1
|
Manukyan AL, Grigoryan AS, Hunanyan LS, Harutyunyan HA, Manukyan MV, Melkonyan MM. Adrenergic alpha-2 receptor antagonists cease augmented oxidation of plasma proteins and anxiety of rats caused by chronic noise exposure. Noise Health 2020; 22:63-69. [PMID: 33402606 PMCID: PMC8000136 DOI: 10.4103/nah.nah_31_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Noise is one of the environmental factors, which is considered as a powerful stressor for the organism. Generally, the acoustic stress affects the behavior and physiological state of humans and animals. AIMS The goal of this study is to investigate the relationship between chronic noise exposure and the effects of adrenergic alpha-2 receptor antagonists, beditin and mesedin, on the anxiety and oxidation of plasma proteins and fibrinogen in rats. METHODS The experiments were carried out on non-linear albino male rats, divided into four groups (six animals in each): 1. Healthy controls 2. Exposed to noise of a level 91 dB(A), eight hours daily, during 7, 30 and 60 days; 3. Injected with 2 mg/kg of beditin (2-(2-amino-4-thiazolyl)-1,4-benzodioxane hydrochloride)); 4. Injected with 10 mg/kg mesedin (2-(2-methyl-amino-thiozolyl)-1,4-benzodioxane hydrochloride). For evaluating the cognitive impairment, the Any-maze test was applied. The level of carbonylation of proteins was assessed by reaction with 2,4-dinitrophenylhydrazine, spectrophotometrically. RESULTS Chronic noise decreased locomotor activity and increased anxiety and oxidation of plasma protein and fibrinogen. Intensity of these changes were dependent on the duration of noise exposure. CONCLUSION The Alpha 2 adrenoblockers alleviate oxidative modification of plasma proteins and reduce the cognitive impairment caused by chronic exposure to noise.
Collapse
Affiliation(s)
- Ashkhen Lyova Manukyan
- Department of Medical Chemistry Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Artem Sergey Grigoryan
- Department of Pathophysiology Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Lilit Serob Hunanyan
- Department of Medical Chemistry Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Hayk Ashot Harutyunyan
- Science Research Center (SRC), Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Mariam Varos Manukyan
- Science Research Center (SRC), Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| | - Magdalina Mher Melkonyan
- Department of Medical Chemistry Yerevan State Medical University after M. Heratsi, Yerevan, Armenia
| |
Collapse
|
2
|
Lagunin AA, Ivanov SM, Gloriozova TA, Pogodin PV, Filimonov DA, Kumar S, Goel RK. Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Sci Rep 2020; 10:257. [PMID: 31937840 PMCID: PMC6959222 DOI: 10.1038/s41598-019-57199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.
Collapse
Affiliation(s)
- Alexey A Lagunin
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia.
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia.
| | - Sergey M Ivanov
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Pavel V Pogodin
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Dmitry A Filimonov
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Sandeep Kumar
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India
| | - Rajesh K Goel
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India.
| |
Collapse
|
3
|
Effects of Tiletamine-xylazine-tramadol Combination and its Specific Antagonist on AMPK in the Brain of Rats. J Vet Res 2019; 63:285-292. [PMID: 31276069 PMCID: PMC6598187 DOI: 10.2478/jvetres-2019-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Tiletamine-xylazine-tramadol (XFM) has few side effects and can provide good sedation and analgesia. Adenosine 5’-monophosphate-activated protein kinase (AMPK) can attenuate trigeminal neuralgia. The study aimed to investigate the effects of XFM and its specific antagonist on AMPK in different regions of the brain. Material and Methods A model of XFM in the rat was established. A total of 72 Sprague Dawley (SD) rats were randomly divided into three equally sized groups: XFM anaesthesia (M group), antagonist (W group), and XFM with antagonist interactive groups (MW group). Eighteen SD rats were in the control group and were injected intraperitoneally with saline (C group). The rats were sacrificed and the cerebral cortex, cerebellum, hippocampus, thalamus, and brain stem were immediately separated, in order to detect AMPKα mRNA expression by quantitative PCR. Results XFM was able to increase the mRNA expression of AMPKα1 and AMPKα2 in all brain regions, and the antagonist caused the opposite effect, although the effects of XFM could not be completely reversed in some areas. Conclusion XFM can influence the expression of AMPK in the central nervous system of the rat, which can provide a reference for the future development of anaesthetics for animals.
