant rats. The vascular beds were perfused in situ with Krebs buffer containing dextran and indomethacin, an inhibitor of cyclooxygenase. Baseline perfusion pressure was maintained with norepinephrine. When applied as a bolus, CGRP caused a decreased perfusion pressure in uterine vascular beds that was dose-dependent and equal in both mid-pregnant and late-pregnant rats. The non-selective inhibitor of nitric oxide synthase (NOS), Nomega-nitro-L-arginine methyl ester (L-NAME), did not significantly affect CGRP-induced vasodilatation in vascular beds of either group. CGRP-induced vasodilatation was not influenced by preincubation with the inhibitors of adenylate cyclase (SQ 22536 or MDL 12330A), but was significantly attenuated by the selective inhibitor of soluble guanylate cyclase (ODQ). The vasorelaxant effect of CGRP was not significantly influenced by the inhibitor of voltage-gated potassium (KV) channels (4-aminopyridin), but was significantly attenuated by an inhibitor of calcium-regulated potassium (KCa) channels (tetraethylammonium) and by an inhibitor of adenosine triphosphate-sensitive potassium (KATP) channels (glibenclamide). The gap junction uncoupling agent (carbenoxolone) also significantly attenuated the CGRP-induced decrease in perfusion pressure. We conclude that vasorelaxation induced by CGRP in the pregnant rat uterine vascular bed is not dependent on endothelial nitric oxide. In the uterine circulation of late-pregnant rats, the CGRP effect involves activation of soluble guanylate cyclase, but not adenylate cyclase, and does involve KCa and KATP channels and gap junctions.
Collapse
Affiliation(s)
- Y P Vedernikov
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|