Collapse
|
4
|
Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci 2015; 9:220. [PMID: 26136654 PMCID: PMC4469831 DOI: 10.3389/fnins.2015.00220] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located) is a predominant site where AD-related pathology begins. Mounting evidence indicates that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed.
Collapse
Affiliation(s)
- Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Pulin Che
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham Birmingham, AL, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
5
|
Bari A, Robbins TW. Noradrenergic versus dopaminergic modulation of impulsivity, attention and monitoring behaviour in rats performing the stop-signal task: possible relevance to ADHD. Psychopharmacology (Berl) 2013; 230:89-111. [PMID: 23681165 PMCID: PMC3824307 DOI: 10.1007/s00213-013-3141-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
RATIONALE Deficient response inhibition is a prominent feature of many pathological conditions characterised by impulsive and compulsive behaviour. Clinically effective doses of catecholamine reuptake inhibitors are able to improve such inhibitory deficits as measured by the stop-signal task (SST) in humans and other animals. However, the precise therapeutic mode of action of these compounds in terms of their relative effects on dopamine (DA) and noradrenaline (NA) systems in prefrontal cortical and striatal regions mediating attention and cognitive control remains unclear. OBJECTIVES We sought to fractionate the effects of global catecholaminergic manipulations on SST performance by using receptor-specific compounds for NA or DA. The results are described in terms of the effects of modulating specific receptor subtypes on various behavioural measures such as response inhibition, perseveration, sustained attention, error monitoring and motivation. RESULTS Blockade of α2-adrenoceptors improved sustained attention and response inhibition, whereas α1 and β1/2 adrenergic receptor antagonists disrupted go performance and sustained attention, respectively. No relevant effects were obtained after targeting DA D1, D2 or D4 receptors, while both a D3 receptor agonist and antagonist improved post-error slowing and compulsive nose-poke behaviour, though generally impairing other task measures. CONCLUSIONS Our results suggest that the use of specific pharmacological agents targeting α2 and β noradrenergic receptors may improve existing treatments for attentional deficits and impulsivity, whereas DA D3 receptors may modulate error monitoring and perseverative behaviour.
Collapse
Affiliation(s)
- A. Bari
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK ,Department of Neurosciences, Medical University of South Carolina, Ashley Avenue 173, BSB 409, 29425 Charleston, SC USA
| | - T. W. Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, Cambridge, CB2 3EB UK
| |
Collapse
|
6
|
Bekar LK, Wei HS, Nedergaard M. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab 2012; 32:2135-45. [PMID: 22872230 PMCID: PMC3519408 DOI: 10.1038/jcbfm.2012.115] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.
Collapse
Affiliation(s)
- Lane K Bekar
- Division of Glia Disease and Therapeutics, Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA.
| | | | | |
Collapse
|
7
|
Allard S, Gosein V, Cuello AC, Ribeiro-da-Silva A. Changes with aging in the dopaminergic and noradrenergic innervation of rat neocortex. Neurobiol Aging 2010; 32:2244-53. [PMID: 20096955 DOI: 10.1016/j.neurobiolaging.2009.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
In normal aging, the mammalian cortex undergoes significant remodeling. Although neuromodulation by dopamine and noradrenaline in the cortex is known to be important for proper cognitive function, little is known on how cortical noradrenergic and dopaminergic presynaptic boutons are affected in normal aging. Using rats we investigated whether these two neurotransmitter systems undergo structural reorganization in aging, and if these changes correlated with cognitive loss. Young and aged rats were tested for cognitive performance using the Morris water maze. Following the behavioral characterization, the animals were sacrificed and the cortical tissue was processed for immunofluorescence using antibodies directed against tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) to detect and discriminate noradrenergic and dopaminergic varicosities. We observed a significant increase in dopaminergic varicosities in lamina V of the anterior cingulate cortex (ACC) of aged cognitively unimpaired rats when compared to young and aged-impaired animals. In laminae II and III of the ACC, we observed a significant decrease of dopaminergic varicosities in aged-impaired animals when compared to young or aged cognitively unimpaired animals. Changes in noradrenergic varicosities never reached statistical significance in any group or brain region. The data suggests that the remodeling of mesocortical dopaminergic fibers may participate in age-associated cognitive decline.
Collapse
Affiliation(s)
- Simon Allard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
8
|
Idazoxan blocks the nicotine-induced reversal of the memory impairment caused by the NMDA glutamate receptor antagonist dizocilpine. Pharmacol Biochem Behav 2008; 90:372-81. [DOI: 10.1016/j.pbb.2008.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 02/20/2008] [Accepted: 03/10/2008] [Indexed: 11/21/2022]
|
9
|
Pertovaara A, Haapalinna A, Sirviö J, Virtanen R. Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS DRUG REVIEWS 2006; 11:273-88. [PMID: 16389294 PMCID: PMC6741735 DOI: 10.1111/j.1527-3458.2005.tb00047.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atipamezole is an alpha2-adrenoceptor antagonist with an imidazole structure. Receptor binding studies indicate that its affinity for alpha2-adrenoceptors and its alpha2/alpha1 selectivity ratio are considerably higher than those of yohimbine, the prototype alpha2-adrenoceptor antagonist. Atipamezole is not selective for subtypes of alpha2-adrenoceptors. Unlike many other alpha2-adrenoceptor antagonists, it has negligible affinity for 5-HT1A and I2 binding sites. Atipamezole is rapidly absorbed and distributed from the periphery to the central nervous system. In humans, atipamezole at doses up to 30 mg/subject produced no cardiovascular or subjective side effects, while at a high dose (100 mg/subject) it produced subjective symptoms, such as motor restlessness, and an increase in blood pressure. Atipamezole rapidly reverses sedation/anesthesia induced by alpha2-adrenoceptor agonists. Due to this property, atipamezole is commonly used by veterinarians to awaken animals from sedation/anesthesia induced by alpha2-adrenoceptor agonists alone or in combination with various anesthetics. Atipamezole increased sexual activity in rats and monkeys. In animals with sustained nociception, atipamezole increased pain-related responses by blocking the noradrenergic feedback inhibition of pain. In tests assessing cognitive functions, atipamezole at low doses has beneficial effects on alertness, selective attention, planning, learning, and recall in experimental animals, but not necessarily on short-term working memory. At higher doses atipamezole impaired performance in tests of cognitive functions, probably due to noradrenergic overactivity. Recent experimental animal studies suggest that atipamezole might have beneficial effects in the recovery from brain damage and might potentiate the anti-Parkinsonian effects of dopaminergic drugs. In phase I studies atipamezole has been well tolerated by human subjects.
Collapse
Affiliation(s)
- Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Mohammad R Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Marien MR, Colpaert FC, Rosenquist AC. Noradrenergic mechanisms in neurodegenerative diseases: a theory. ACTA ACUST UNITED AC 2004; 45:38-78. [PMID: 15063099 DOI: 10.1016/j.brainresrev.2004.02.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/26/2022]
Abstract
A deficiency in the noradrenergic system of the brain, originating largely from cells in the locus coeruleus (LC), is theorized to play a critical role in the progression of a family of neurodegenerative disorders that includes Parkinson's disease (PD) and Alzheimer's disease (AD). Consideration is given here to evidence that several neurodegenerative diseases and syndromes share common elements, including profound LC cell loss, and may in fact be different manifestations of a common pathophysiological process. Findings in animal models of PD indicate that the modification of LC-noradrenergic activity alters electrophysiological, neurochemical and behavioral indices of neurotransmission in the nigrostriatal dopaminergic system, and influences the response of this system to experimental lesions. In models related to AD, noradrenergic mechanisms appear to play important roles in modulating the activity of the basalocortical cholinergic system and its response to injury, and to modify cognitive functions including memory and attention. Mechanisms by which noradrenaline may protect or promote recovery from neural damage are reviewed, including effects on neuroplasticity, neurotrophic factors, neurogenesis, inflammation, cellular energy metabolism and excitotoxicity, and oxidative stress. Based on evidence for facilitatory effects on transmitter release, motor function, memory, neuroprotection and recovery of function after brain injury, a rationale for the potential of noradrenergic-based approaches, specifically alpha2-adrenoceptor antagonists, in the treatment of central neurodegenerative diseases is presented.
Collapse
Affiliation(s)
- Marc R Marien
- Centre de Recherche Pierre Fabre, Neurobiology I, 17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
12
|
Karhunen H, Virtanen T, Schallert T, Sivenius J, Jolkkonen J. Forelimb use after focal cerebral ischemia in rats treated with an alpha 2-adrenoceptor antagonist. Pharmacol Biochem Behav 2003; 74:663-9. [PMID: 12543233 DOI: 10.1016/s0091-3057(02)01053-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atipamezole, a selective alpha(2)-adrenoceptor antagonist, enhances recovery of sensorimotor function after focal cerebral ischemia in rats. The aim of the present study was to further characterize the effects of atipamezole treatment combined with enriched-environment housing in ischemic rats by evaluating spontaneous exploratory activity in the cylinder test. The right middle cerebral artery (MCA) of rats was occluded for 120 min using the intraluminal filament method. Atipamezole (1.0 mg/kg) or 0.9% NaCl was administered on postoperative days 2 through 11 and 15, 19, and 23. Spontaneous behavior of rats in a transparent cylinder was videotaped before, and 6 and 23 days after surgery 20 min after drug administration. Constant asymmetry in forelimb use was observed in the cylinder test on postoperative days 6 and 23. Ischemic rats used the impaired forelimbs (contralateral to lesion) during lateral exploration less than did sham-operated rats (P<.001). Ischemic rats also preferred to turn contralateral to the lesion (P<.05). Atipamezole increased the simultaneous, but not independent, use of the forelimbs during lateral exploration (P<.05). The data suggest that noradrenergic manipulation does not significantly enhance recovery in a test that does not depend on practice following focal cerebral ischemia.
Collapse
Affiliation(s)
- Heli Karhunen
- Department of Neuroscience and Neurology, University of Kuopio, PO Box 1627, Harjulante 1, 70211, Kuopio, Finland
| | | | | | | | | |
Collapse
|
13
|
Chopin P, Colpaert FC, Marien M. Effects of acute and subchronic administration of dexefaroxan, an alpha(2)-adrenoceptor antagonist, on memory performance in young adult and aged rodents. J Pharmacol Exp Ther 2002; 301:187-96. [PMID: 11907173 DOI: 10.1124/jpet.301.1.187] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the influence of dexefaroxan, a potent and selective alpha(2)-adrenoceptor antagonist, on cognitive performance in rodents. In young adult rats, dexefaroxan reversed the deficits induced by UK 14304 [5-bromo-N-(4,5-dihydro-1-H-imidazol-2-yl)-6-quinoxalinamine], scopolamine, and diazepam in a passive avoidance task. In this test, dexefaroxan also attenuated the spontaneous forgetting induced by a 15-week training-testing interval. Moreover, dexefaroxan, given immediately after training, increased the memory performance of rats trained with a weak electric footshock in the passive avoidance test, facilitated spatial memory processes in the Morris water maze task in rats, and increased the performance of mice in an object recognition test. Thus, dexefaroxan appears to have a promnesic effect in these tests by facilitating the processes of memory retention, rather than acquisition or other noncognitive influences. The facilitatory effects of dexefaroxan in young adult rats persisted even after a 21- to 25-day constant subcutaneous infusion by using osmotic minipumps, indicating that tolerance to the promnesic effect of the drug did not occur during this prolonged treatment interval. Furthermore, in the passive avoidance and Morris water maze tests, dexefaroxan ameliorated the age-related memory deficits of 24-month-old rats to a level that was comparable to that of young adult animals, and reversed the memory deficits induced by excitotoxin lesions of the nucleus basalis magnocellularis region. Together, these findings support a potential utility of dexefaroxan in the treatment of cognitive deficits occurring in Alzheimer's disease.
Collapse
|